信号与系统 第四章 拉普拉斯变换、连续系统的S域分析

合集下载

04四章 连续时间信号与系统的S域分析

04四章 连续时间信号与系统的S域分析

相应的傅里叶逆变换为
• Fb(s)称为f(t)的双边拉氏变换(或象函数),f(t)称为 Fb(s) 的双边拉氏逆变换(或原函数)。
二、双边拉氏变换的收敛域
能使
收敛的S值的范围。
若f(t)绝对可积,则 F(jω)=F(s)|σ=0 或F(jω)= F(s)|s= jω
S平面与零点、极点
N (s) F ( s) D( s )
例5.1-5求复指数函数(式中s0为复常数)f(t)=es0t(t)的 象函数
• 解: L[e (t )] 0 e e dt 0 e
s0 t s0t st



( s s0 ) t
dt
1 , Re[ s] Re[ s0 ] s s0 1 t , Re[ s ] 若s0为实数,令s0=,则有 e (t ) s

三、 S域平移(Shifting in the s-Domain): 若 x(t ) X (s), ROC: R 则
x(t )e X ( s s0 ), ROC : R Re[s0 ]
s0t
表明 X (s s0 ) 的ROC是将 X ( s)的ROC平移了 一个Re[ s0 ] 。
1 s2 X 1 ( s) 1 , s 1 s 1
1 X 2 ( s) , s 1
ROC: 1
ROC: 1
而 x1 (t ) x2 (t ) t 1 ROC为整个S平面 • 当R1 与R2 无交集时,表明 X ( s) 不存在。
二、 时移性质(Time Shifting):
ROC : 包括 R1 R2
x1 (t ) x2 (t ) X1 (s) X 2 ( s)

信号与系统4.3拉氏变换的性质

信号与系统4.3拉氏变换的性质

T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E

0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析.

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析.
n
(n为正整数)
n st 0
n
t e dt
st



4、冲激函数 (t)
L (t ) 0 ( t )e d t 1
st
同理
L (t t0 ) e
st0
5、正弦函数
1 j t j t L sin t ( L e L e ) 2j
at
,相当于拉氏变
sin t 和 e at cos t 的拉氏变换。
L e sin t 2 2 (s a) sa a t L e cos t ( s a )2 2
a t
Lsin t 2 s 2
s Lcos t 2 2 s
解法一: bs 延时特性 L[ f (t b)u(t b)] F ( s )e
1 s 尺度变换 L[ f (at b)u(at b)] F e a a
解法二: 尺度变换 延时特性
b
s a
1 s L[ f (at )u(at )] F a a
st
t
j t
j 右 半 开 0 平 面

反映指数函数 est 的幅度变化速度 >0, 幅度发散 <0, 幅度收敛 反映指数函数 est 的因子ejt 作周期变化的频率
三、拉普拉斯变换的收敛域
1、定义 把使 f (t) e- t 满足绝对可积条件的 的取值范围称为拉氏变换的收敛域。 2、单边拉氏变换的收敛条件
九、卷积
1、时域卷积 若 L f1 (t ) F1 ( s) L f 2 (t ) F2 ( s) 则 L f1 (t ) f 2 (t ) F1 ( s ) F2 ( s )

第四章拉普拉斯变换1

第四章拉普拉斯变换1
13
二、拉氏变换的收敛域ROC(单边拉氏变换)
(Region of Convergence) 信号 f (t)乘以收敛因子后,有可能满足绝对 可积的条件。是否一定满足,还要看f (t) 的性 质与 的相对关系。
t f ( t ) e 通常把使 满足绝对可积条件的 值
的范围称为拉氏变换的收敛域 。
14
lim f (t )e
t
t
0
( 0 )
则收敛条件为 0 满足上述条件的最低限度的 值,记为 0 (收敛坐标)。 j
收 敛 轴 0
1
收敛区

收 敛 坐 标
15
lim f (t )e
t
t
0
( 0 )
则收敛条件为 0
常用信号的收敛域 如:有始有终的能量信号 0 周期信号是功率信号 0 0 按指数规律增长的信号,如
显然,可表示成 F j


令s j F ( s) f (t )e st dt
FT[ f (t )e ] F ( s) f (t )e dt
t st
8

f (t )e
dt
FT[ f (t )e ] F ( s) f (t )e dt
24
1. 线性(linearity)
设f1 (t ) F 1 ( s), f 2 (t ) F 2 ( s)
则a1 f1 (t ) a2 f 2 (t ) a1F1 ( s) a2 F2 ( s), a1, a2为常数
例:求 f (t ) sin t u (t )的拉氏变换 F ( s ) 1 j t j t sin t (e e ) 解: 2j 1 1 jt jt e u (t ) , e u (t ) s j s j 1 1 1 LT [sin tu (t )] [ ] 2 2 j s j s j s 2

信号与系统课件(郑君里版)第四章

信号与系统课件(郑君里版)第四章
2 j j
F(s) L
[ f (t)]
f (t)estdt
0

f (t) L -1[F (s)]
1
j F (s)estds

2 j j
f (t) 原函数
F (s) 象函数
5
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
0
0
s j
F (s) f (t)estdt 0
单边拉氏变换
FB (s)
f (t)estdt

双边拉氏变换
4
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
2. 拉氏逆变换
f1(t)

f
(t )e t

1
2

F1
()e
jt
d
起系统函数 H(s) 的概念;
(5)利用系统函数零、极点分布可以简明、直观地表达系统
性能的许多规律。
2
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
§4.2 拉普拉斯变换的定义、收敛域
(一)从傅里叶变换到拉普拉斯变换
1. 拉氏变换是傅里叶变换的推广
当 f (t) 满足绝对可积条件时,存在傅里叶变换
(二)从算子符号法的概念说明拉氏变换的定义
d f (t) pf (t) dt
t f ( )d 1 f (t)

p
f (t) F(s)
d f (t) dt

sF(s) f (0 )
t f ( )d 1 F(s) 1 0 f ( )d

s
s
在算子符号法中,由于未能表示出初始条件的作用,只 好在运算过程中作出一些规定,限制某些因子相消。而拉氏 变换法可以把初始条件的作用计入,这就避免了算子法分析 过程中的一些禁忌,便于把微积分方程转化为代数方程,使 求解过程简化。

第4章拉普拉斯变换

第4章拉普拉斯变换

第四章 连续信号与系统的S 域分析1、如下方程和非零起始条件表示的连续时间因果LTI 系统,()()t f dt dft y dt dy dty d 524522+=++ 已知输入()()t e t f t ε3-=时,试求(1)系统的零状态响应;(2)判断系统的稳定性解:(1) 方程两边取拉氏变换;()()()()4552455222+++=⋅+++=⋅=s s s s F s s s s F s H s Y()()()t e e e t y s s s s s s s s Y t t t zs z ε⎪⎭⎫ ⎝⎛--=+-+-+=+++⋅+=---4221212142122111459221(2) 对于因果连续系统,()s H 的全部极点位于s 平面的左半平面, ()t h 才是衰减信号,由此可以得出,在复频域有界输出的充要条件是系统函数()s H 的全部极点位于s 平面的左半平面,若系统函数的极点是虚轴上的单阶共轭极点。

则系统临界稳定,若系统函数的极点在右半平面,则系统不稳定,如下图。

该题中,()114145522+++=+++=s s s s s s H ,其极点分别为4,121-=-=s s ,都在左半平面,所以系统稳定。

2、如下方程和非零起始条件表示的连续时间因果LTI 系统()()()()⎪⎩⎪⎨⎧==+=++--30,20223'22y y t f dt dft y dt dy t d y d已知输入()()t e t f t ε3-=时,试用拉普拉斯变换的方法求系统的零状态响应()t y zs 和零输入响应()t y zi , 0≥t 以及系统的全响应()0,≥t t y 。

解:方程两边取拉氏变换()()()()()()[]()()()()()()()()()()()()()()()t e e e t y t e e t y s s s s s s Y t e e e t y s s s s s s s s Y s s s s s s s s Y s s F s F s y y sy s Y s s t t t t t zi zi t t t zs ZS εεε⎪⎭⎫ ⎝⎛+--=+-=+++-=+++=⎪⎭⎫ ⎝⎛-+-=+-++++-=+⋅+++=++++++⋅+++=+=+=---+++-----------213225751725239232132512123325312312223632312312;3112030'023*********22。

拉普拉斯变换、连续时间系统的S域分析

拉普拉斯变换、连续时间系统的S域分析
若f (t)满足以下条件时,才存在付里叶变换 1 狄氏条件:1) f (t)在有限闭区间连续或有有限个第一类间断点; 2) f (t)在有限闭区间只有有限个极值点。
2 在(-, )内满足绝对可积,即 f (t) dt
由付里叶变换存在条件 可知,绝对可积条件较强,许多 函数都不满足此条件,如单位阶跃函数、正弦余弦函数、线 性函数等。 2拉普拉斯变换
F (s) f (t)et e jtdt
f (t)e( j)tdt f (t)est dt
其中 s j
F (s) f (t)est dt称作拉普拉斯(Laplace)变换
f (t) 1
F
(s)e
st
d称s 作拉普拉斯逆变换
2j
f (t) F (s)
单边拉氏变换
a1 f1(t) a2 f2 (t) a1F1(s) a2F2 (s)
其收敛域至少是二函数收敛域的相重叠部分。
7
例1:求双曲函数的象函数
sht 1 (et et )
2
sht
1 2
(et
et
)
0
1 2
(et
et
)est
dt
1 2
s
1
1 1
2 s
1
s2 2
Res 0
et的收敛域Res ,et的收敛域Res ,
当n 2时
t2
2 s3
,依次类推
t n n(n 1)(n 2)2 1
s n1
6
4.冲击函数
(t) (t)est dt 1 0
5.正弦函数
sin kt sin ktest dt 1 e jkt e jkt est dt
0
0 2j

第四章拉普拉斯变换

第四章拉普拉斯变换

拉氏变换定义
如有界非周期信号 ; 有稳定幅度的周期信号 0;
随时间成正比增长的信号 0; 按指数eat 增长的信号 a。
0系统:若某些信号在0点有跳变且已知f (0 ) 则 F (s)
def


0
f (t )e st dt
2. 基本信号的单边拉氏变换 (1)阶跃函数
时间微分性质(续)
t 0 时, f t 0 ,且无原始储能, 若 f t 为有起因信号,即
即 f ( 0 ) f ( 0 ) 0 2 f ( t ) sF ( s ) f ( t ) s F ( s ), 则 ,
常用函数的拉氏变换表可查用。
3. 常用信号的拉氏变换(f(t), t>0)
1 阶跃函数 u (t ) , 0 1 s
L
L 2 冲激函数 (t )
1,
3 指数函数 e
at
1 , -a sa
L
常用信号的拉氏变换(f(t), t>0)
单边周期信号的拉氏变换(续)
(2)周期性脉冲的拉氏变换
f T ( t ) f 1 ( t ) f 1 ( t T ) f 1 ( t 2T )
FT ( s ) F1 ( s ) F1 ( s )e sT F1 ( s )e 2 sT F1 ( s )(1 e
S T 2
1 0
t
T 2

2 T
2 T sin t[u (t ) u (t )] T 2
信号加窗 第一周期
(1 e ) 2 2 S
LT
sT 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f
(t)

1
2


F
(
)e
j
t
d
2、拉普拉斯变换是将时间函数f (t)分解为无
穷多项复指数信号e st之和。其中s = +j
s称为复频率。
f
(t)

1
2j


F (s)e st ds
3、拉普拉斯变换是傅立叶变换的推广。
4、复平面( s平面)
以复频率 s = +j 的实部 和虚部 j 为
t
所以其收敛域为s 平
面上 a 的部分.
四、一些常用函数的拉氏变换
设 f (t)为有始函数,讨论单边拉氏变换
1、阶跃函数
L
u(t)


0
estd t
即 u(t ) 1

est


s 0
( 0)
1 s
2、指数函数
s
L eat eatestd t
f
(t)

1
2


F
(
)e
j
t
d
2、当函数不满足绝对可积条件时
将f(t)乘以衰减因子e-t ( 为 一实常数 ) ,恰当 地选取 的值 就有可以使 f(t) e-t 变得绝对可
积,即 其中 e t称为收敛因子
F f (t)e t

F1( )


f
(t )e t e j t dt
Lt 1 s2
L t2

2 s3
L tn

n! s n1
4、冲激函数 (t)
L (t)


0

(t
)e
st
d
t
1
同理 L (t t0 ) est0
5、正弦函数
sin t 1 (e j t e j t )
2j
Lsin t 1 ( L e j t L e j t ) 2j
坐标
3、指数阶函数
凡是满足
lim f (t)e t 0
t
( 0 )
的函数 f (t) 称为指数阶函数。
4、几个简单函数的收敛区
(1) 能量有限信号
能量信号在时间轴上有始有终,其能量是 有限的。
对 0 没有要求,收敛域为整个 s 平面。
(2) 单位阶跃信号u(t)
对于 > 0 的任何值,都有

0
f (t )estdt
f
(t)

1
2
j
jF (s)e s t ds
j
记作: F(s) L[ f (t)]
f (t) L1[F(s)]
本课程主要讨论单边拉普拉斯变换
拉氏变换与傅氏变换的关系:
1、傅立叶变换是将时间函数f (t)分解为 无穷多项虚指数信号e jt 之和。
§4.2 拉普拉斯变换的定义、 收敛域
一、从傅里叶变换到拉普拉斯变换 二、拉普拉斯变换定义 三、拉普拉斯变换的收敛 四、一些常用函数的拉氏变换
§4.2 拉普拉斯变换的定义、 收敛域
一、从傅里叶变换到拉普拉斯变换
1、傅立叶变换定义
当函数 f (t) 满足狄里赫利条件时
F( )



f
(t )e j tdt
二、拉普拉斯变换定义
1、双边拉普拉斯变换
Fb (s)
f (t)estdt

(1)
f
(t)

1
2j
j
j
Fb
(
s
)e
s
t
ds
(2)
s 称复频率,Fb(s) 称信号的复频谱
2、单边拉普拉斯变换
f (t)为有始函数,即 t <0 时,f (t) = 0
F
( s)

)e
jt
d
两边同乘 et
f (t)
1
2


Fb
(
s
)e
t
e
j
t
d
令 s = +j,因 为常数,所以 d = 1/j ds,
且当 时,s j 进行积分换元
f (t) 1
2 j
j
F j b
(s)e
s
t
ds
前面的两个公式为双边拉普拉斯变换对
f (t )e( j )t dt 令s=+j
f (t )estdt
因为上式中t 为积分变量,故积分结果必为s的函数
Fb (s)


f (t )estdt
用傅立叶反变换的定义方法求拉氏反变换
f (t )e t

1
2

Fb
(
s
0
即 eat
1
as

e(as)t
as
( a)


0
1 a
s
3、 t n (n为正整数)
L tn t nestd t 0
| t n est
s

0
est 0 s
nt n1d t

n s
0
t
n1e
st dt
L t n n L t n1 s
§4.1 引 言
傅立叶分析工具在研究信号和线性时不变系 统的很多问题时,是极为有用的。但傅立叶变 换有不足之处。
1、要求信号f(t)绝对可积。而有些常用信 号不满足该条件。 2、有些重要函数如 eat (a>0) 的傅立叶变换 不存在,无法用傅立叶分析方法处理。
而拉氏变换作为傅氏变换的推广,解决了上述 不足。
1( 1 1 )
2 j s j s j
s2 2

L sin

t
s2
2
同理 Lcos t s
s2 2
§4.3 拉氏变换的基本性质
一、线性(叠加) 六、尺度变换 二、原函数微分 七、初值
相互垂直的坐标轴而构成的平面.
j
当s = +j 确定时,




指数函数 est 也确定了
e st e t e j t


平 0平


反映指数函数 est 的幅度变化速度 >0, 幅度发散 <0, 幅度收敛
反映指数函数 est 的因子ejt 作周期变化的频率
lim u(t )e t 0
t
所以其收敛域为 s 平面的右半面。
(3) 线性增长信号 t n
对于 >0 的任何值,都有
lim t ne t 0
t
所以其收敛域为 s 平面的右半面。
(4) 指数函数 e at
只有当 a 时,才有
lim ea t e t 0
三、拉普拉斯变换的收敛域
1、定义
把使 f (t) e- t 满足绝对可积条件的
的取值范围称为拉氏变换的收敛域。
2、单边拉பைடு நூலகம்变换的收敛条件
若 f (t)为有始函数,存在下列关系
j
lim
t
f (t)e t
0
(
0)
则收敛条件为 0
0称为收敛坐标
收敛区
0 0

收敛
相关文档
最新文档