杂散电流的腐蚀及防护

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、杂散电流干扰方式

杂散电流是指在地中流动的设计之外的直流电,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。其中,以城市和矿区电机车为最甚。它的干扰途径如图10-60 所示。从图中可以划分三种情况:

图10-60 杂散电流干扰示意图

1—供电所2 —架空线3 —轨道电流4 —阳极区5—腐蚀电流6 —交变区

7—

阴极区

1.靠近直流供电所的管道属于阳极区,杂散电流从管道上流出,造成

杂散电流电解。

2.在干扰段中间部位的管道属于极性交变区,杂散电流可能流入也可能

流出。当电流流出时,造成腐蚀。

3.在电机车附近的管道属于阴极区,杂散电流流入管道,它起着某种

程度的阴极保护作用。

以上是一般规律。实际上杂散电流干扰源是多中心的。如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时会产生杂乱无章的地下电流。作用在

管道上的杂散电流干扰电位如图10-61 所示

图10-61 杂散电流干扰电位曲线埋地钢质管道因直流杂散电流所造成的腐蚀称为干扰腐蚀。因属电解腐蚀,所以有时也称电蚀。这是管道腐蚀穿孔的主要原因之一。例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。

随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。其干扰形式如图10-62 和图10-63 所示。其干扰范围与阳极排放电流和阴极保护电流密度成正比。当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。

二、杂散电流腐蚀的特点

1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。大部分属腐蚀原电池型。腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几

十毫安。在土壤中的杂散电流腐蚀,则是电解电池原理。即外来的直流电流或电位差,造成了土壤溶液中金属腐蚀。其腐蚀量与杂散电流强度成正比,服从法拉第电解定律。也就是说,假如有1A 的电流通过钢管表面,流向土壤溶液,那么1a 的直流杂散电流1 年的时间会溶解钢铁9kg。实际上,土壤中发生的杂散电流强度是很大的,管道上管地电位可能高达8~9V,通过的电流量最大能达几百安。因此,壁厚为7~8mm的钢管,在杂散电流作用下,4~5 个月即可能发生腐蚀穿孔。所以,杂散电流的腐蚀强度是一般腐蚀不能与之相比的。它是管道腐蚀穿孔的主要原因。

2.范围广随机性强杂散电流的作用范围很大,其影响可达几千米、几十千米,这与引起杂散电流的外部电流源密切相关。杂散电源腐蚀的发生又常常是随机而变的。无论从电流方向上,还是电流强度上,都是随外界电力设施的负载情况、轨道的连接与绝缘状况、管道的绝缘状况而变化。因此,常将杂散电流的干扰称为动态干扰。这也给杂散电流的测量、排除带来了困难。

图10-62 阳极地床周围的杂散电流干扰

1—测电位曲线2—测电流(东) 3 —被干扰管道4—测电流(西) 5 —

整流器

6—被保护的管道7 —被干扰管道电位曲线8 —电流干扰区9 —电流泄漏

直流腐蚀是引起管道泄漏的最大隐患。近年来,对杂散电流的腐蚀已引起人

们的普遍关注

图10-63 阴极保护管道的干扰

a) 交叉b) 平行三、杂散电流干扰的判断标准

地下杂散电流可以根据管一地电位偏移和地电位梯度来判断。对于此判断。各国根据国情都有自己的指标。例如,英国国家标准规定,以管道对地电位正向偏移20mV为判断指标;德国以+100mV为标准;日本的标准是+50mV。

原石油工业部编制的《埋地钢质管道直流排流保护技术标准》。

(SYJ17—1986),把判定标准分为两个台阶:一是确认干扰的存在,二是在确认干扰存在的前提下必须采取措施的临界指标。这一指标是:处于直流电气化铁路、阴极保护系统及其他直流干扰附近的管道,当管道任意点上管—地电位较自然电位正向偏移20mV时,或管道附近土壤中的电位梯度大于0.5mV/m时,确认为有直流干扰;当管道上任意点管一地电位较自然电位正向偏移lOOmV或管道附近土壤中的电位梯度大于2.5mV/m时,管道

应及时采取直流排流保护或其他防护措施。

日本<电蚀土壤腐蚀手册》推荐的地电位梯度与杂散电流干扰关系,见表

10-69 。

表10-69 地电位梯度与杂散电流干扰

四、直流干扰腐蚀的防护

(一)减少干扰源电流的泄漏直流干扰腐蚀的产生是源于各种电气设备

的电流泄漏。因此,直流干扰的防护首先应减少这些电气设备的电流的泄

漏。为此,对直流电气化铁路作如下限制:

1.铁轨导电性能必须良好通过铁轨的平均电流产生的电位差不得大于

3V/km。

2.铁轨接头增加电阻各区段铁轨接头增加的电阻,不得大于该区段铁

轨电阻的20%。

3.铁辄与大地绝缘电气化铁轨应采取与大地绝缘的措施。对于供电方

式,应采用减小供电范围,增加足够的供电所的原则,保证在供电范围内

接地装置只接地一次等,来减少杂散电流源。

(二)避开干扰源的设计原则

由于干扰源的情况错综复杂,在管道设计时又不可能完全避开,为保

证管道安全,应遵循下列设计原则:

1. 管道走向的选择合理选择埋地管道的走向,尽量远离干扰源。当埋

地管道与直流电气化铁路的铁轨接近或交叉时,相互间的距离不得小于

1m,且尽量

缩短与之平行的管线的长度。

相关文档
最新文档