危险性生化学反应的危险性分析通用版
化工生产过程危险性分析

化工生产过程危险性分析
首先,化工生产过程的危险性主要源于原料和物质的特性。
许多化学
品对人体和环境有毒性、腐蚀性和易燃性等危险特性。
在处理这些化学品时,必须仔细遵守操作规程,采取必要的防护措施,以减少事故的发生。
严禁将不同化学物质混合使用,以避免产生化学反应和释放有害气体。
其次,化工生产过程中的工艺设备也存在危险性。
例如,压力容器、
反应釜和储槽等设备在操作过程中可能发生泄漏、爆炸或其他事故。
因此,必须定期检查和维护设备,确保其正常运行。
另外,必须确保工艺设备的
可靠性和安全性,采取必要的防护措施,如安装泄漏报警装置和爆炸防护
设备等。
此外,化工生产过程中的操作人员也是危险源之一、操作人员的不当
操作、误操作、疏忽大意等都可能引发事故。
因此,必须对操作人员进行
充分的培训和教育,使其了解相关安全规程和操作规程,并严格执行。
此外,还应制定安全操作程序,严格执行各项操作规定,加强现场安全监控
和管理。
最后,化工生产过程的危险性还受到环境因素的影响。
例如,气候条件、地质条件和地域环境等都可能对化工生产过程产生影响。
特别是在靠
近人口密集区或环境敏感区域进行化工生产时,更应重视环境影响,并采
取相应的措施进行管理和控制。
危险物品的危险、有害因素识别(通用版)

( 安全管理 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改危险物品的危险、有害因素识别(通用版)Safety management is an important part of production management. Safety and production are inthe implementation process危险物品的危险、有害因素识别(通用版)危险物品的危险、有害因素识别2007-05-2008:33进行危险物品的危险、有害性识别与分析时,危险物品分为以下9类:(1)易燃、易爆物质:引燃、引爆后在短时间内释放出大量能量的物质由于具有迅速地释放能量的能力产生危害,或者是因其爆炸或燃烧而产生的物质造成危害(如有机溶剂)。
(2)有害物质:人体通过皮肤接触或吸入、咽下后,对健康产生危害的物质。
(3)刺激性物质:对皮肤及呼吸道有不良影响(如丙烯酸酯)的物质。
有些人对刺激性物质反应强烈,且可引起过敏反应。
(4)腐蚀性物质:用化学的方式伤害人身及材料的物质(如强酸、碱)。
腐蚀性物质的危险有害性包括两个方面:一是对人的化学灼伤。
腐蚀性物质作用于皮肤、眼睛或进入呼吸系统、食道而引起表皮组织破坏,甚至死亡;二是腐蚀性物质作用于物质表面如设备、管道、容器等而造成腐蚀、损坏。
腐蚀性物质可分为无机酸、有机酸、无机碱、有机碱、其他有机和无机腐蚀物质等五类。
腐蚀的种类则包括电化学腐蚀和化学腐蚀两大类。
腐蚀的危险与有害主要包括以下几类:①腐蚀造成管道、容器、设备、连接部件等损坏,轻则造成跑、冒、滴、漏,易燃易爆及毒性物质缓慢泄漏,重则由于设备强度降低发生裂破,造成易燃易爆及毒性物质大量泄漏,导致火灾爆炸或急性中毒事故的发生。
②腐蚀使电气仪表受损,动作失灵,使绝缘损坏,造成短路,产生电火花导致事故发生。
典型化学反应的危险性分析:重氮化、烷基化、磺化

典型化学反应的危险性分析:重氮化重氮化重氮化是使芳伯胺变为重氮盐的反应。
通常是把含芳胺的有机化合物在酸性介质中与亚硝酸钠作用,使其中的胺基(-NH2)转变为重氮基(-N=N-)的化学反应。
如二硝基重氮酚的制取等。
重氮化的火灾危险性分析:(1)重氮化反应的主要火灾危险性在于所产生的重氮盐,如重氮盐酸盐(C6H5N2Cl)、重氮硫酸盐(C6H5N2H504),特别是含有硝基的重氮盐,如重氮二硝基苯酚[(NO2)2N2C6H2OH]等,它们在温度稍高或光的作用下,即易分解,有的甚至在室温时亦能分解。
一般每升高10℃,分解速度加快两倍。
在干燥状态下,有些重氮盐不稳定,活力大,受热或摩擦、撞击能分解爆炸。
含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能引起着火或爆炸。
在酸性介质中,有些金属如铁、铜、锌等能促使重氮化合物激烈地分解,甚至引起爆炸。
(2)作为重氮剂的芳胺化合物都是可燃有机物质,在一定条件下也有着火和爆炸的危险。
(3)重氮化生产过程所使用的亚硝酸钠是无机氧化剂,于175℃时分解能与有机物反应发生着火或爆炸。
亚硝酸钠并非氧化剂,所以当遇到比其氧化性强的氧化剂时,又具有还原性,故遇到氯酸钾、高锰酸钾、硝酸铵等强氧化剂时,有发生着火或爆炸的可能。
(4)在重氮化的生产过程中,若反应温度过高、亚硝酸钠的投料过快或过量,均会增加亚硝酸的浓度,加速物料的分解,产生大量的氧化氮气体,有引起着火爆炸的危险。
烷基化烷基化(亦称烃化),是在有机化合物中的氮、氧、碳等原子上引入烷基R—的化学反应。
引入的烷基有甲基(-CH3)、乙基(-C2H5)、丙基(-C3H7)、丁基(-C4H9)等。
烷基化常用烯烃、卤化烃、醇等能在有机化合物分子中的碳、氧、氮等原子上引入烷基的物质作烷基化剂。
如苯胺和甲醇作用制取二甲基苯胺。
烷基化的火灾危险性:(1)被烷基化的物质大都具有着火爆炸危险。
如苯是甲类液体,闪点-11℃,爆炸极限1.5%~9.5%;苯胺是丙类液体,闪点71℃,爆炸极限1.3%~4.2%。
典型化学反应的危险性及基本安全技术规程

典型化学反应的危险性及基本安全技术规程化学反应可以产生许多有用的物质和产品,但它们也具有潜在的危险性。
在处理化学物质时,必须采取一些基本的安全技术规程,以确保操作人员和周围环境的安全。
本文将介绍典型的化学反应的危险性及相应的基本安全技术规程。
1. 氧化还原反应氧化还原反应是一种常见的化学反应,它涉及化学物质之间的电荷转移。
这些反应可以释放大量热能和气体,因此它们是非常危险的。
例如,在制备氢气时,氢气和氧气的反应可以导致爆炸和火灾。
因此,在进行氧化还原反应时,应当注意以下基本安全技术规程:- 在操作过程中保持充分通风,确保空气流通和密闭空间中的潜在气体被清除。
- 在混合两种溶液时,应该先加入少量的一种溶液,慢慢加入另一种溶液,在加入过程中应该保持搅拌,以避免发生爆炸。
- 使用防爆设备,如闪蒸罐和碘化钾/硝酸银试纸等,以检测氧化还原反应的燃烧过程。
2. 酸碱反应酸碱反应是一种产生离子交换的化学反应,其特点是pH值的变化。
这些反应涉及到酸性和碱性化学物质之间的中和反应,可以产生大量的热和气体释放。
在酸碱反应中,基本的安全技术规程包括:- 在进行酸性或碱性反应时,应该戴上防护手套、面罩、护目镜等个人防护装置。
- 在混合酸碱溶液时要小心。
可以先加入缓冲溶液或水,以减少化学反应产生的热。
- 要密切关注pH值的变化,并在必要时进行调整。
3. 溶解反应溶解反应是一种在液态中进行的化学反应。
它通过从固体中将化学物质分散到溶剂中来产生新的物质。
在溶解反应中,最常见的危险性是溶剂的挥发和腐蚀性。
以下是基本的安全技术规程:- 操作人员应戴上适当的个人防护装置,如护目镜、防护手套等。
- 在进行溶解反应时,应该使用能够抑制挥发的溶剂,并且保持良好的通风条件。
- 注意防腐蚀。
有一些化学物质在接触到皮肤或眼睛后会产生剧烈的刺激。
如果接触到了这些物质,应及时清洗被接触的部位。
4. 氧化反应氧化反应是一种涉及氧气的化学反应,可以用于制造多种有用的化学物质,例如酸、醇、酮和醛等化合物。
危险化学品氯化过程危险性分析及安全技术要点

危险化学品氯化过程危险性分析及安全技术要点危险化学品是指在生产、储存、运输和使用过程中,可能对人体、物体和环境造成危害或对设备设施产生破坏的化学物质。
氯化是一种常见的化学反应过程,但在实际操作中存在一定的危险性。
为了保证氯化过程的安全性,进行危险性分析,并采取相应的安全技术措施,是必不可少的。
1.危险性分析1.1火灾爆炸危险性:氯化过程中可能涉及到可燃物质和氧气的接触,火焰、火花或高温可能引发爆炸事故。
1.2中毒危险性:氯化过程中产生的氯气具有一定的毒性,易对人体呼吸系统、眼睛和皮肤等造成损害。
1.3腐蚀危险性:氯化反应中产生的酸性气体或氯化物可能对设备设施和环境造成腐蚀。
1.4突发事故危险性:在氯化过程中,操作失误、设备故障或不当维护可能引发突发事故,如泄漏、爆炸等。
2.1设备设施的安全设计:氯化过程涉及到不同的设备设施,如反应釜、管道、阀门等。
这些设备需要经过严格的安全设计,确保其能够承受所需的压力和温度,并能隔离潜在的危险品。
2.2环境控制技术:通过对氯化过程中的操作环境进行控制,如采用局部排风系统、气体泄漏监测系统等,可以有效减少氯化物泄漏对环境的污染。
2.3个人防护措施:对从事氯化过程操作的人员,应提供适当的个人防护装备,如呼吸器、防护眼镜、防腐蚀服等,以降低对有毒气体和腐蚀物质的接触。
2.4紧急应急预案:为了有效应对突发事故,应制定完善的紧急应急预案。
包括对氯化过程可能发生的各类事故进行分析和预测,并指导应急演练和紧急处理措施的制定。
3.安全操作要点3.1操作人员素质要求:操作人员应经过专业的培训和考核,具备相关安全知识,并熟悉操作规程和预案,具备安全意识和应急处理能力。
3.2涉及的操作步骤:在氯化过程中,操作人员应注意以下步骤:a.确保设备完整,无损伤和泄漏。
b.严格按照操作规程进行操作,遵守安全禁令。
c.在操作中注意使用防护设备,如酸碱中和剂和中和剂。
4.废弃物处理在氯化过程中产生的废弃物应得到正确处理,遵守相关法律法规,并进行分类、封存、标识和安全运输,以减少对环境的影响。
典型化学反应的危险性分析

典型化学反应的危险性分析(1)氧化的火灾危险性①氧化反应需要加热,但反应过程又是放热反应,特别是催化气相反应,一般都是在250~600℃的高温下进行,这些反应热如不及时移去,将会使温度迅速升高甚至发生爆炸。
②有的氧化,如氨、乙烯和甲醇蒸气在空中的氧化,其物料配比接近于爆炸下限,倘若配比失调,温度控制不当,极易爆炸起火。
③被氧化的物质大部分是易燃易爆物质。
如乙烯氧化制取环氧乙烷中,乙烯是易燃气体,爆炸极限为2.7%~34%,自燃点为450℃;甲苯氧化制取苯甲酸中,甲苯是易燃液体,其蒸气易与空气形成爆炸性混合物,爆炸极限为1.2%~7%;甲醇氧化制取甲醛中,甲醇是易燃液体,其蒸气与空气的爆炸极限是6%~36.5%。
④氧化剂具有很大的火灾危险性。
如氯酸钾,高锰酸钾、铬酸酐等都属于氧化剂,如遇高温或受撞击、摩擦以及与有机物、酸类接触,皆能引起着火爆炸;有机过氧化物不仅具有很强的氧化性,而且大部分是易燃物质,有的对温度特别敏感,遇高温则爆炸。
⑤氧化产品有些也具有火灾危险性。
如环氧乙烷是可燃气体;硝酸虽是腐蚀性物品,但也是强氧化剂;含36.7%的甲醛水溶液是易燃液体,其蒸气的爆炸极限为7.7%~73%。
另外,某些氧化过程中还可能生成危险性较大的过氧化物,如乙醛氧化生产醋酸的过程中有过醋酸生成,过醋酸是有机过氧化物,性质极度不稳定,受高温、摩擦或撞击便会分解或燃烧。
(2)氧化过程的防火措施①氧化过程中如以空气或氧气作氧化剂时,反应物料的配比(可燃气体和空气的混合比例)应严格控制在爆炸范围之外。
空气进入反应器之前,应经过气体净化装置,消除空气中的灰尘、水汽、油污以及可使催化剂活性降低或中毒的杂质,以保持催化剂的活性,减少着火和爆炸的危险。
②氧化反应接触器有卧式和立式两种,内部填装有催化剂。
一般多采用立式,因为这种形式催化剂装卸方便,而且安全。
在催化氧化过程中,对于放热反应,应控制适宜的温度、流量,防止超温、超压和混合气处于爆炸范围之内。
化学还原反应的危险性及预防措施正式版

化学还原反应的危险性及预防措施正式版化学还原反应是一类常见的化学反应,参与反应的物质可以产生大量的热能和释放出有毒的酸性气体。
这些反应不仅具有高度的危险性,还可能导致爆炸和火灾等严重后果。
因此,有必要对这些反应进行合理的预防和安全措施。
本文将详细介绍化学还原反应的危险性以及针对性的预防措施。
首先,化学还原反应的危险性主要表现在以下几个方面:1.爆炸和火灾:化学还原反应中常涉及到高度活泼的金属和含氧化剂的反应物,例如氢气和氧气的反应、铝粉和氯气的反应等。
这些反应可能会产生高能的火焰、火花或热能,从而引发爆炸和火灾。
2.毒性气体:一些还原剂和氧化剂在反应过程中会生成有毒的气体,例如二氧化硫、二氧化氮等。
这些气体对人体有害,可能导致中毒和窒息等严重后果。
3.化学腐蚀性:一些还原剂和氧化剂会产生强酸或强碱,例如硫酸、盐酸等。
这些腐蚀性物质可能对皮肤、眼睛等造成严重的伤害。
为了确保化学还原反应的安全进行,我们可以采取以下预防措施:1.充分了解反应物和产物的性质:在进行化学还原反应之前,我们应该对反应物和产物的性质进行充分了解。
这将有助于确定适当的防护措施,并提前预测潜在的危险。
2.高效通风系统:在进行化学还原反应时,我们应确保实验室或场地配备了高效的通风系统。
这将有助于迅速排除产生的有毒气体,减少室内空气的浓度,降低中毒和窒息的风险。
3.个人防护措施:在进行化学还原反应时,我们应穿戴合适的个人防护装备,包括实验室大衣、防护手套、护目镜等。
这将有助于防止腐蚀性物质对皮肤、眼睛等造成伤害。
4.使用安全设备:在进行化学还原反应时,我们应确保使用符合安全标准的实验设备和器材。
例如,使用防爆设备、防火器材和漏洞检测装置等,以减少爆炸和火灾的风险。
5.合理操作和控制反应条件:在进行化学还原反应时,我们应采取合理的操作和严格控制反应条件。
这包括控制反应温度、浓度和反应速率等,以防止反应失控和产生危险。
6.废物处理和清洁工作:在完成化学还原反应后,我们应及时清理实验室或场地,正确处理产生的废物和化学品。
化学反应过程的危险性及基本安全技术

化学反应过程的危险性及基本安全技术化学反应是化学过程中最常见的操作之一,但它也存在一定的危险性。
为了确保化学实验的安全进行,必须采取一系列的安全措施。
本文将介绍化学反应过程的危险性,并提供一些基本的安全技术。
1. 化学反应的危险性化学反应过程的危险性主要表现在以下几个方面:(1) 高温高压条件下的反应:一些反应需要在高温高压条件下进行,这样会增大事故的风险。
高温会导致反应发生剧烈放热,增加了爆炸的可能性;高压会增加管道和容器的破裂风险。
(2) 可燃性物质:许多化学反应涉及到可燃性物质,如溶剂、气体和可燃气体的释放。
这些物质易燃易爆,容易引发火灾或爆炸事故。
(3) 有毒物质的产生:一些化学反应会产生有毒物质,如气体、挥发性物质等。
这些物质可能对人体造成危害,如中毒、呼吸系统疾病等。
(4) 环境污染:一些化学反应可能会产生有害物质,如气体、液体或固体废物。
这些物质可能对环境造成污染,对生态系统造成破坏。
2. 基本安全技术在化学反应过程中,我们需要采取一些基本的安全技术来减少事故风险。
(1) 实验室准备:在进行化学反应前,必须进行实验室的准备工作。
确保实验室设备齐全、操作规范,例如正确配备紧急退出装置、灭火器材等。
(2) 使用个人防护装备:在进行化学反应时,必须使用正确的个人防护装备,如实验服、安全眼镜、手套和防护面罩。
这些装备可有效保护人员免受化学品和高温的伤害。
(3) 检查化学品和设备:在进行化学反应前,必须检查化学品和设备的完整性和安全性。
确保化学品的储存符合规范,并检查设备的密封性和稳定性。
(4) 控制温度和压力:对于需要高温高压条件的反应,必须严格控制温度和压力。
使用专用的反应器和控制设备,确保反应过程的稳定性和可控性。
(5) 排放废物和处理副产物:在化学反应结束后,必须妥善处理废物和副产物。
采取正确的废物处理措施,如储存、中和、分离、回收和焚烧等方法。
(6) 紧急处置措施和培训:在化学反应过程中,必须制定紧急处置措施,以应对可能发生的事故。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决方案编号:YTO-FS-PD520危险性生化学反应的危险性分析通用版The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation.标准/ 权威/ 规范/ 实用Authoritative And Practical Standards危险性生化学反应的危险性分析通用版使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。
文件下载后可定制修改,请根据实际需要进行调整和使用。
现代社会几乎所有的领域都依赖于化学物质的存在,人们的衣食住行也与化学物质密不可分。
目前,人们生产、生活中经常使用的化学物质就有700万种,在市场上流通的超过10万种。
如此品种繁多、数目巨大的化学物质,作为基本原料、基本能源、医药成品、农药成品等支撑着社会的各个行业,极大地改善和丰富了人们的生活,推动着社会经济的发展。
然而,大部分化学物质具有反应性,在生产及储存运输过程中,由于对一些化学反应的危险特性认识不充分,考虑不周或疏忽,使一些化学反应引起了火灾、爆炸、中毒章故,不仅造成员工和公众的严重伤亡,而且带来重大的经济损失,并且对环境造成破坏。
因此,对危险性化学反应进行分析研究,引起有关人员的重视和警惕,减少事故的发生。
是十分必要的。
一、危险性化学反应发生的行业和场所危险性化学反应事故并不仅仅发生在化工行业,也发生在使用大量化学品的其他行业。
据有关资料统计,危险性化学反应发生在化学加工业占66%,散装储存占27%,废物处理占3%,石油炼制占2%,-储存占1%,未知占1%。
危险性化学反应事故不仅发生在指定的化学反应工序,而且发生在非化学反应工序。
一般可能在3种过程中发生:化学品的生产工艺过程中,如批次或连续反应化学品制造过程;储存、搬运与重新包装过程中,如仓库或储槽的储存;混合与物理处理过程中,如压碎、混合、筛选、干燥、蒸馏、吸收或加热等。
二、危险性化学反应涉及的设备用来储存、处理、加工和运输化学品的多数设备都有可能会发生危险性化学反应事故,据有关资料统计,危险性化学反应事故发生在与反应器有关的设备占25%;储存设备占22%;散装储料桶事故占10%;其他过程设备,如接受器、混合器和干燥器占22%;分离设备占5%;转换设备占5%:废物设备占3%;事故无法确定其具体设备的占8%。
三、危险性化学反应的特点危险性化学反应大部分是放热反应和(或)放出可燃气体的反应,当化学反应产生的热量和气态副产品无法被周围的环境安全地吸收,就会存在反应危险。
如果热量释放的速度过快又没有得到有效的控制,则会造成严重的后果;可燃气在局部高温环境中与氧结合发生自燃;如果放出的热较少,使局部温度达不到该种可燃气的自燃点,则不会发生自燃,但因有大量可燃气的放出,与空气形成爆炸性混合物,遇火源则会发生爆炸。
化学反应从化学物品本身特性来说分为化学物品自反应和化学物品之间互相反应。
聚合反应和分解反应可以定为自反应,因为这两种反应一般只涉及到一种化学物品。
但是。
为了促进这些反应的进行,通常需要其他物质如催化剂或杂质的参与。
化学物品之间互相反应需要有两种或多种物质接触,如相互接触自燃的反应。
如果化学反应释放的热量和能量足以引发另外一个不必要的化学反应,反应危险情况将会更复杂。
因此,化学反应并不一定是某一化学物品的固有特性。
危险性化学反应危险的严重程度受反应过程中不同因素的影响,这些因素包括运行温度、压力、处理物料的量、化学品的浓度、催化剂的杂质及与现场其他化学品的相容性等。
一些危险性化学反应的发生,有时是难以预料的。
四、危险性化学反应的类型1.易引起反应失控的化学反应放热的化学反应均可发生反应失控,反应放热速度超过散热速度,导致体系热量积累、温度升高、反应速度进一步加快、容器内压力过大,导致冲料、设备破裂失效,引发火灾爆炸事故。
易引起反应失控的反应有以下3种。
(1)化合反应失控大多数化合反应,如硝化、磺化、氧化、氯化、重氮化、酯化等反应都是放热量较大的化学反应。
在生产中,如果不能将反应热及时移出,便会引起反应失控。
(2)聚合反应失控聚合反应均为放热和热动力不稳定过程。
一些单体具有较大的化学活泼性,如果聚合反应失去阻聚剂或发生暴聚,反应就会失去控制而引发爆炸事故。
聚合产物物料黏性大,设备和管道易结焦、结垢,不仅影响传热效果,还可发生堵塞引起器内压力和温度变化,甚至因局部过热而引起失控。
这类事故在盛存自聚性单体的储罐中也能发生,若单体混入具有促进聚合作用的杂质,或没添加阻聚剂,或添加量偏少而失去阻聚作用时,单体自动聚合,造成反应热蓄积而进入失控状态。
(3)分解反应失控分解反应虽然多数是吸热反应,但有的分解反应具有放热性质,因为分解反应失控而引起的火灾爆炸案例并不少见。
在日本平冢市化工厂曾发生过臭氧化物分解引起的爆炸事故。
某些在储存中易于发生自燃分解的物质,如处于密闭的空间或容器之内,可因分解放热,聚热升温使内压上升而引起爆炸。
也有的因其他物料误打入或窜入引起分解反应,使内压上升。
2.易生成过氧化物的反应这类化合物极易与空气中的氧发生反应,形成不稳定或爆炸性的有机过氧化物,例如,醇类、醛类、酮类、酸类、环氧化物,甚至有机腈、二烯烃等不含氧的化合物,有可能发生喷料或爆炸。
例如二异丙醚、二乙烯乙炔、偏二氯乙烯、氨基钠、氨基钾等,容易被空气氧化生成爆炸性过氧化物;二乙烯乙炔容易吸收惰性气体中残留的氧而生成敏感的爆炸性过氧化物,该过氧化物溶解度较低,极易析出并附着在反应器、管道等设备的内壁上,并以这种状态蓄积起来,当接受某种击发能量时,便会发生爆炸以至爆轰。
容易发生反应生成有机过氧化物的物质,其结构特点主要是具有弱的C—H键及易引起附加聚合的双键,如丁二烯就可能形成爆炸性的过氧聚合物。
另外,过氧化氢可与甘油或乙醇、金属粉末、联氨等接触发生反应,生成过氧化物,在常温下发生爆炸。
3.易导致自燃的化学反应很多活泼的单质与化合物,在与水、空气、相互接触、分解、吸附时,反应非常剧烈,同时放出大量的热,引起自燃,甚至爆炸。
(1)吸水反应自燃活泼金属,主要是碱金属和某些碱土金属及其合金,例如锂、钠、钾、铷、铯、钙、钠汞齐、钾钠合金等,它们与水发生剧烈反应,生成氢气,并放出大量热,使氢气在局部高温环境中发生自燃,并使未来得及反应的金属发生燃烧。
金属氢化物,主要有氢化锂、氢化钠、四氢化锂铝、氢化钙、氢化铝等。
这类物质与水作用放出氢气,同时放出大量热,使可燃气燃烧。
硼烷的结构与烷烃相似,,例如硼乙烷,具有很高的燃烧热,它们遇水也会发生自燃。
金属磷化物,如磷化钙,磷化锌,它们与水作用生成磷化氢。
磷化氢在空气中容易自燃。
金属碳化物,如碳化钾、碳化钠、碳化钙、碳化铝等。
碱金属的碳化物遇水能发生分解爆炸;碳化钙(电石)遇水放出乙炔气体,产品中往往含有磷、硫等杂质,与水作用会放出磷化氢和硫化氢,当磷化氢含量超过0.08%,硫化氢含量超过0.15%时,容易引起自燃爆炸。
金属粉末,主要有锌粉、铝粉、镁粉、铝镁粉等。
纯铝粉、镁粉与水作用放出氢气,同时生成氢氧化铝或氢氧化镁,在金属表面形成保护膜,阻止反应继续进行下去。
铝镁粉与水作用生成的氢氧化铝和氢氧化镁,会进一步反应生成偏铝酸镁,偏铝酸镁溶于水,从而破坏了氢氧化铝和氢氧化镁的保护膜作用,使铝粉、镁粉不断与水发生剧烈反应,放出氢气和大量热,引起自燃和爆炸。
保险粉,又称低亚硫酸钠(Na:S:0。
),是一种强还原剂,它在潮湿的空气中会自行分解放热,使接触的可燃物质着火。
保险粉遇水呈赤热状态,并分解出氢气和硫化氢气体,有燃烧爆炸的危险性。
此外,生石灰、无水氯化铝、过氧化钠、苛性钠、发烟硫酸、氯磺酸、三氯化磷等物质与水接触时,虽不产生可燃气体,但却放出大量的热,能将附近的可燃物引燃。
(2)氧化反应自燃由于氧化热的作用,使物质发生自燃。
这类物质主要有黄磷、烷基铝、铝铁溶剂、硝酸纤维素制品,有机过氧化物等物质。
黄磷与空气中的氧会发生反应而自燃,自燃点约30。
C。
烷基铝能在常温下与空气中的氧反应放热自燃,遇空气中的水分会产生大量热和乙烷,从而弓1起自燃。
在实际生产中,设备受腐蚀后生成硫化物是很危险的自燃物品。
例如,由于硫化氢存在,使设备内表面生成一层硫化铁,硫化铁遇空气发生自燃,如果系统存在其他可燃物,则自燃引起的火灾、爆炸可能会扩大。
(3)分解反应自燃硝化棉类的脂肪族多元硝酸酯,在常温下即可发生缓慢的自燃分解,分解产物二氧化氮又能加速硝化棉的分解;硝化棉本身是多孔物质,具有蓄热保温作用,使得温升加快,当达到180。
C时,硝化棉就可自燃。
(4)相互接触反应自燃互相接触能自燃的两种物质,一般情况下一种是强氧化剂,一种是强还原剂,混合后由于强烈氧化还原反应而自燃。
常见的无机氧化剂有硝酸盐、亚硝酸盐、氯酸盐、高氯酸盐、亚氯酸盐、高锰酸盐、过氧化物、浓硫酸、浓硝酸、浓盐酸、氟、氯、溴、氧等;还原剂常见的有苯胺类、醇类、醛类、醚类、石油产品、木炭、金属粉末及其他有机高分子化合物。
例如:乙炔与氯气混合后立即发生反应而着火自燃,甘油遇高锰酸钾立即燃烧,甲醇遇过氧化钠立即自燃,松节油遇浓硫酸和浓硝酸混合物立即反应而着火。
(5)吸附反应自燃多孔吸附物质如活性炭、还原镍、还原铁等,在吸附气体或水蒸气时能产生吸附热,加上多孔物质的导热性差,热量易积累达到自燃的程度。
(6)自聚反应自燃能产生放热的聚合反应的物质,如乙烯、丙烯、丙烯腈、异丁烯、苯乙烯、丙烯酸甲酯等,当聚合热积聚时,就会蓄热自燃。
4.易生成易燃易爆物的化学反应有些易燃固体与氧化剂混合,易生成易燃易爆物,这类反应引起的事故很多,例如氯酸盐与铵盐混合生成氯酸铵,很易发生爆炸。
银盐(铜盐、汞盐)与乙炔混合生成乙炔盐,经撞击发生爆炸。
在食盐电解生产中,盐水中含有铵盐、氨及含胺化合物,与氯气反应,生成有爆炸危险的三氯化氮。
5.气体分解反应引起爆炸有些可燃气体在没有助燃气体情况下也会发生气体爆炸,这是由于气体本身能进行分解反应所致。
易引起分解爆炸的气体有:乙炔、氧化乙烯、乙烯、四氟乙烯、丙烯、臭氧、氮氧化物等。
这些气体在一定压力条件下,遇火源会发生分解反应,同时放出热量,分解产物由于升温,体积膨胀而发生爆炸。
在发生分解爆炸时,所处的初始压力越高,越易发生分解爆炸,所需的引燃能量越小。