数学竞赛中的代数式求值经典问题

合集下载

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

北师大版七年级数学上册 代数式求值专题(含竞赛题)

北师大版七年级数学上册  代数式求值专题(含竞赛题)

简单带入求值计算题一、与课本衔接基础题选择题1、 已知a-b=-3,c+d=2, 则(b+c) - (a-d) 为( )。

A. -1B. -5C. 5D. 12、 已知a 2-2b-1=0. 则多项式2a 2-4b+2的值等于( )。

A.1B. 4C.-1D. -43、 当x=-3时,多项式ax 5+bx 3+cx-5的值是7, 那么当x=3时,它的值是( )。

A. -3B. -7C. 7D. -17 4、 已知代数式24)35(2dx x cx bx ax x +++, 当x=1时,值为1.那么该代数式当x=一1时的值是( )。

A. 1B. -1C. 0D. 2填空题1、若多项式2x 2+3x+7的值为10, 则多项式6x 2+9x-7的值为 。

2、已知a 2+2ab=-8,b 2+2ab=14, 则a 2+4ab+b 2= :a 2-b 2= 。

3、若x+y=7,y+z=8,z+x=9, 则x+y+z = 。

4、已知x 2+x+1=0, 则x 2000+x 1999+x 1998的值为 。

5、当x=1时,代数式px+qx 的值为2003, 则x=-1时,px+qx 。

6、已知当x=-2时,代数式ax 3+bx+1的值为6, 那么当x=2时,代数式ax 3+bx+1的值是多少 。

7、已知2x+y=10xy, 求代数式yxy x y xy x +-++4224= 。

8、a 2+6a+36=0,则a 3= 。

答案:选择题1、C ;2、B ;3、D ;4、B填空题1、2;2、0,0;3、12;4、0;5、-2001;6、-4;7、27 8、216 a 2+6a=-36 a 2=-6a-36a 3=a •a 2=a(-6a-36)=-6(a2+6a) =-6×36=216二、拔高题(竞赛题)1、已知x-2y=2,求8463---+y x y x 的值2、已知x 1-y 1=3,则y xy x y xy x ---+2232的值3、已知a 4+a 3+a 2+a+1=0,求a 5的值。

代数式求值经典题型1-(含详细问题详解)

代数式求值经典题型1-(含详细问题详解)

实用文档文案大全初中数学《代 数 式 求 值》已知 a+b=2 ,a-b=3求代数式a (a+2b )+b (2a-b )的值文案大全文案大全已知a²+a-3=0求代数式13a3+52a2的值文案大全文案大全文案大全已知x - 1x= 2,求代数式x²- 1x²的值文案大全文案大全文案大全文案大全已知x - y = 5求代数式(x²- y²)²- 10(x²+y²)的值文案大全若x、y互为相反数,求代数式2x²-3x +2 +7xy-3y+5y²的值文案大全文案大全文案大全文案大全若x²-2x -2=0,求代数式x4+410x²的值。

文案大全文案大全文案大全已知x(x+y)-y(x+1)=x(x-2)求代数式x²+xy-y²y²+2xy文案大全文案大全文案大全求代数式x²+ 2y(x+1)+(y-1)²文案大全文案大全文案大全有理数,求代数式3x3+ 2y2x+(2y+3x)²文案大全文案大全文案大全求代数式x3-6xy-y3文案大全文案大全文案大全求代数式6x3+7x²-5x-2018文案大全文案大全文案大全题目:已知a-b= -1,b-c=2,求代数式(a+b+c)(a-b-c)(1 - ca)2 的值文案大全文案大全文案大全已知x、y是正数,且x=7y²2x+5y,求代数式4x²-2x+xy +2y-5y²+3 的值文案大全文案大全文案大全已知x+y =3,x²+y²=6求代数式2x²+2x²y+2xy+xy²+y3的值文案大全文案大全文案大全文案大全文案大全(2)-(1)得:4xy=3-4x²y²,把-4x²y²移到左边4x²y²+4xy=3 两边同时加上1,得:4x²y²+4xy+1=4,即(2xy+1)²=4 ,两边同时开方,2xy+1= ±2因为x、y是正数,那么2xy+1也是正数,所以2xy+1=-2(舍去)故2xy+1=2 ,即xy= 12--------------(3)把(3)代入到(2),得,x²+ 2×12+y²=3 则有:x²+y²=2----(4)文案大全文案大全文案大全已知x2-3x+1=0,求代数式x² - 1 x²文案大全文案大全。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型【编著】黄勇权经典题型:1、x+x 1=3,求代数式x2-2x 1的值。

2、已知a+b=3ab ,求代数式b 1a 1+的值。

3、已知x 2-5x+1=0,求代数式x 1x +的值。

4、已知x-y=3,求代数式(x+1)2-2x+y(y-2x )的值。

5、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。

6、已知y x =2,则x y-x 的值是多少?7、若2y 1x 1=+,求代数式:3y x y -3x y 3x y -x ++的值。

8、已知5-x =4y-4-y 2,则代数式2x-3+4y的值是多少?9、化简求值,12x x 1-x 2++÷)(1x 21+-,其中x=13-10、x 2-4x+1=0,求代数式:x 2+2x 1的值。

【答案】1、x+x 1 =3,求代数式:x 2-2x 1的值。

解:x2-2x 1=(x+x 1)(x-x 1)=(x+x 1)2x1-x )( =(x+x 1)22x 12x +-=(x+x 1)4x12x 22-++ =(x+x 1)4x 1x 2-+)(将x+x 1=3代入式中=3×432-=352、已知a+b=3ab ,求代数式:b 1a 1+的值。

解:b 1a 1+=ab b a +将a+b=3ab 代入式中=3 3、已知x2-5x+1=0,求代数式:x1x +的值。

解:因x 2-5x+1=0,等式两边同时除以x则有:x 0x 1x x 5x x 2=+-化简得:x-5+x 1=0把-5移到等号的右边,得:x1x +=54、已知x-y=3,求代数式:(x+1)2-2x+y (y-2x)的值。

解:(x+1)2-2x+y(y-2x)去括号,展开得=x2+2x+1-2x+y2-2xy合并同类项,+2x与-2x抵消=x2+1+y2-2xy把+1移到最后,22此三项结合=(x2-2xy+y2)+1=(x-y)2+1将x-y=3合代入式中=(3)2+1=3+1=45、已知x-y=2,xy=3,求代数式x 2-x y6+y2的值。

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)

代数式求值经典题型(含详细答案)1、已知x+y=3,求代数式x²-xy的值。

解:将x+y=3代入式中,得x²-xy=x²-(3-x)x=2x²-3x,再将x+y=3代入式中,得x=3-y,代入原式中,得2(3-y)²-3(3-y),化简得-6y+15,所以代数式x²-xy的值为15-6y。

2、已知a+b=3ab,求代数式a+b的值。

解:将a+b=3ab代入式中,得a+b=3(a+b)ab,移项得3ab(a+b)-a-b=0,因式分解得(3ab-1)(a+b)=0,因为a+b≠0,所以3ab=1,代入a+b=3ab中,得a+b=3/3=1.4、已知2x-y=6,x²+y²=13,求代数式x-y的值。

解:将2x-y=6代入式中,得y=2x-6,代入x²+y²=13中,得x²+(2x-6)²=13,化简得5x²-24x+25=0,解得x=1或5,代入y=2x-6中,得y=-4或4,所以x-y的值为5或-3.6、已知y/x=2,则x的值是多少?解:将y/x=2代入式中,得y=2x,代入x-y=6中,得x-2x=6,解得x=-6,所x的值是-6.7、已知x-3xy+y/xy=27,求代数式3x-xy+3y的值。

解:将x-3xy+y/xy=27代入式中,得xy²-3xy+y=27xy,移项得xy²-3xy+y-27xy=0,化简得y(x-3)(y-9)=0,因为y≠0,所以x=3或y=9,代入3x-xy+3y中,得3(3)-3(3)(2)+3(9)=12,所以代数式3x-xy+3y的值为12.8、已知x-5=4y-4-y,则代数式2+4的值是多少?解:将x-5=4y-4-y代入式中,得x=3y-1,代入2+4中,得2+4=2+(3y-1)+4=3y+5,所以代数式2+4的值为3y+5.9、化简求值:(2x+2)/(2x+1)÷(x-3)/(x+1),其中x≠-1,-1/2.解:将(2x+2)/(2x+1)÷(x-3)/(x+1)化简得(2x+2)/(2x+1)×(x+1)/(x-3),分子分母同时约分,得(x+1)/(2x-3),将x=-1/2代入式中,得-1,所以代数式的值为-1.10、x-4x²+1=0,求代数式x的值。

数学竞赛中的代数式求值经典问题

数学竞赛中的代数式求值经典问题

数学竞赛中的代数式求值经典问题题型一、代数式恒等变形1.假设1,那么111a b c ab a bc b ca c ++++++++的值是( ) A .1. B .0. C .-1. D .-2.解析:1,那么a ,b ,c 均不为0.选A .2.假设x 33=1000,且x 22496,那么(x 33)+(42-2x 2y)-2(23). 解析:由于x 33=1000,且x 22496,因此要把(x 33)+(42-2x 2y)-2(23)分组、凑项表示为含x 33及x 22的形式,以便代入求值,为此有(x 33)+(42-2x 2y)-2(23)33+22-2x 2(x 33)-2(x 22)=1000-2(-496)=19923.假设m +n -p =0,那么⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n m p p m n p n m 111111---+-的值等于.解析:3-,4.假设2,x 22=4,那么x 19921992的值是 ( )A .4B .19922C .21992D .41992解析:由2 ①平方得x 2-22=4 ②又x 22=4 ③所以x ,y 中至少有一个为0,但x 22=4.因此,x ,y 中只能有一个为0,另一个为2或-2.无论哪种情况,都有x 19921992=01992+(±2)1992=21992,选C .5.在等式2中,当1时2,当1时20,那么9b 2.解析:以12代入2得2 ①以120代入2得20 ②①-②,222,所以11.因此9.于是9b 2()+9b 2=(-11)×(9)+9×112=990.6.a +b =-3,a 2b +2=-30,那么a 2-+b 2+11=50.7.a a 1+2,那么441a a += 2 ; 441a a -= 0 . 8.如果m -m 1=-3,那么m 3-31m =. 解析:36-,提示:32232211111()(1)()[()3] (3)[(3)3]36m m m m m m m m m m-=-++=--+=-⨯-+= 9.三个互不相等的有理数,既可表示为1,的形式,又可表示为0b a, 的形式,那么a 19921993.解析:由于三个互不相等的有理数,既可表示为1,下,只能是1.于是1.所以,a19921993=(-1)1992+(1)1993=1+1=2.10.如图6,D点在△的直角边上上,且2,3,假设,,那么解析:勾股定理:m222=522n222=322 可得:m2 - n2 =16 11.7,22=49,33=133,44=406,试求1995()+617( )的值.2分析:7,22=49,33=133,44=406.形式很对称,很容易诱使你将7两边平方,再减去22=49,…想利用乘法公式算出,但一试发现此路不通.由于受所作某些训练题型模式的影响,很多同学仍企图走此路,以致最后陷入死胡同.事实上,平方后必出现a2x2及b2y2,而22中,a,b都不是平方,这一特点已经说明利用乘法公式去消项的方法很难走通.应及时转向,通过一项一项表示,往一起凑这个最根本的方式去做.解:显然2=492,2=4923=492,3=492y相加得13333=49()()即49()-71337()19 ①同理3=1333,3=1333 4=1333,4=1333y相加得40644=133()(22)即133()-4940619()-758 ②由①、②联立,设,得71919758,解得,即,由7,7得2=7,2=7相加得4922=7()()所以 1.5()=49-7×∴21此时即可求得-9-178.5=4800说明:此题虽然所用知识单元块均在初一学过,但解此题需要考生有较强的应变能力及观察综合能力,并且计算也要很细心,因此此题属于对学生数学素质综合检查的题目.此题改编自下面的问题“8,22=22,33=62,44=178,试求1995()+6之值〞.有兴趣的读者不防解一解看.答案是10011.再想一想,满足题设条件的a及b两数之与等于多少?你能独立地求出之值吗?(答3)题型二、多项式的带余除法1.设m2+m-1=0,那么m3+2m2+1997=.解析:原式=m3+m2-m+m2+m-1+1998=m〔m2+m-1〕+〔m2+m-1〕+1998=〔m2+m-1〕〔m+1〕+1998由于m2+m-1=0,∴原式=1998.2.如果x2-1=0,那么x3+2x2+3= 4 .3.假设=+++=-+1855,013232x x x x x 则204.如果223x x +=,那么432781315x x x x ++-+=18。

初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)

初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)

16.(2021·全国·九年级竞赛)分解因式: (c a)2 4(b c)(a b) . 【答案】 (a c 2b)2 【详解】解法一 原式 (c2 2ca a2 ) 4(ab b2 ac bc) (c2 2ca a2 ) (4ab 4bc) 4b2 (a c)2 4b(a c) (2b)2 (a c 2b)2 . 解法二 原式 [(c b) (a b)]2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 [(c b) (a b)]2 (a c 2b)2 .
17.(2021·全国·九年级竞赛)分解因式: x2 (x a)2 a2x2 a2 (x a)2 . 【答案】 (x2 ax a2 )2 【详解】解法一 原式 [x2 (x a)2 a2 (x a)2 ] a2x2 (x2 a2 )(x a)2 a2 x2 (x2 a2 )(x2 2ax a2 ) a2 x2 (x2 a2 )2 2ax(x2 a2 ) (ax)2 (x2 a2 ax)2 (x2 ax a2 )2 . 解法二 原式 x2[(x a)2 a2 ] a2 (x a)2 x2 (x2 2ax 2a2 ) a2 (x a)2 (x2 )2 2x2 a(x a) [a(x a)]2 [x2 a(x a)]2 (x2 ax a2 )2 .
4.(2021·全国·九年级竞赛)
1
1
的值为( ).
4 59 30 2 3 66 40 2
A.无理数 【答案】D
B.真分数
C.奇数
D.偶数
【详解】原式
1
1
4 (5 2)2 25 2 3 32 3 (5 2)2 25 2 4 42

初中数学代数式求值经典练习题及答案

初中数学代数式求值经典练习题及答案

初中数学代数式求值经典练习题及答案根据已知,求下列代数式的值。

,求代数式x3的值;1、已知已知x>0,且x2=10+2√214的值;2、已知x2 +4x2= 5 ,xy=1,求代数式xx3、已知2x+1·3x= 24,2x·3x+1= 54,求代数式√(x+y)xx的值;4、已知x2= x+1,x2= y+1,且x≠y,求求代数式√x5+x5+5的值;= 4 ,求代数式x7−14x5+x3的值;5、已知x + 1x的的值;6、已知x2= √234x +1 ,求代数式x2 + 1x27、已知(x+y)3-2(x+y)2-3xy(x+y) +3xy +2(x+y) -1= 0,求代数式x+y的值;8、已知13x·9x= 4 ,求代数式1x+ 1x的值;9、已知(x2+2x)(x+y)=60,且x2 +3x+y=19,求代数式 x-y 的值;10、已知x2+2x+4=0,求代数式x4 +1的值。

参考答案1、已知已知x>0,且x2=10+2√214,求代数式x3的值。

解:x2=10+2√214x2=7 +2√21+34x2=(√7)2+ 2√21+ (√3)222x2=(√7 + √32)2因为x>0,所以 x = √7 + √32x3=x2·x= 10+2√214·√7 + √32x3= 10√7 + 10√3 + 14√3 + 6√78x3= 16√7 + 24√38x3= 2√7 +3√3故代数式x3的值是:2√7 +3√3。

2、已知x2 +4x2= 5 ,xy=1,求代数式xx的值。

解:x2 +4x2= 5可将5写为:5×1,所以上式为x2 +4x2= 5 ×1又xy=1,将式中的1用xy代替,则有x2 +4x2= 5xyx2-5xy+ 4x2=0等式两边同时除以x2,得(xy )2-5·xx+ 4 =0(xx -4)(xx-1)=0当xx -4=0 时,xx= 4当xx -1=0 时,xx= 1故代数式x3的值是:4或1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学竞赛中的代数式求值经典问题题型一、代数式恒等变形1.若1,则111a b cab a bc b ca c ++++++++的值是( )A .1.B .0.C .-1.D .-2. 解析:1,则a ,b ,c 均不为0.选A .2.若x 33=1000,且x 22496,则(x 33)+(42-2x 2y)-2(23).解析:由于x 33=1000,且x 22496,因此要把(x 33)+(42-2x 2y)-2(23)分组、凑项表示为含x 33及x 22的形式,以便代入求值,为此有(x 33)+(42-2x 2y)-2(23)33+22-2x 2(x 33)-2(x 22)=1000-2(-496)=19923.若m +n -p =0,则⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛n m p p m n p n m 111111---+-的值等于. 解析:3-,111111()()()()()()111 3m n p n p m p m n m m n n n pn p m p m n m p n p m nn n m m p p-+--+=-+---=-+--+=---=-提示:4.若2,x 22=4,则x 19921992的值是( )A .4B .19922C .21992D .41992解析:由2 ①平方得x 2-22=4 ②又已知x 22=4 ③所以x ,y 中至少有一个为0,但x 22=4.因此,x ,y 中只能有一个为0,另一个为2或-2.无论哪种情况,都有x 19921992=01992+(±2)1992=21992,选C . 5.在等式2中,当1时2,当1时20,则9b 2. 解析:以12代入2得2 ① 以120代入2得20 ②①-②,222,所以11.因此9.于是 9b 2()+9b 2=(-11)×(9)+9×112=990.6.已知a +b =-3,a 2b +2=-30,则a 2-+b 2+11=50.7.已知aa 1+2,则441a a += 2 ; 441a a -= 0 .8.如果m -m1=-3,那么m 3-31m =.解析:36-,提示:32232211111()(1)()[()3] (3)[(3)3]36m m m m m m m m m m-=-++=--+=-⨯-+= 9.三个互不相等的有理数,既可表示为1,的形式,又可表示为0b a, 的形式,则a 19921993. 解析:由于三个互不相等的有理数,既可表示为1,下,只能是1.于是1.所以,a19921993=(-1)1992+(1)1993=1+1=2.10.如图6,D点在△的直角边上上,且2,3,若,,那么22m n= .解析:勾股定理:m222=522 n222=322 可得:m2 - n2 =1611.已知7,22=49,33=133,44=406,试求1995()+6172( )的值.分析:已知7,22=49,33=133,44=406.形式很对称,很容易诱使你将7两边平方,再减去22=49,…想利用乘法公式算出,但一试发现此路不通.由于受所作某些训练题型模式的影响,很多同学仍企图走此路,以致最后陷入死胡同.事实上,平方后必出现a2x2与b2y2,而22中,a,b都不是平方,这一特点已经表明利用乘法公式去消项的方法很难走通.应及时转向,通过一项一项表示,往一起凑这个最基本的方式去做.解:显然2=492,2=4923=492,3=492y相加得13333=49()()即49()-71337()19 ①同理3=1333,3=1333 4=1333,4=1333y相加得40644=133()(22)即133()-4940619()-758 ②由①、②联立,设,得71919758,解得 2.5,1.5即 2.5,1.5由7,7得2=7,2=7相加得4922=7()()所以 1.5()=49-7×2.5 ∴21此时即可求得=4987.5-9-178.5=4800说明:本题虽然所用知识单元块均在初一学过,但解此题需要考生有较强的应变能力与观察综合能力,并且计算也要很细心,因此本题属于对学生数学素质综合检查的题目.本题改编自下面的问题“已知8,22=22,33=62,44=178,试求1995()+6之值”.有兴趣的读者不防解一解看.答案是10011.再想一想,满足题设条件的a 与b 两数之和等于多少?你能独立地求出之值吗?(答3)题型二、多项式的带余除法1.设m 2+m -1=0,则m 3+2m 2+1997=. 解析:原式=m 3+m 2-m +m 2+m -1+1998=m (m 2+m -1)+(m 2+m -1)+1998 =(m 2+m -1)(m +1)+1998 由于m 2+m -1=0,∴ 原式=1998. 2.如果x 2-1=0,则x 3+2x 2+3= 4 . 3.若=+++=-+1855,013232x x x x x 则204.如果223x x +=,那么432781315x x x x ++-+=18。

5.已知322a a +=-,则64323121224a a a a a +-+--= 。

6.若522++x x 是q px x ++24的一个因式,则pq 的值是 150 . 题型三、多项式展开式1.若23654320123456(21)x x a x a x a x a x a x a x a --=++++++,则135a a a ++= -42.如果()623456012345621x a a x a x a x a x a x a x -=++++++,那么0123456a a a a a a a ++++++= 1 ;0246a a a a +++= 365 .解析:杨辉三角: 12 -1 1次 4 -4 1 2次 8 -12 6 -1 3次 …64 -192 240 -160 60 -12 1 6次 所以:一式=1-12+60-160+240-192+64=1 二式=1+60+240+64=365 体型四、裂项求和法1.方程+++…+=2008的解是x = 2009 . 2.方程200920092132121=++++++++++x x x x 的解是=x 1005 . 题型五、比例性质 1、已知0≠abc ,且a c cb b a ==,则c c a c b a 3223--++= -232.三个有理数a ,b ,c 满足a :b :2:3:5, 且222a b abc ++=,则 。

解析:设235k 代入可得1915,所以10383.3. 已知 -1时,35-23+2-2=10,其中a :b :2:3:6,那么23bc a = 364。

4.如果==,那么=98. 5.已知非负实数,,x y z 满足123234x y z ---==,记345W x y z =++,求W 的最大值与最小值.解析:)3.(34,23,12,433221分则设+=+-=+==-=-=-k z k y k x k z y x 因为 均为非负实数。

即分所以分于是分解得所以)7(,2614322614261421)5(2614)34(5)23(4)12(3543)5(3221034,023,012+⨯≤+≤+⨯-+=++--+=++=≤≤-⎪⎩⎪⎨⎧≥+≥+-≥+k k k k k zy x :W k :k k k所以W 的最小值是19,最大值是3531(10分) 题型六、含绝对值的最值问题 1.有理数使abcd abcd1,则a b c d abcd+++的最大值是.解析:2.若0≠abc ,则abcabc c c b b a a +++的最大值是 4 ; 3. 当| x -2 |+| x -3 |的值最小时,| x -2 |+| x -3 |-| x -1 |的值最大是 ,最小是 。

解析:当|x −2|+|x −3|的值最小时,2≤x ≤3,又因为1不在2和3之间,所以可令x=2,则|x −2|+|x −3|−|x −1|=0令x =3,则|x −2|+|x −3|−|x −1|=−1所以,所求最大值为0,最小值为−14.若a 、b 、c 都是正整数,且a +b +c =55,a -=-8,则的最大值为 2009 ,最小值为 713 .31.十进制的自然数可以写成2的方幂的降幂的多项式,如:)2(01234)10(100112121202021121619=⨯+⨯+⨯+⨯+⨯=++=,即十进制的数19对应二进制的数10011.按照上述规则,十进制的数413对应二进制的数是 110011101 .32. 如果a ,b ,c 都是质数,且b +13,c 2-a 2=72,则a +b + .解析:由b +c=13,c 2−a 2=72得,b ,c 中至少有一个2,分析可知,b=2,则c =13−2=11,a 2=121−72=49,a =7,所求a +b +c =2033.在下图所示的每个小方格中都填入一个整数:并且任意三个相邻格子中所填数之和都等于5,则x y zxyz++.解析:容易断定与x 相邻的两个数分别为9与2,即因为92=5,则6,依任意三个相邻格子中所填数之和都等于5,分别确定出每个格子中所填之数如下:断定6,9.所以34.a,b,c是三个不同的自然数,两两互质.已知它们任意两个之和都能被第三个整除.则a333.解析:可被第三个整除,应有.∴b≥2,但2,只能是2.于是1,3.因此a333=33+23+13=27+8+1=36.35.若a,b,c,d为整数,(a22)(c22)=1993,则a2222.解析:由于1993是质数,a22,c22是1993的约数,只能a22=1,c22=1993,或a22=1993,c22=1,所以a2222=1+1993=1994.36.若a,b,c,d为非负整数.且(a22)(c22)=1993.则.解析:因为1993是质数,a22与c22都是正整数,所以a22与c22分别取值1与1993(参见第一试填空第7题解答).为确定起见;,不妨设a22=1,c22=1993.(1)a22=1.推知a=0,1或1,0,因此1.(2)c22=1993.若c≤31,d≤31,则c22≤2×312=2×961=1922<1993.所以c,d中至少有一个大于31.又由于442=1936<1993,故设c为c,d中较大的一个,则32≤c≤44.我们依次取44,43,42,41,…,33,32试算如下:其中19332的结果中,只有144=122为完全平方数,即432+122=1993,所以43,12或12,43.因此,55.所以1+55=66.37.已知p、q均为质数,并且存在两个正整数,使得,则p qn mp qm n++的值为.解析:∵q是质数,×n,所以m,n只能一个为1,另一个为q.此时1,而p又是质数,只能3,2.即m,n一个是1,另一个是2.38.自然数是两个不同的质数的最小值是p,则222m np+.解析:m、n都是质数,要m+n+取最小值,只能m、n取2与3,所以2+3+2×3=11.39.五位数538xy 能被3,7和11整除,则x 22. 解析:由于五位数538xy 能被3,7和11整除,可知3×7×11=231整除538xy .试除知 231×230=53130231×231=53361231×232=53592231×233=53823231×234=54054可见2322=4-9=5.40.三个不同的质数满足200,则.解析:易知a(1)=2000=24×53.若5,则1=400,∴399=3×133=3×7×19无论3,7或19都不能求得质数b,故a ≠5.只能取2,此时1=1000,∴ 999=33×37,则337,因此2+3+37=42.41.设n m 和为大于0的整数,且22523=+n m 。

相关文档
最新文档