第20届华杯赛小高决赛B卷-解析

合集下载

第二十届华杯赛解答

第二十届华杯赛解答

(B) 12 分
(24 ´ 60) ´ 66 = 1452 720 分钟,所以比标准 11
时间 24 小时对应的 24 ´ 60 = 1440 分钟多了 1452-1440=12 分钟,即慢了 12 分钟
6. 在右图的 6× 6 方格内, 每个方格中只能填 A, B, C, D, E, F 中的某个字母,要求每行、每列、每个 3 长方形的六个字母均不能重复.那么, 标有粗线的 2× 第四行除了首尾两个方格外, 中间四个方格填入的字母
【答案】630 【题型】几何:一半模型 【解析】
A A ①② F ③ D⑫ ④ ⑪ P ⑤ ⑩ ⑨ ⑧⑦ ⑥ C B E C
D P B E
F
S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ; 过点 P 作 AB , AC , BC 的平行线, 则 S1 = S2 ,
第二十届华罗庚金杯少年数学邀请赛
初赛 A 卷解析(小学高年级组)
总分:150 分时间:60 分钟
一、选择题. (每小题 10 分,共 60 分.以下每题的四个选项中,仅 有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号 内. )
1.
现在从甲、 乙、 丙、 丁四个人中选出两个人参加一项活动. 规定: 如果甲去, 那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去 参加活动的两个人是() . (A)甲、乙 (B)乙、丙 (C)甲、丙 (D)乙、丁
1 1 2 所以 S阴影 =S白 = S△ABC = 2028 = 1014cm ,则 S△PCF = 1014 - 192 2 = 630cm2 2 2
9. 自然数 2015 最多可以表示成________个连续奇数的和.

第20届华杯赛决赛-小中组A详解

第20届华杯赛决赛-小中组A详解

- 1 -第二十届华罗庚金杯少年数学邀请赛决赛试题A 组试卷解析(小学中年级组A 卷)一、填空题(每小题 10分, 共80分)1. 计算: 3752(392)5030(3910)÷⨯+÷⨯=________.【考点】整数计算【难度】☆☆【答案】61【分析】原式3752(392)1006(392)=÷⨯+÷⨯(37521006)7847587861=+÷=÷=2. 右图中, G F D C B A ∠+∠+∠+∠+∠+∠ 等于________度.【考点】几何、角度计算【难度】☆☆【答案】360【分析】连接CD ,有G F EDC ECD ∠+∠=∠+∠,这样就转化成四边形的内角和了,四边形的内角和是360度.3. 商店以每张2角1分的价格进了一批贺年卡, 共卖14.57元. 若每张的售价相同, 且不超过买入价格的两倍, 则商店赚了________元.【考点】数论、分解质因数【难度】☆☆【答案】4.7元【分析】14.57元=1457分,14573147=⨯每张的售价不超过买入价格的两倍,47是张数,31分是售价;商店赚了(3121)47470-⨯=(分)=4.7元.4. 两个班植树, 一班每人植3棵, 二班每人植5棵, 共植树115棵. 两班人数之和最多为________.【考点】组合、最值问题【难度】☆☆【答案】37人.【分析】设一班a 人,二班b 人,则有35115a b +=, 求两班人数最多,算式转化成: 3()2115a b b ++=,a b +最大,b 尽可能的小,2b =时,37a b +=。

两班人数之和最多的是37人.5. 某商店第一天卖出一些笔, 第二天每支笔降价1元后多卖出100支, 第三天每支笔比前一天涨价3元后比前一天少卖出200支. 如果这三天每天卖得的钱相同, 那么第一天每支笔售价是________元.【考点】应用题【难度】☆☆☆【答案】4元【分析】设第一天每支笔售价x 元,卖出n 支,有(1)(100)(1)(100)nx x n nx x n =-+⎧⎨=+-⎩可得到1001001002200x n x n =+⎧⎨=-⎩,解得3004n x =⎧⎨=⎩6. 一条河上有A, B 两个码头, A 在上游, B 在下游. 甲、乙两人分别从A, B 同时出发, 划船相向而行, 4小时后相遇. 如果甲、乙两人分别从A, B 同时出发, 划船同向而行, 乙16小时后追上甲. 已知甲在静水中划船的速度为每小时6千米, 则乙在静水中划船每小时行驶________千米.【考点】行程、流水行船【难度】☆☆☆【答案】10【分析】在流水行船问题中,两船相遇的速度和即两船船速和,两船追及速度差即两船船速差。

华杯赛小高近 真题 附详解 C

华杯赛小高近 真题 附详解 C

2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)

第二十届“华杯赛”决赛小高组试题C

第二十届“华杯赛”决赛小高组试题C

第二十届华罗庚金杯少年数学邀请赛决赛试题C (小学高年级组)(时间: 2015年4月11日10:00~11:30)一、 填空题(每小题 10分, 共80分)1. 计算:10.7540.3+0.1121.252 1.845-⨯++-= ( ). 2.将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有( )种不同的分法.3.将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于( ).4.图1中,四边形ABCD 是边长为11厘米的正方形,G在CD 上,四边形CEFG 是边长为9厘米的正方形,H在AB 上,∠EDH 是直角,三角形EDH 的面积是( )平方厘米.5.图2是网格为 的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出( )种不同类型的卡片. 6.一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是( )平方厘米. 图1图27. 1352x x ⎡⎤-=-⎢⎥⎣⎦,这里[]x 表示不超过x 的最大整数,则x =( ). 8.右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是( ).二、 解答下列各题(每小题10分, 共40分, 要求写出简要过程) 9.已知C 地为A, B 两地的中点. 上午7点整,甲车从A 出发向B 行进,乙车和丙车分别从B 和C 出发向A 行进. 甲车和丙车相遇时,乙车恰好走完全程的38,上午10点丙车到达A 地,10点30分当乙车走到A 地时,甲车距离B 地还有84千米,那么A 和 B 两地距离是多少千米?10. 将2015个分数 111111,,,,,234201420152016⋅⋅⋅化成小数,共有多少个有限小数? 11. a , b 为正整数, 小数点后第3位经四舍五入后,式子 .a b +≈15157,求a + b =? 12. 已知算式abcd aad e =⨯, 式中不同字母代表不同的数码,问四位数abcd 最大值是多少?三解答下列各题(每题 15 分, 共30分, 要求写出详细过程)13.在图3中,ABCD 是平行四边形,F 在AD 上,△AEF的面积=8cm 2,△DEF 的面积=12cm 2,四边形BCDF的面积=72cm 2,求出△CDE 的面积?14.将530本书分给48名学生,至少有几名学生分到的书的数量相同?图3。

18~22届华杯赛小高组初赛试题及参考答案

18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】

第二十届华罗庚金杯少年数学邀请赛 决赛试题C(小学高年级组) 试题及参考答案详细解析

第二十届华罗庚金杯少年数学邀请赛 决赛试题C(小学高年级组) 试题及参考答案详细解析

第二十届华罗庚金杯少年数学邀请赛决赛试题C 参考答案 (小学高年级组)一、填空题(每题10分, 共80分)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9.答案: 336千米解答.设A 和B 两地距离是336千米(1)乙车上午7点从B 出发,10点30分到A 地,说明乙车走完全程需要3小时30分;丙车上午7点从中点C 出发,10点丙车到达A 地,说明丙车走半程需要3小时,走完全程需要6小时,所以, 3.573.5=6 612⨯⨯==丙速乙速丙速,乙速;(2)当甲车和丙车相遇时,乙车恰好走完全程的38,所以,142338+==甲速丙速乙速,结合(1),可知:493=34=-=甲速7乙速1212; (3)当乙车走到A 地时,甲车距离B 地还有84千米,84484336AB AB AB -==⨯=甲的速度,乙的速度(千米).10.答案: 33解答. 注意,可化为有限小数的分数的分母的质因数只能是2和5.2015个分数12,13,14,…,12014,12015,12016中, (1)分母只有质因数2的分数:23101111121024222,,,=,10个;(2)分母只有质因数5的分数:234111115625555,,,=,4个; (3)分母只有质因数2和5的分数:23811111251280252525⨯⨯⨯⨯,,,,=,222326211111160025252525⨯⨯⨯⨯,,,,=,323334311111200025252525⨯⨯⨯⨯,,,=,411125025⨯=,19个. 所以,共有10+4+8+6+4+1=33个有限小数. 11.答案: 9解答. a + b =9.通分,a b a b ++=755735. 由小数点第3位经四舍五入,故有:52.675=..a b ⨯≤+<⨯15053575151535=53.025,既然a ,b 为正整数,a b ≤+≤537553,即:a b +=7553.解出a b ==4,5,故a + b =9. 12.答案: 3015.解答. 四位数abcd 最大值是3015.显然,e d ≠=0,5.并设e f =-10,这里f ≥1,故有:abc aa e =⨯55,abc aa aa f =-⨯5505,所以,bc a aa f =-⨯5505. 上式右端a 50大于aa f ⨯5,所以f =1,50bc a =-55,得到:b =0和a c +=4.所以abcd 最大值是3015.三、解答下列各题(每题15分, 共30分, 要求写出详细过程)13.答案: 35 cm 2.解答.△CDE 的面积是35 cm 2.连接BD ,见图3a ,由共边定理,ABF DBF S S ∆∆==82123. (1)由已知条件ABCD 是平行四边形和三角形面积公式,可知:()ABF DBF ABF S S S ∆∆∆+=+1722,(2) 由(1)和(2),得到,ABF S ∆=18cm 2.所以ABE S 18810∆=-=cm 2.平行四边形ABCD 的面积=(72+18)=90(cm 2),BCE AED ABCD S S S 平行四边形11904522∆∆+=⨯=⨯=,=BCE AED AEF DEF S S S S 45454581225∆∆∆∆=-=--=--.所以,△CDE 的面积=72-25-12=35cm 2.14.答案: 3名解答. 至少有3名学生分到的书的数量相同.如果48名学生分到的书籍的数量不同,则书籍总数是:474801234711282⨯+++++==(本), 1128大于530,显然会有2名以上学生分到的书籍的数量相同.将48名学生分成24组,每组有2名学生,如果允许每组内的两名学生分到相同数量的书籍,但是不同组的学生分到的书籍数量不相同,则书籍的总数是:()20123232324552⨯+++++=⨯=,552仍然大于530,希望最多仅有两名学生分到的书籍的数量相同是做不到的.图3a所以,至少有三名学生分到的书籍的数量相同.现在将530本书分给48名学生,相当于拆分一个自然数530,()530201232224=⨯++++++.上式的含义是有23组共46名学生,同一组内的学生分到相同数量的书籍,但是不同组的的学生分到的书籍数量不同,则一共有()⨯+++++=(本),2012322506余下的24本书分给第24组的2名学生,则至少有一个学生分到的书籍的数量不大于22.所以,一定有3名学生分到相同数量的书籍.。

2015年第二十届华杯赛小高组初赛详解

2015年第二十届华杯赛小高组初赛详解
【答案】630
【题型】几何:一半模型 【解析】

A F C作 AB , AC , BC 的平行线,则 S1 = S 2 , S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ;
1 1 2 所以 S阴影 =S白 = S△ABC = × 2028 = 1014cm ,则 S△PCF = 1014 − 192 × 2 = 630cm 2 2 2
余帅老师公众号:shuaiteacher

第 3 页 兴趣是最好的老师


学习有意思
快乐思维
二、填空题 (每小题 10 分,共 40 分)
1 1 1 29 41 55 7. 计算: 481 + 265 + 904 − 184 − 160 − 703 =________. 6 12 20 30 42 56

如图所示 示,第一列和 和第二行已经 经有 A,所以 以左上角 3*2 粗线方格的 A 只能填在第二列;因为 为第一列 3*2 粗线方格 和第二列 列已经有 A, 所 所以左下角 格的 A 只能填 填在第三列; 因为第五列和第四行已经 经有 A, 3*2 2 A A 所以右中 中位置的 粗线方格的 的 只能填在 在第四列; 因为 为第五行和第 第五列已经有 有 , 右下角 3*2 所以右 粗线方格 格的 A 只能填 填在第六列;以此类推,可以填出所 所以的数.
学习有意思
快乐思维
2015年第二十届华杯赛小高组初赛详解
0分 总分:100 时间 间:60 分钟
0 分,共 60 分.以下每题的 一、选 选择题. (每小题 10 以 的四个选项 项中,仅有 有一个 是正确 确的,请将 将表示正确 确答案的英 英文字母写在每题 题的圆括号 号内. )

第20届华杯赛小高决赛B卷-解析

第20届华杯赛小高决赛B卷-解析

第二十届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________. 【难度】★【考点】计算:提取公因数2.甲=13=(棵) 3.544106-=度 4.5. 【难度】★★★★【考点】计数:组合计数【答案】7【解析】用1234567,,,,,,A A A A A A A 这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7227⨯÷=条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.2A 必与两个点连接虚线,不妨记为13,A A ,而3A 必然再与一个点连接虚线,记为4A ;4A 虚线连接5A ,否则剩下3个点互为敌国关系;5A 虚线连接6A ,否则剩下两个点无法由2条虚线连接;6A 虚线连接7A ,最后7A 只能虚线连接1A .最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表1234567,,,,,,A A A A A A A )6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】 设其中最小的四位数为abcd ,一共可组成432124⨯⨯⨯=个不同的四位数,由于每个数字在每位上均出现6次,9421和和23567. .的11135=. 8. 3个数⑴ ⑵ ①,a ②,a 且,则有,则;⑶ 如果,,a b c 都不相等,设a b c <<,则10,10c b a c a b +=++=+,则10c =,与c 为数字矛盾; 综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为0c ,设另外两个末尾2位为5,5a b ,则()551005025a b a b a b ⨯=+++,若()a b +为奇数,则乘积末尾3位为75;若()a b +为偶数则乘积为25,在乘上0c,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程)9..【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】++++++++=,为3的倍数,而交换数字位置不会改变数字和,所以无论原数的数字和为12391011489的倍10.,解得所以11.跑了n=12.两【难度】★★★★【考点】组合:体育比赛【答案】8【解析】设赢的为甲,输的为乙.甲第一局获胜,如果第二局又胜则直接获胜总分一定比乙多不符合题意,所以甲第二局输第三局赢.甲第一、三局都赢,则一、三局至少会比乙多得4分,所以乙第二局至少赢甲4分及以上,所以只能以11分取胜.所以第二局的比分可以为:0:11,1:11,2:117:11,共8种.(乙在第二局赢了多少分,甲都可以通过一、三局赢回多少分使两人总分相同,所以甲在第二局得分从0~7都可能;例如三局比分分别为20:18、0:11、11:2)三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.【难度】★★★★【考点】几何:蝴蝶模型【答案】60【解析】连接BD令DEM S a =则24CEM BDM CBM S S a S a ===,14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非设则(x 即11到11.可,“1,9,7,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________. 【难度】★【考点】计算:提取公因数 【答案】1122【解析】8184157.628.814.4801255216184128.828.814.48012552200128.814.4801252128.84014.42401221122=⨯+⨯-⨯+=⨯+⨯-⨯+=⨯-⨯+=⨯-⨯⨯+=原式2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题 【答案】13 【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁6020151213=---=(棵)3. 58________【难度】★★【考点】行程:时钟问题 【答案】106 【解析】5点时,时针分针夹角150度,每分钟追赶60.5 5.5-=度,所以8分钟追赶5.5844⨯=度,所以成15044106-=度4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数 【答案】122 【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★ 【考点】计数:组合计数 【答案】7 【解析】用1234567,,,,,,A A A A A A A 这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7227⨯÷=条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.2A 必与两个点连接虚线,不妨记为13,A A ,而3A 必然再与一个点连接虚线,记为4A ; 4A 虚线连接5A ,否则剩下3个点互为敌国关系; 5A 虚线连接6A ,否则剩下两个点无法由2条虚线连接;6A 虚线连接7A ,最后7A 只能虚线连接1A .最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表1234567,,,,,,A A A A A A A )6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★ 【考点】数论:位值原理 【答案】9421,1249 【解析】设其中最小的四位数为abcd ,一共可组成432124⨯⨯⨯=个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为()61111106656a b c d ⨯+++⨯=,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.【难度】★★★★【考点】几何:等积变形 【答案】11135【解析】设三角形DOE 的面积为4x ,由比例关系不难得出图中另三块的面积分别为5,12,15x x x ,再设三角形DCE 的面积为y ,则有454121215CE y y x x BE x x x x ++==++,得14411y x =,则三角形DOE 的面积为411144135********=++++.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合 【答案】4 【解析】设三个数的个位分别为,,a b c⑴ 如果,,a b c 都相等,则只能都为0; ⑵ 如果,,a b c 中有两个相等,①,,a a c 且a c <,必有10c a a +=+,则10c =,与c 为数字矛盾; ②,,a a c 且a c >,则有,10c a a a a c +=+=+,则5,0a c ==; ⑶ 如果,,a b c 都不相等,设a b c <<,则10,10c b a c a b +=++=+,则10c =,与c 为数字矛盾;y15x5x 12x 4xO ED C BA综上三个数的个位分别为0,0,0或0,5,5; ⑴如果都为0,则乘积末尾3位为000; ⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000; ②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为0c ,设另外两个末尾2位为5,5a b ,则()551005025a b ab a b ⨯=+++,若()a b +为奇数,则乘积末尾3位为75;若()a b +为偶数则乘积为25,在乘上0c ,无论c 为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★ 【考点】数论:完全平方数 【答案】不能 【解析】原数的数字和为1239101148++++++++=,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y为整数),余下部分的体积为120,求x 和y .【难度】★★★【考点】几何:长方体正方体 【答案】3,12x y == 【解析】15545120y x ⨯⨯-⨯⨯=解得36xy =;361362183124966=⨯=⨯=⨯=⨯=⨯,因为,x y 为整数,且4,15x y <<, 所以3,12x y ==.11. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?【难度】★★★★【考点】行程问题:环形跑道 【答案】5次 【解析】设每两面旗子间距离为1,即跑道周长为2015.因为:23:13v v =甲乙,设23v x =甲,13v x =乙,甲要追上乙则需比乙多跑n 圈,()23132015x x t n -=,102015x t n ⨯=,即甲追上乙时所花时间4032n t x =,则甲追上乙时,所走路程为403234032322n x n x ⨯⨯=;要恰好在旗子位置追上,则所走路程一定为整数,即n 为偶数,所以2,4,6,8,10n =(最多多跑10圈);综上所述,甲正好在旗子位置追上乙5次.12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有yx5154多少种可能? 【难度】★★★★ 【考点】组合:体育比赛 【答案】8 【解析】设赢的为甲,输的为乙.甲第一局获胜,如果第二局又胜则直接获胜总分一定比乙多不符合题意,所以甲第二局输第三局赢.甲第一、三局都赢,则一、三局至少会比乙多得4分,所以乙第二局至少赢甲4分及以上,所以只能以11分取胜.所以第二局的比分可以为:0:11,1:11,2:117:11,共8种.(乙在第二局赢了多少分,甲都可以通过一、三局赢回多少分使两人总分相同,所以甲在第二局得分从0~7都可能;例如三局比分分别为20:18、0:11、11:2)三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1: MC DM ,四边形EBFC为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.【难度】★★★★ 【考点】几何:蝴蝶模型 【答案】60 【解析】 连接BD //DE BC2BC MB MC ∴=== 12CEM DEM DEM CEM CBM BDM S S S S S S ∴=== 令DEM S a = 则24CEMBDMCBMSSa Sa ===,246BCF BCE S S a ∴==+= MB//CF32CG CF EB GB MB MB ∴=== 32GCF BGF S CG S GB ∴== 331863255GCFBCF SS a ∴=⨯=⨯=+ 13GCF DEM S S -= 18135a a ∴-= 5a ∴=246BCD BDM BCMS S Sa a a =+=+=22261212560ABCDBCDSSa a cm ∴=⨯=⨯==⨯=14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?【难度】★★★★★ 【考点】组合:最值构造 【答案】8【解析】经观察不难发现其中“一”,“言”,“举”,“知”,“行”,各出现两次,其它汉字只有一次.令这五个汉字所代表的数依次为,,,,a b c d e (均为正整数), 设11个连续自然数为()()()1,2,,11x x x ++⋅⋅⋅+, 则()()()1211214x x x a b c d e ++++⋅⋅⋅+++++++=⨯,即1118x a b c d e +++++=,则0x =,且123410a b c d +++=+++=时,e 最大为8,11个数为1到11.可构造出“一家之言”、“言扬行举”、“举世皆知”、“知行合一”分别为“3,5,11,2”,“2,10,8,1”,“1,9,7,4”,“4,8,6,3”.综上,“行”可代表的数最大为8.。

相关文档
最新文档