第二十一届华杯赛小高组初赛详解
2016年第二十一届华罗庚金杯少年数学邀请赛初赛全国卷(小学高年级组)(含解析)

+16)=100-16=84,
6.答案: B;
试题分析: 试题分析: 首先在 0 到 2016 这 2016 个数中,数字和最大的为 1999,其和是 1+9×3=28,
数字之和最小是 1;按其和的多少可以方程 28 组,并且根据多少依次编上号, 进而得出答案。
解:数字和是 1 的①号有 1、10、100、1000; 数字和是 2 的②号有 11、101、110、1001、1010、1100、2、20、200、2000; 数字和是 3 的③号有 111、1011、1101、1110、102、120、201、210、1002、··· ······ ······ 在这 28 个数中,除 1999 只有一个数外,其余每组都有 4 个或 4 个以上的数; 如果我们在这些数字和为 4 个或 4 个以上的数的各组中,每组取 4 个数,并且将 1999 也取上,这样共有数:27× 4+1=109(个); 这样,在剩余的数中,任取一个,必然会从这个数相同组中取出的 4 个数的数字和相 等,即产生 5 个数字和相等的情况; 所以,n 的最小值等于:109+1=110; 故选:B.
10.答案: 4029;
试题分析: 试题分析: 由题意可知,题目要求剪出的小梯形,只在梯形的上底和下底以及底角作了要 求,并没有谈及梯形的高的事,可知,要分割的小梯形就是一横排。 因为题中的等腰梯形纸片,上底长度为 2015,下底长度为 2016,下底与上底 之间只相差 2016-2015=1,为了达到分割出的所有的小梯形的上底的和为 1, 且下底也只能比上底多 1, 如果设上底为 x,下底为 x+1,上、下底交错搭配,这样,两个小梯形搭配起来 就是一个小平行四边形,因为所有 x 的和为 1 知,平行四边形最多有 20151=2014(个),另外还有一个符合要求的等腰梯形,如下图:
华杯赛初赛小高组试题卷(含答案)

华杯赛初赛模拟题(小高组)1.计算:22222221234201520162017-+-++-+ 【解析】 原式22222222017201654321=-++-+-+ (20172016)(20172016)(32)(32)1=-⨯+++-⨯++2017201620152014321=+++++++()120171201720351532=⨯+⨯= 2.幼儿园的老师把一些画片分别给A 、B 、C 三个班,每人都分到6张,如果只分给B 班,每人能得15张,如果只分给C 班,每人能得14张,如果只分给A 班,每人能得 张.【解析】 设三个班的总人数为x 人,A 班、B 班、C 班的人数分别为a ,b ,c , 则61514x b c ==,从而62155b x x ==,63147c x x ==,所以2365735a x x x x =--=,因此将这些画片分给A 班,每人能得663535x x ÷=(张). 3.A 、B 两杯食盐水各有40克,浓度比是3:2.在B 中加入60克水,然后倒入A 中________克,再在A 、B 中加入水,使它们均为100克,这时浓度比为7:3.【解析】 在B 中加入60克水后,B 盐水浓度减少为原来的25,但溶质质量不变,此时两杯盐水中的盐的质量比仍然为3:2,B 中的盐占所有盐的质量的22325=+,但最终状态下B 中的盐占所有盐的质量的337310=+,也就是说B 中的盐减少了32111054-÷=,所以从B 中倒出了14的盐水到A ,即25克. 4.如图,点E 是长方形ABCD 的对角线AC 上任一点,过E 作AB 与BC 的垂线分别交AB 、BC 于F 、G ,连接DF 、FG 和GD 。
已知8AB =、10AD =、三角形DFG 的面积为30,则长方形BGEF 的面积为 。
G F EC DB A解析:205.四边形ABCD 中,,,E F I 是AB 上的四等分点,,,H G J 是DC 上的三等分的点,如果30,25,AEHD EFGH S S ==,求IBCJ S 。
第二十一届华杯赛初赛试题及答案

)个数字 0. D. 2014
A. 2017 B. 2016 C. 2015 【知识点】计算模块——多位数计算 【解析】 999 9 999 9 10
2016 个 2016 个
2016
1 10 2016 1
230 270 500 350 500 500 350 350 .
【答案】A 2. 如右图所示,韩梅家的左右两侧各摆了两盆花. 每 次,韩梅按照以下规则往家中搬一盆花: 先选择左 侧还是右侧,然后搬该侧离家最近的. 要把所有花 搬到家里,共有( )种不同的搬花顺序. A. 4 B. 6 C. 8 D. 10 【知识点】 计数模块——加法原理 【解析】 将图中花从左往右依次编号 1,2,3,4. 根据题目要求,有下列搬花方式: 2-1-3-4,2-3-4-1,2-3-1-4,3-4-2-4,3-2-1-4,3-2-4-1 共 6 种不同的搬花顺序. 【答案】B 3. 在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无 重叠,且拼接的边完全重合,则得到的新图形的边数为( ). A. 8 B. 7 C. 6 D. 5 【知识点】 几何——平铺 【解析】如图所示,共有 5 个边.
10 2016 10 2016 2 10 2016 1
10 2016 ( 10 2016 2) 1
1000 0 999 98 1
2016 个 2015个
999 98000 01
A 选项中 998 显然不能被 11 整除,由 99+8 4=131,13+1 4=17,显然 17 不能 被 13 整除,从而 998 也不能被 13 整除. B 选项中 988 显然不能被 11 整除,由 98+8 4=130,显然 130 能被 13 整除,从而 988 能被 13 整除; 884 显然不能被 11 整除,由 88+4 4=104,10+4 4=26,显然 26 能被 13 整除,从而 884 能被 13 整除; 847 中,8+7-4=11,显然能被 11 整除; 473 中,4+3-7=0,显然能被 11 整除; 737 中,7+7-3=11,显然能被 11 整除. C 选项中 997 显然不能被 11 整除,由 99+7 4=127,12+7 4=30,显然 30 不能被 13 整除,从而 997 也不能被 13 整除. D 选项中 987 显然不能被 11 整除,由 98+7 4=126, 12+6 4=36,显然 36 不能被 13 整除,从而 987 也不能被 13 整除. 【答案】B 4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么 共有( A. 1152 )种不同的排法. B. 864 C. 576 D.288
第21届“华杯赛”决赛小高组B组试题

第二十一届华罗庚金杯少年数学邀请赛 决赛试题B (小学高年级组) (时间: 2016年3月12日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 计算: =-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-4.213453611753971 . 2. 如右图, 30个棱长为1的正方体粘成一个四层的立体, 这个立体的表面积等于 . 3. 有一片草场, 10头牛8天可以吃完草场上的草; 15头牛, 如果从第二天开始每天少一头, 可以5天吃完. 那么草场上每天长出来的草够 头牛吃一天. 4. 如右图所示, 将一个三角形纸片ABC 折叠, 使得点C 落在三角形ABC 所在平面上, 折痕为DE . 已知︒=∠74ABE , ︒=∠70DAB , ︒=∠20CEB , 那么CDA ∠等于 . 5.甲、乙二人骑自行车从环形公路上同一地点同时出发, 背向而行. 已知甲骑行一圈的时间是70分钟, 出发后第45分钟甲、乙二人相遇, 那么乙骑行一圈的时间是 分钟. 6.如右图, 正方形ABCD 的边长为5, E , F 为正方形外两点,满足4==CF AE , 3==DF BE , 那么=2EF .7. 如果832⨯能表示成k 个连续正整数的和, 则k 的最大值为 .8. 现有算式: 甲数□乙数○1, 其中□, ○是符号+, -, ⨯,÷中的某两个. 李雷对四组甲数、乙数进行了计算, 结果见右表, 那么, A ○=B .学校____________姓名_________ 参赛证号密封线 内请勿答题第二十一届华罗庚金杯少年数学邀请赛决赛试题B(小学高年级组)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 计算:⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++201624232201613121 201620152016201420152014201635343+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++ . 10.商店春节促销, 顾客每次购物支付现金时, 每100元可得一张价值50元的代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李阿姨只有不超过1550元的现金, 她能买到价值2300元的商品吗? 如果能, 给她设计一个购物方案; 如果不能, 说明理由.11. 如右图, 等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20, 2=BD , 4=EC , 求三角形ABC 的面积.12. 试找出这样的最大的五位正整数, 它不是11的倍数, 通过划去它的若干数字也不能得到可被11整除的数.三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13. 如右图, 正方形ABCD 的面积为1, M 是CD 边的中点, E , F 是BC 边上的两点, 且FC EF BE ==. 连接AE , DF 分别交BM分别于H , G . 求四边形EFGH 的面积.14. 现有下图左边所示的“四连方”纸片五种, 每种的数量足够多. 要在如下图右边所示的55⨯方格网上, 放“四连方”, “四连方”可以翻转, “四连方”的每个小方格都要与方格网的某个小方格重合, 任意两个“四连方”不能有重叠部分. 那么最少放几个“四连方”就不能再放了?。
第二十一届华杯赛决赛B卷答案详解

H A 4 D
3 F 4
E 3 B 4 G C 3
7、如果 2 38 能表示成 k 个连续正整数的和, 【答案】108 【解析】 令 k 个连续正整数的首个为 N,有
则 k 的最大值为(
)
2 38 =n n 1 n 2 kn
的到:
n k 1
10、 商店春节促销, 顾客每次购物支付现金时, 每 100 元可得一张价值 50 元的 代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得 到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李 阿姨只有不超过 1550 元的现金, 她能买到价值 2300 元的商品吗? 如果能, 给 她设计一个购物方案; 如果不能, 说明理由。 【答案】能 【解析】制定一种最节省现金,最大化得到和使用代金券的方案即可。由于 1、 每 100 元可得一张价值 50 元的代金券, 2、 当次购物得到的代金券不能当次使 用,3、每次购物支付的现金不少于购买商品价值的一半。故每次最低消费 100 元现金即可,以此不停循环。 第一次, 付现 100 元,返券 50 元; 第二次, 付现 100 元,抵券 50 元,返券 50 元; 第三次, 付现 100 元,抵券 50 元,返券 50 元; · · · · · · (如此 15 次) 第十六次,付现 50 元,抵券 50 元。 共付现 1550 元,抵券 50 15=750 元,获得商品总价: 1550 750=2300 元 11、 如右图, 等腰直角三角形 ABC 与等腰直角三
9 5 圈,得出: = 14 14
5, E, F 为正方形
外两点,满足 AE CF 4 , BE DF 3 ,那么 EF 2 【答案】98 【解析】 补全成大正方形如图, EF 2 的平方即为大正方形面积的两倍,即:
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)带答案

999...998000 (001)v ⎪ = 第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题的圆括号内.)1.算式 999...9×999...9 的结算中含有()个数字 0. 2016个2016个A.2017B.2016C.2015D.2014【答案】C【解析】(102016 -1)2 = (102016 - 2) ⨯102016 +1 =2015个2015个2.已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A , B 两地出发,相向而行,在距 A 地140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度 是每秒( )米.3 A. 254 B. 25C.31 D. 35【答案】D【解析】设甲速 v 1 乙速 v 2⎧ v 1 = 140 = 7 ⎧v = 14⎪ v 2 ⎨ 300 -140 8 ⎪ 1 5 解得 ⎨⎪ v 1 = 300 -180 = 2 ⎪ 162 ⎪⎩ v 2 +1180 3 ⎩⎪ 5 3.在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数, 则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773【答案】B【解析】1001 =11⨯13⨯7 ,ACD 前三位都不是 11 或13 的倍数 988 =13⨯76 , 884 =13⨯68, 847 =11⨯77 , 473 =11⨯ 43, 737 =11⨯674.将1,2,3,4,5,6,7,8 这8 个数排成一行,使得8 的两边各数之和相等,那么共有()种不同的排行.A.1152B.864C.576D.288【答案】A【解析】1+2 +3+... +7=28 ,8 的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356) 四种分法共有2⨯4⨯4!⨯3! =1152 种排法E 5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6 ,CD =14 , A B ∠AEC 是直角,CE =CB ,则AE2 等于()D CA.84B.80C.75D.64【答案】A【解析】AG =BF =h ,CG =10 ,CF = 4AC2 =AG2 +CG2 =h2 +100CE2 =BC2 =BF 2 +CF 2 =h2 +16AE2 =AC2 -CE2 =846.从自然数1,2,3,…,2015,2016 中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5 个数,它们的数字和相等.那么n 的最小值等于()A.109B.110C.111D.112【答案】B【解析】1 到2016 中,数字和最大28。
第21届华杯赛小学高年级组初赛试题解析(成都)

报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第6题 在一个七位数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是() (A)9981733 答案:B 解析: 要使此 7 位数最大,则第一个数为 9,如果第二个数为 9,要使其 能被 13 整除,用试除法知 988 能被 13 整除,990 能被 11 整除, 而如果为 990,则 0 不能和它后面两位数构成三位数,则不能为 990, 所以第二个数不能为 9, 所以第二个数为 8,998 能被 13 整除, 则看第 4 位,用同样的方法可得此七位数为 9884737. ___________________________________________________________ (B)9884737 (C)9978137 (D)9871773
2 n 1 4 无法求出 n 值,不符合。
___________________________________________________________
报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第3题 有一种饮料包装瓶的容积是 1.5 升。现瓶里装了一些饮料,正放时饮 料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如右图。那么 瓶内现有饮料()升
则 ab 为 15 的倍数
ab 15 , 15 3 5 a b 4 ab 30 , 30 1 30 2 15 3 10 5 6 a b 8 ab 45 , 45 1 45 3 15 5 9 a b 12 ab 60 , 60 1 60 2 30 3 20 4 15 5 12 6 10(符合) a b 16
第二十一届华杯赛高年级组初赛模拟0102(学生)

1、有两组数,第一组数的平均数是13.4,第二组数的平均数是11.5,而两组数的平均数为12.83,那么第一组至少有()个数。
A、3B、5C、7D、92、N个仅由数码3和0组成的自然数之和等于55...5(2013个5),那么N的最小值是()A、10B、7C、8D、93、如图边长为10分米的正方形,内侧有一个半径为20厘米的圆形,沿边长滚动一周,圆形滚动不到的地方有()平方分米。
A、7.44B、14.88C、3.14D、6.284、以平面上任意四个点为顶点的三角形中,钝角三角形最多有()个。
A、2B、3C、5D、45、两数之和与两数之商都为9,那么这两数之积减两数之差(大减小)等于()A、7.29B、7.2C、0.09D、8.16、桌上有编号1到20的20张卡片,小明一次取出两张卡片,要求一张卡片的编号是另一张卡片的2倍多2,则小明最多取出()张卡片。
A、10B、12C、14D、15二、填空题:(每小题10分,共40分)7、篮球友谊赛的票价是50元,赛前一小时还有余票,于是决定降价,结果售出的票增加了三分之一,而票房收入增加了四分之一,每张票售价下降了()元。
8、工程队完成一项工作,每天工作6小时,12天可以完成。
如果效率不变,每天工作8小时,则可以提前()天完成。
9、有红、白球若干个,若每次拿出1个红球和1个白球,拿到没有红球时,还剩下50个白球;若每次拿走1个红球和3个白球,则拿到没有白球时,红球还剩下50个,那么这堆红球、白球共有()个。
10、长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DGF的面积是2,求长方形ABCD的面积是()1、有两组数,第一组的平均数是13.6,第二组的平均数是10.8,而这两组数的总平均数是12.4,那么第一组的个数与第二组的个数至少是()个和()个。
A、4和3B、5和4C、3和4D、4和52、两个水池内有金鱼若干条,数目相同,亮亮和红红进行捞鱼比赛,第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4,捞完第二个水池内的金鱼时,亮亮比第一次多捞33条,与红红捞到的金鱼数目比是5:3.那么每个水池内有金鱼()条。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒( )米.
A. 2 3
B. 2 4
C.3
5
5
D. 3 1 5
【考点】行程,比例方程解行程
【难度】☆
【答案】D
【分析】设甲速 v1 乙速 v2 ,有
老
v1 v2 v1 v2
1
140 300 140 300 180
n(2x 1) x 2015
帅帅思维公众号:shuaiteacher
第3页
兴趣是最好的老师
学习有意思
n 2015 x 2015.5 0.5 2015.5 0.5 2015
2x 1 2x 1
1
∴n 的最大值是 2014,最多可以剪出 4029 个
x
x
…
x+1
2n个
x+1
快乐思维
师 老 帅 帅
D.288
【考点】计数,加乘原理与排列组合 【难度】☆☆
【答案】A
帅帅思维公众号:shuaiteacher
第1页
兴趣是最好的老师
学习有意思 【分析】1 2 3 7 28 ,8 的两边之和都是 14
快乐思维
研究有 7 的一边,14 7 6 1 7 5 2 7 4 3 7 4 2 1
剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,
则最多可以剪出
个同样的等腰梯形.
【考点】组合,最值
【难度】☆☆☆
【答案】4029
【分析】如图,将大等腰梯形分成 2n 1 个等腰梯形,由于底角相等,大小等腰梯形的上下底之差也相
等(相差一个平行四边形),设小等腰梯形上底为 x,有
9. 设 q 是一个平方数.如果 q 2 和 q 2 都是质数,就称 q 为 P 型平方数,例如,9 就是一个 P 型平
帅 方数,那么小于 1000 的最大 P 型平方数是
.
【考点】数论,同余
【难度】☆☆☆
【答案】441
【分析】显然,q 是奇数,且 q 2 和 q 2 都不是 3 的倍数,而平方数除以 3 只能余 0 或 1,若 q 除以
3 余 1 则 q 2 是 3 的倍数,所以 q 只能除以 3 余 0,即 q 是 3 的倍数,
帅 极端分析, 332 1000 , 272 2 731 17 43 , 212 2 439 , 212 2 443 都是质数
10. 有一个等腰梯形的纸片,上底长度为 2015,下底长度为 2016,用该纸片剪出一些等腰梯形,要求
【分析】 a2 b2 (a b)(a b) 2016
a b 与 a b 奇偶性相同,乘积是偶数,必然都是偶数,且和大于差,
2016 4 504 23 32 7 的因数有 24 个,即 12 组不同的分拆,故有 12 组解.
8. 如下图, O, P, M 是线段 AB 上的三个点, AO 4 AB,BP 2 AB, M 是 AB 的中点,且 OM 2 ,
逐步极端分析,得 988 13 76 , 884 13 68 , 847 11 77 , 473 11 43 , 737 11 67
4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有( ) 种不同的排行.
A.1152
B.864
C.576
A
老E
B
6.
帅D
G
F
C
从自然数 1,2,3,…,2015,2016 中,任意取 n 个不同的数,要求总能在这 n 个不同的数中找到
5 个数,它们的数字和相等.那么 n 的最小值等于( )
A.109
B.110
C.111
D.112
帅 【考点】组合,最不利原则
【难度】☆☆☆ 【答案】B 【分析】1 到 2016 中,数字和最大 28。
数的两侧分法有 4 种,两侧可互换,每个分法都是一边四个数另一边三个数,两边内部可互
换(全排列),共
4
2
A
4 4
A33
1152
种排法
5. 在等腰梯形 ABCD 中, AB 平行于 CD , AB 6 , CD 14 , AEC 是直角, CE CB ,则 AE2 等 于( )
E
ABΒιβλιοθήκη DCA.84
B.80
C.75
D.64
【考点】几何,勾股定理
师 【难度】☆☆
【答案】A 【分析】做出两侧的高,连结 AC,有
FG AB 6 , CF 1 (CD FG) 4 , CG 10 ,令 AG BF h ,由勾股定理, 2
AC 2 AG2 CG2 h2 100 CE2 BC 2 BF 2 CF 2 h2 16 AE2 AC2 CE2 84
5
3
那么 PM 长为
.
A
【考点】应用题,分数应用题 【难度】☆ 【答案】 10
9
P
M
师 O
B
老 【分析】 OM AO AM 4 AB 1 AB 3 AB , AB 2 3 20
5 2 10
10 3
PM BP MB 2 AB 1 AB 1 AB 1 20 10
3
2
6
63 9
180
7 8
2 3
解得
v1
v2
14 5 16 5
3. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,则这个七
帅 位数最大是( )
A.9981733
B.9884737
C.9978137
D.9871773
帅 【考点】数论,整除
【难度】☆ 【答案】B 【分析】注意到由于任意三个连续排列的数字都能构成三位数,所以这个七位数的前五个数字不能是 0,
学习有意思
快乐思维
2016年第二十一届华杯赛小高组初赛详解
一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答 案的英文字母写在每题的圆括号内.)
1. 算式 9999 9999 的结果中含有(
2016个
2016个
A.2017
B.2016
)个数字 0. C.2015
帅帅思维公众号:shuaiteacher
第4页
兴趣是最好的老师
D.2014
【考点】计算,多位数计算
【难度】☆
【答案】C
【分析】 (102016 1)2 (102016 2) 102016 1 999...998000...001
2015个
2015个
2.
师 已知 A,B 两地相距 300 米.甲、乙两人同时分别从 A, B 两地出发,相向而行,在距 A 地 140 米处
二、填空题(每小题 10 分,共 40 分)
帅帅思维公众号:shuaiteacher
第2页
兴趣是最好的老师
学习有意思
快乐思维
7. 两个正方形的面积之差为 2016 平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足
上述条件的所有正方形共有
对.
【考点】数论,因数个数定理
【难度】☆☆
【答案】12