第21届华杯赛初赛试卷及答案解析(小高组)

合集下载

2016年第二十一届华罗庚金杯少年数学邀请赛初赛全国卷(小学高年级组)(含解析)

2016年第二十一届华罗庚金杯少年数学邀请赛初赛全国卷(小学高年级组)(含解析)
故选:A.
+16)=100-16=84,
6.答案: B;
试题分析: 试题分析: 首先在 0 到 2016 这 2016 个数中,数字和最大的为 1999,其和是 1+9×3=28,
数字之和最小是 1;按其和的多少可以方程 28 组,并且根据多少依次编上号, 进而得出答案。
解:数字和是 1 的①号有 1、10、100、1000; 数字和是 2 的②号有 11、101、110、1001、1010、1100、2、20、200、2000; 数字和是 3 的③号有 111、1011、1101、1110、102、120、201、210、1002、··· ······ ······ 在这 28 个数中,除 1999 只有一个数外,其余每组都有 4 个或 4 个以上的数; 如果我们在这些数字和为 4 个或 4 个以上的数的各组中,每组取 4 个数,并且将 1999 也取上,这样共有数:27× 4+1=109(个); 这样,在剩余的数中,任取一个,必然会从这个数相同组中取出的 4 个数的数字和相 等,即产生 5 个数字和相等的情况; 所以,n 的最小值等于:109+1=110; 故选:B.
10.答案: 4029;
试题分析: 试题分析: 由题意可知,题目要求剪出的小梯形,只在梯形的上底和下底以及底角作了要 求,并没有谈及梯形的高的事,可知,要分割的小梯形就是一横排。 因为题中的等腰梯形纸片,上底长度为 2015,下底长度为 2016,下底与上底 之间只相差 2016-2015=1,为了达到分割出的所有的小梯形的上底的和为 1, 且下底也只能比上底多 1, 如果设上底为 x,下底为 x+1,上、下底交错搭配,这样,两个小梯形搭配起来 就是一个小平行四边形,因为所有 x 的和为 1 知,平行四边形最多有 20151=2014(个),另外还有一个符合要求的等腰梯形,如下图:

第二十一届华杯赛初赛试题及答案

第二十一届华杯赛初赛试题及答案
2016 个 2016 个
)个数字 0. D. 2014
A. 2017 B. 2016 C. 2015 【知识点】计算模块——多位数计算 【解析】 999 9 999 9 10
2016 个 2016 个

2016
1 10 2016 1
230 270 500 350 500 500 350 350 .
【答案】A 2. 如右图所示,韩梅家的左右两侧各摆了两盆花. 每 次,韩梅按照以下规则往家中搬一盆花: 先选择左 侧还是右侧,然后搬该侧离家最近的. 要把所有花 搬到家里,共有( )种不同的搬花顺序. A. 4 B. 6 C. 8 D. 10 【知识点】 计数模块——加法原理 【解析】 将图中花从左往右依次编号 1,2,3,4. 根据题目要求,有下列搬花方式: 2-1-3-4,2-3-4-1,2-3-1-4,3-4-2-4,3-2-1-4,3-2-4-1 共 6 种不同的搬花顺序. 【答案】B 3. 在桌面上,将一个边长为 1 的正六边形纸片与一个边长为 1 的正三角形纸片拼接,要求无 重叠,且拼接的边完全重合,则得到的新图形的边数为( ). A. 8 B. 7 C. 6 D. 5 【知识点】 几何——平铺 【解析】如图所示,共有 5 个边.


10 2016 10 2016 2 10 2016 1
10 2016 ( 10 2016 2) 1
1000 0 999 98 1
2016 个 2015个
999 98000 01
A 选项中 998 显然不能被 11 整除,由 99+8 4=131,13+1 4=17,显然 17 不能 被 13 整除,从而 998 也不能被 13 整除. B 选项中 988 显然不能被 11 整除,由 98+8 4=130,显然 130 能被 13 整除,从而 988 能被 13 整除; 884 显然不能被 11 整除,由 88+4 4=104,10+4 4=26,显然 26 能被 13 整除,从而 884 能被 13 整除; 847 中,8+7-4=11,显然能被 11 整除; 473 中,4+3-7=0,显然能被 11 整除; 737 中,7+7-3=11,显然能被 11 整除. C 选项中 997 显然不能被 11 整除,由 99+7 4=127,12+7 4=30,显然 30 不能被 13 整除,从而 997 也不能被 13 整除. D 选项中 987 显然不能被 11 整除,由 98+7 4=126, 12+6 4=36,显然 36 不能被 13 整除,从而 987 也不能被 13 整除. 【答案】B 4. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么 共有( A. 1152 )种不同的排法. B. 864 C. 576 D.288

第21届“华杯赛”决赛小高组B组试题

第21届“华杯赛”决赛小高组B组试题

第二十一届华罗庚金杯少年数学邀请赛 决赛试题B (小学高年级组) (时间: 2016年3月12日10:00~11:30) 一、填空题(每小题 10分, 共80分) 1. 计算: =-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-4.213453611753971 . 2. 如右图, 30个棱长为1的正方体粘成一个四层的立体, 这个立体的表面积等于 . 3. 有一片草场, 10头牛8天可以吃完草场上的草; 15头牛, 如果从第二天开始每天少一头, 可以5天吃完. 那么草场上每天长出来的草够 头牛吃一天. 4. 如右图所示, 将一个三角形纸片ABC 折叠, 使得点C 落在三角形ABC 所在平面上, 折痕为DE . 已知︒=∠74ABE , ︒=∠70DAB , ︒=∠20CEB , 那么CDA ∠等于 . 5.甲、乙二人骑自行车从环形公路上同一地点同时出发, 背向而行. 已知甲骑行一圈的时间是70分钟, 出发后第45分钟甲、乙二人相遇, 那么乙骑行一圈的时间是 分钟. 6.如右图, 正方形ABCD 的边长为5, E , F 为正方形外两点,满足4==CF AE , 3==DF BE , 那么=2EF .7. 如果832⨯能表示成k 个连续正整数的和, 则k 的最大值为 .8. 现有算式: 甲数□乙数○1, 其中□, ○是符号+, -, ⨯,÷中的某两个. 李雷对四组甲数、乙数进行了计算, 结果见右表, 那么, A ○=B .学校____________姓名_________ 参赛证号密封线 内请勿答题第二十一届华罗庚金杯少年数学邀请赛决赛试题B(小学高年级组)二、解答下列各题(每题10分, 共40分, 要求写出简要过程)9. 计算:⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++201624232201613121 201620152016201420152014201635343+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++++ . 10.商店春节促销, 顾客每次购物支付现金时, 每100元可得一张价值50元的代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李阿姨只有不超过1550元的现金, 她能买到价值2300元的商品吗? 如果能, 给她设计一个购物方案; 如果不能, 说明理由.11. 如右图, 等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20, 2=BD , 4=EC , 求三角形ABC 的面积.12. 试找出这样的最大的五位正整数, 它不是11的倍数, 通过划去它的若干数字也不能得到可被11整除的数.三、解答下列各题(每小题 15分,共30分,要求写出详细过程)13. 如右图, 正方形ABCD 的面积为1, M 是CD 边的中点, E , F 是BC 边上的两点, 且FC EF BE ==. 连接AE , DF 分别交BM分别于H , G . 求四边形EFGH 的面积.14. 现有下图左边所示的“四连方”纸片五种, 每种的数量足够多. 要在如下图右边所示的55⨯方格网上, 放“四连方”, “四连方”可以翻转, “四连方”的每个小方格都要与方格网的某个小方格重合, 任意两个“四连方”不能有重叠部分. 那么最少放几个“四连方”就不能再放了?。

华杯赛初赛试题及答案

华杯赛初赛试题及答案

华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 2答案:C3. 一个圆的周长是2πr,那么它的直径是多少?A. πrB. 2rC. rD. 2πr答案:B4. 计算下列表达式的值:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)A. 5x^2 + x - 3B. 5x^2 + x + 5C. 5x^2 + x - 5D. 5x^2 + x + 3答案:A二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。

答案:32. 一个三角形的两个内角分别是40度和60度,那么第三个内角是______度。

答案:803. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5或-54. 一个数除以2的结果是3,那么这个数是______。

答案:6三、解答题(每题10分,共20分)1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:设数列的首项为a1=2,公差为d=5-2=3,根据等差数列的通项公式an=a1+(n-1)d,代入n=10,得a10=2+(10-1)*3=29。

答案:292. 一个长方形的长是宽的两倍,如果长是10厘米,那么宽是多少厘米?解答:设宽为x厘米,那么长就是2x厘米。

根据题意,2x=10,解得x=5。

答案:5厘米四、证明题(每题10分,共20分)1. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。

证明:设直角三角形的两直角边分别为a和b,斜边为c。

根据勾股定理,有a^2 + b^2 = c^2。

答案:证明完毕。

2. 证明:如果一个数的平方等于它的相反数,那么这个数只能是0。

证明:设这个数为x,那么x^2 = -x。

将方程重写为x^2 + x = 0,提取公因式得x(x + 1) = 0。

第二十一届华杯赛决赛B卷答案详解

第二十一届华杯赛决赛B卷答案详解

H A 4 D
3 F 4
E 3 B 4 G C 3
7、如果 2 38 能表示成 k 个连续正整数的和, 【答案】108 【解析】 令 k 个连续正整数的首个为 N,有
则 k 的最大值为(

2 38 =n n 1 n 2 kn
的到:
n k 1
10、 商店春节促销, 顾客每次购物支付现金时, 每 100 元可得一张价值 50 元的 代金券. 这些代金券不能兑成现金, 但可以用来购买商品, 规则是: 当次购物得 到的代金券不能当次使用; 每次购物支付的现金不少于购买商品价值的一半. 李 阿姨只有不超过 1550 元的现金, 她能买到价值 2300 元的商品吗? 如果能, 给 她设计一个购物方案; 如果不能, 说明理由。 【答案】能 【解析】制定一种最节省现金,最大化得到和使用代金券的方案即可。由于 1、 每 100 元可得一张价值 50 元的代金券, 2、 当次购物得到的代金券不能当次使 用,3、每次购物支付的现金不少于购买商品价值的一半。故每次最低消费 100 元现金即可,以此不停循环。 第一次, 付现 100 元,返券 50 元; 第二次, 付现 100 元,抵券 50 元,返券 50 元; 第三次, 付现 100 元,抵券 50 元,返券 50 元; · · · · · · (如此 15 次) 第十六次,付现 50 元,抵券 50 元。 共付现 1550 元,抵券 50 15=750 元,获得商品总价: 1550 750=2300 元 11、 如右图, 等腰直角三角形 ABC 与等腰直角三
9 5 圈,得出: = 14 14
5, E, F 为正方形
外两点,满足 AE CF 4 , BE DF 3 ,那么 EF 2 【答案】98 【解析】 补全成大正方形如图, EF 2 的平方即为大正方形面积的两倍,即:

第21届华杯赛初赛试卷及答案解析(小高组)

第21届华杯赛初赛试卷及答案解析(小高组)

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题的圆括号内.)1.算式的结算中含有( )个数字 0. A.2017 B.2016C.2015D.2014【答案】C【解析】(102016- 1) 2 = (102016- 2) ⨯ 102016+ 1 = 999...998 000 (001)2015 个2015个2.已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A , B 两地出发,相向而行,在距 A 地140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒()米.A. 2 3B. 2 4D. 31 C.355 5【答案】D【解析】设甲速 v 1 乙速 v 2⎧ v 1140 7 ⎧ 14⎪ = = v 1 = v 300 -140 8 ⎪5⎪2 ⎨v1= 300 -180 = 2解得 ⎨= 16⎪⎪v⎪1803⎪ 25⎩v 2 +1 ⎩3.在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数, 则这个七位数最大是( )A.9981733B.9884737C.9978137D.9871773【答案】B【解析】1001 = 11⨯13 ⨯7 ,ACD 前三位都不是 11 或 13 的倍数988 = 13 ⨯76 , 884 = 13 ⨯68, 847 = 11⨯77 , 473 = 11⨯43 , 737 = 11⨯674.将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有()种不同的排行.A.1152B.864C.576D.288【答案】A【解析】1 + 2 + 3 + ... + 7 = 28 ,8的两边之和都是14有(1247)8(356), (1256)8(347), (1346)8(257), (2345)8(356) 四种分法共有 2 ⨯ 4 ⨯ 4!⨯ 3! =1152 种排法5.在等腰梯形ABCD中,AB平行于CD,AB=6,CD=14,E A B∠AEC 是直角, CE = CB ,则 AE2等于() D CA.84B.80C.75D.64【答案】A【解析】EA BD G F CAG = BF = h , CG =10, CF =4AC 2= AG 2+ CG 2= h2+100CE 2= BC 2= BF 2+ CF 2= h2+16AE 2= AC 2- CE2=846.从自然数 1,2,3,…,2015,2016 中,任意取n个不同的数,要求总能在这n个不同的数中找到 5 个数,它们的数字和相等.那么n的最小值等于()A.109B.110C.111D.112【答案】B【解析】1 到 2016 中,数字和最大 28。

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)带答案

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)带答案

999...998000 (001)v ⎪ = 第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题 10 分,共 60 分,以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题的圆括号内.)1.算式 999...9×999...9 的结算中含有()个数字 0. 2016个2016个A.2017B.2016C.2015D.2014【答案】C【解析】(102016 -1)2 = (102016 - 2) ⨯102016 +1 =2015个2015个2.已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A , B 两地出发,相向而行,在距 A 地140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度 是每秒( )米.3 A. 254 B. 25C.31 D. 35【答案】D【解析】设甲速 v 1 乙速 v 2⎧ v 1 = 140 = 7 ⎧v = 14⎪ v 2 ⎨ 300 -140 8 ⎪ 1 5 解得 ⎨⎪ v 1 = 300 -180 = 2 ⎪ 162 ⎪⎩ v 2 +1180 3 ⎩⎪ 5 3.在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数, 则这个七位数最大是()A.9981733B.9884737C.9978137D.9871773【答案】B【解析】1001 =11⨯13⨯7 ,ACD 前三位都不是 11 或13 的倍数 988 =13⨯76 , 884 =13⨯68, 847 =11⨯77 , 473 =11⨯ 43, 737 =11⨯674.将1,2,3,4,5,6,7,8 这8 个数排成一行,使得8 的两边各数之和相等,那么共有()种不同的排行.A.1152B.864C.576D.288【答案】A【解析】1+2 +3+... +7=28 ,8 的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356) 四种分法共有2⨯4⨯4!⨯3! =1152 种排法E 5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6 ,CD =14 , A B ∠AEC 是直角,CE =CB ,则AE2 等于()D CA.84B.80C.75D.64【答案】A【解析】AG =BF =h ,CG =10 ,CF = 4AC2 =AG2 +CG2 =h2 +100CE2 =BC2 =BF 2 +CF 2 =h2 +16AE2 =AC2 -CE2 =846.从自然数1,2,3,…,2015,2016 中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5 个数,它们的数字和相等.那么n 的最小值等于()A.109B.110C.111D.112【答案】B【解析】1 到2016 中,数字和最大28。

第21届华杯赛小学高年级组初赛试题解析(成都)

第21届华杯赛小学高年级组初赛试题解析(成都)

报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第6题 在一个七位数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是() (A)9981733 答案:B 解析: 要使此 7 位数最大,则第一个数为 9,如果第二个数为 9,要使其 能被 13 整除,用试除法知 988 能被 13 整除,990 能被 11 整除, 而如果为 990,则 0 不能和它后面两位数构成三位数,则不能为 990, 所以第二个数不能为 9, 所以第二个数为 8,998 能被 13 整除, 则看第 4 位,用同样的方法可得此七位数为 9884737. ___________________________________________________________ (B)9884737 (C)9978137 (D)9871773
2 n 1 4 无法求出 n 值,不符合。
___________________________________________________________
报名咨询电话:68890961
86111521
成都市青羊区金河路 59 号尊城国际 1305 室
第3题 有一种饮料包装瓶的容积是 1.5 升。现瓶里装了一些饮料,正放时饮 料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如右图。那么 瓶内现有饮料()升
则 ab 为 15 的倍数
ab 15 , 15 3 5 a b 4 ab 30 , 30 1 30 2 15 3 10 5 6 a b 8 ab 45 , 45 1 45 3 15 5 9 a b 12 ab 60 , 60 1 60 2 30 3 20 4 15 5 12 6 10(符合) a b 16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一届华罗庚金杯少年数学邀请赛
初赛试卷(小学高年级组)
一、选择题(每小题10分,共60分,以下每题的四个选项中,仅有一个是正确的,请将
表示正确答案的英文字母写在每题的圆括号内.)
1.算式
的结算中含有( )个数字0. A.2017
B.2016
C.2015
D.2014
【答案】C
【解析】 201622016201620152015(101)(102)101999...998000 (001)
-=-⨯+=个个
2.已知A B ,两地相距300米.甲、乙两人同时分别从,A B 两地出发,相向而行,在距A 地
140米处相遇;如果乙每秒多行1米,则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. A.325 B.425 C.3 D.135
【答案】D
【解析】设甲速1v 乙速2v
1212
14073001408300180211803v v v v ⎧==⎪-⎪⎨-⎪==⎪+⎩解得12145165v v ⎧=⎪⎪⎨⎪=⎪⎩
3.在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,
则这个七位数最大是( )
A.9981733
B.9884737
C.9978137
D.9871773
【答案】B
【解析】100111137=⨯⨯,ACD 前三位都不是11或13的倍数 9881376=⨯,8841368=⨯,8471177=⨯,4731143=⨯,7371167=⨯
4.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有
( )种不同的排行.
A.1152
B.864
C.576
D.288 【答案】A
【解析】123...728++++=,8的两边之和都是14
有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356)四种分法
共有244!3!1152⨯⨯⨯=种排法
5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6,CD =14, AEC ∠是直角,CE CB =,则AE 2等于( )
A.84
B.80
C.75
D.64
【答案】A
【解析】
AG BF h ==,10CG =,4CF =
2222100AC AG CG h =+=+
2222216CE BC BF CF h ==+=+
22284AE AC CE =-=
6.从自然数1,2,3,…,2015,2016中,任意取n 个不同的数,要求总能在这n 个不同
的数中找到5个数,它们的数字和相等.那么n 的最小值等于( )
A.109
B.110
C.111
D.112
【答案】B
【解析】1到2016中,数字和最大28。

最坏情况:取数字和1到27各4个,以及1999,共109个数。

再多取一个数就保证有5个数字和相等。

110n =
二、填空题(每小题10分,共40分)
7.两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,E
G F D C B A D E
B A
那么满足上述条件的所有正方形共有 对.
【答案】12
【解析】22()()2016a b a b a b -=+-=
a b +与a b -奇偶性相同,乘积是偶数,必然都是偶数。

20164504÷=的约数有24个,故有12组解。

8.如下图,,,O P M 是线段AB 上的三个点,,AO AB BP AB =
=42,53M 是AB 的中点,且OM =2,那么PM 长为 .
【答案】109
【解析】4135210
OM AO AM AB AB AB =-=
-= 21151032699PM BP MB AB AB AB OM =-=-===
9.设q 是一个平方数.如果q -2和q +2都是质数,就称q 为P 型平方数,例如,9就是
一个P 型平方数,那么小于1000的最大P 型方平数是 .
【答案】441
【解析】显然,q 是奇数。

且2q +和2q -都不是3的倍数。

只能21q -≡和22q +≡(mod3)
所以q 是3的倍数。

22331000,2721743>+=⨯
22212439,212443-=+=都是质数
10.有一个等腰梯形的纸片,上底长度为2015,下底长度为2016,用该纸片剪出一些等腰
梯形,要求剪出的梯形的两个底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出 个同样的等腰梯形. P
【答案】4029
【解析】如图,将大等腰梯形分成21n +个等腰梯形
(21)2015n x x ++=
20152015.50.520152121
x n x x -==-<++ ∴n 的最大值是2014,最多可以剪出4029个
x +1
…2n 个x x +1x。

相关文档
最新文档