1质点运动学
大学物理第1章质点运动学

大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。
一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。
质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。
二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。
1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。
匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。
2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。
非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。
三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。
主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。
我们可以通过坐标系建立一个参照系,来描述质点的位置。
2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。
位移的大小可以用位移公式Δr=r2-r1来计算。
3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。
速度的大小可以用速度公式v=Δr/Δt来计算。
4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。
加速度的大小可以用加速度公式a=Δv/Δt来计算。
四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。
曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。
1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。
弧长的大小可以用弧长公式s=rθ来计算。
2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。
曲率半径可以根据曲线的形状计算得出。
3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。
大学物理第1章质点运动学

则有
ax 2 R cost;
a y 2 R sint
加速度的大小
2 2 2 2 2 2 a ax a2 ( R cos t ) ( R sin t ) R y
根据矢量的点积运算,分别计算
v r [(R sint )i (R cost ) j ] [(R cost )i ( R sint ) j ] 0 2 2 v a [(R sint )i (R cost ) j ] [( R cost )i ( R sint ) j ] 0
大学物理
第一章 质点运动学
1.1 运动学的一些基本概念 1.1.1、参考系(reference frame)和坐标系(coordinate) 参考系:为了描述物体的运动而选取的参考标准物体。 (运动描述的相对性) 坐标系:直角坐标系、自然坐标系、极坐标系、球坐标系等. 说明 在运动学中,参考系的选择是任意的;在动力学中则不然 1.1.2、时间和空间的计量 1、时间及其计量 时间表征物理事件的顺序性和物质运动的持续性。时间测量的 标准单位是秒。1967年定义秒为铯—133原子基态的两个超精细 能级之间跃迁辐射周期的9192631770倍。量度时间范围从宇宙 年龄1018s(约200亿年)到微观粒子的最短寿命 10-24s.极限的时 间间隔为普朗克时间10-43s,小于此时间,现有的时间概念就不适 用了。
运动学中的两类问题
1、已知质点的运动学方程求质点的速度、加速度等问
题常称为运动学第一类问题.
r r (t )
微分
v, a
2、由加速度和初始条件求速度方程和运动方程的问题称 为运动学的第二类问题.
a , v0 , r0
第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率
大学物理——第1章-质点运动学

21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C
1 质点运动学

en
2.切向加速度
法向加速度
v dv
d
;t+dt时刻:B点 t时刻:A点 v v dv dt时间内经过弧长ds ds对应圆心角角度d
B
R
A
v
ˆ dr dset
ˆ dv d v ( t )e t a dt dt
例1.路灯距地面高H ,行人高h ,若人以速率 u从路 灯正下方背向路灯运动时,求人头顶影子的运动方程 (以路灯的正下方为原点)。
解:
x ut
H x h x x H H x x ut H h H h
§1.2 位移 速度 加速度
位移(displacement): 位置矢量的变化量 r(t)
ˆ ˆ d( xi yˆ zk ) j ˆ ˆ v vx i v y ˆ vz k j dt
速度的大小:
v v v v
2 2 x y
2 z
速度的方向:为轨迹切线的方向,指向时间 t 值增 大的一方。
注意:
s r , d s d r
r r , d r d r
r | r |
2 2
2 2
2 2
2 1
2 1
2 1
路程(path): 位置矢量末端运动轨迹 s 的长度
位移与路程的区别: (A)位移是矢量,路程是标量。 (B)一般情况,位移大小不等于路程。
r s
(C)两点间的路程是不唯一的,而位移是唯一的。
r ?s
什么情况下
1. 不改变方向的直线运动;
大小: 方向:
r
4 2 ( 4) 2 5.65m
4 arctg 4 4
大学物理第1章-质点运动学

x2 x1 x2 = l h
(h l)x2 = hx1
h l
解题思路 1. 写出几何长度关系 写出几何长度关系; 2. 确定变量 确定变量; 两边求导: 两边求导: 3. 写出求导关系式 写出求导关系式; 4. 明确求导物理意义 明确求导物理意义;
dx2 dx1 o x1 x2 x (h l) =h dt dt dx2 dx1 hv0 其中: =v , = v0 v = dt dt h l
瞬时速率: 瞬时速率:
s ds v = lim = t dt t →0
v r
B
一般情况: 一般情况: 当t→0时: → 时
v v r ≠ s 因此 v ≠ v
v v v r → dr = ds 则 v = v
1-2-4 加速度
加速度是反映速度变化的物理量 v t1时刻,质点速为 v1 时刻, v t2时刻,质点速度为 v2 时刻, t 时间内,速度增量为: 时间内,速度增量为:
大学物理学教案
第一章
质点运动学
机械运动
一个物体相对于另一个物体的空间位置 随时间发生变化; 随时间发生变化; 或一个物体的某一部分相 对于其另一部分的位置随时间而发生变化的 运动。 运动。
力学
研究物体机械运动及其规律的学科。 研究物体机械运动及其规律的学科。
运动学: 运动学:
研究物体在空间的位置随时间的变化规 律以及运动的轨道问题, 律以及运动的轨道问题,而并不涉及物体发 生机械运动的变化原因。 生机械运动的变化原因。
v tv ∫v dr = ∫ vdt
r0 t0
v0 v r
t0
匀加速运动
dv = adt ,
∫
v
v0
dv = ∫ adt
1质点运动学
1质点运动学第1章质点运动学⼀、基本要求1.理解描述质点运动的位⽮、位移、速度、加速度等物理量意义;2.熟练掌握质点运动学的两类问题:即⽤求导法由已知的运动学⽅程求速度和加速度,并会由已知的质点运动学⽅程求解位⽮、位移、平均速度、平均加速度、轨迹⽅程;⽤积分法由已知的质点的速度或加速度求质点的运动学⽅程;3.理解⾃然坐标系,理解圆周运动中⾓量和线量的关系,会计算质点做曲线运动的⾓速度、⾓加速度、切向加速度、法向加速度和总加速度; 4.了解质点的相对运动问题。
⼆、基本内容(⼀)本章重点和难点:重点:掌握质点运动⽅程的物理意义及利⽤数学运算求解位⽮、位移、速度、加速度、轨迹⽅程等。
难点:将⽮量运算⽅法及微积分法应⽤于运动学解题。
(提⽰:⽮量可以有⿊体或箭头两种表⽰形式,教材中⼀般⽤⿊体形式表⽰,学⽣平时作业及考试请⽤箭头形式表⽰)(⼆)知识⽹络结构图:相对运动总加速度法向加速度切向加速度⾓加速度⾓速度曲线运动轨迹⽅程参数⽅程位⽮⽅程质点运动⽅程运动⽅程形式平均加速度加速度平均速度速度位移位⽮基本物理量,,,,:)(,,(三)容易混淆的概念: 1.瞬时速度和平均速度瞬时速度(简称速度),对应于某时刻的速度,是质点位置⽮量随时间的变化率,⽤求导法;平均速度是质点的位移除以时间,对应的是某个时间段内的速度平均值,不⽤求导法。
2. 瞬时加速度和平均加速度瞬时加速度(简称加速度),对应于某时刻的加速度,是质点速度⽮量随时间的变化率,⽤求导法;平均加速度是质点的速度增量除以时间,对应的是某个时间段内加速度的平均值,不⽤求导法。
3.质点运动⽅程、参数⽅程和轨迹⽅程质点运动⽅程(即位⽮⽅程),是质点位置⽮量对时间的函数;参数⽅程是质点运动⽅程的分量式;⽽轨迹⽅程则是从参数⽅程中消去t 得到的,反映质点运动的轨迹特点。
4.绝对速度、相对速度和牵连速度绝对速度是质点相对于静⽌参照系的速度;相对速度是质点相对于运动参照系的速度;牵连速度是运动参照系相对于静⽌参照系的速度。
第1章 质点运动学共48页文档
(2) 位矢法 以O点为参考点
r
x(
t
)i
y(
t
)j
R
cos
t
i
R
sin
t
j
(3) 自然法
以O’点为参考点,逆时为正。
S R t
第一章 质点运动学
7
§1-2 质点的位移、速度和加速度
一、位移 描述质点位置变化的物理量
S
几何描述: 数学描述:
PrQ
r(
t
t
)
r(
t
)
r( t ) r( t t )
2、联系 从数学上看是微分与积分的关系
微分法 r a 积分法
微分法
积分法
ar ra
第一类问题(微分法) 第二类问题(积分法)
第一章 质点运动学
14
例:直杆AB两端可以分别在两固定而 相互垂直的直线导槽上滑动,已知杆 的倾角按φ=ωt 随时间变化,试求杆 上M点的运动规律。(运动方程、轨 迹、速度、加速度)
直角坐标系
j
i
k
i jk
分别是x、y、z方 向的单位矢量
在直角坐标系中可写成:
r xi yj zk
a
x i y axi ay
j
z
k
j azk
(A)
大小
2 x
2 y
2 z
a
ax2
a
2 y
az2
第一章 质点运动学
12
由基本关系式
有:
dx
i
dy
j
dz
k
dt dt dt
a
dx
b
2
sin
t
质点运动学(1)
第一章质点运动学基本要求一、理解质点模型和参照系、坐标系等概念。
二、掌握位置矢量、位移、速度、加速度等物理量的概念及其关系。
三、掌握直线运动、圆周运动及抛体运动中运动方程及速度、加速度等物理量的计算。
四、理解运动叠加原理及其应用。
内容提要一、参照系、坐标系和质点参照系用来描述物体运动而选作参考的物体或物体系。
运动的相对性决定描述物体运动必须选取参照系。
运动学中参照系可任选,不同参照系中物体的运动形式(如轨迹、速度等)可以不同。
坐标系固定在参照系上的一组有刻度的射线、曲线或角度。
坐标系为参照系的数学抽象。
参照系选定后,坐标系还可以任选。
在同一参照系中用不同的坐标系描述同一运动,物体的运动形式相同,但其运动形式的数学表述却可以不同。
常用坐标系有直角坐标系、球坐标系、柱坐标系等。
质点 如果物体的线度和形状在所研究的现象中不起作用,或所起的作用可以忽略不计,我们就可以近似地把物体看作是一个没有大小和形状的理想物体,称为质点。
二、质点的位置矢量和运动方程位置矢量(位矢、矢径) 用来确定某时刻质点位置(用矢端表示)的矢量。
k j i r r z y x z y x ++== ),,(位置矢量的大小:222z y x r ++==r位置矢量的方向余弦:r zr y r x ===γβαcos ,cos ,cos运动方程 质点位置矢量坐标和时间的函数关系称为质点的运动方程。
k j i r )()()()(t z t y t x t ++=或 )(t x x =,)(t y y =,)(t z z = 三、位移和路程位移(矢量) 质点在一段时间(t ∆)内位置的改变(r ∆)叫作它在这段时间内的位移。
)()(t t t r r r -∆+=∆路程(标量) 质点实际运动轨迹的长度s ∆。
注意:Δt →0时,位移大小等于路程,即r d ds =四、速度和加速度速度 位置矢量对时间的变化率。
平均速度:t∆∆=r v (瞬时)速度:dt d t t r r v =∆∆=→∆lim 0k j i dtdz dt dy dt dx ++= 速度方向:沿轨迹上质点所在点的切线,并指向质点前进的方向。
第1章 质点运动学
第1章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.解:(1)质点在第1s 末的位移大小为x (1) = 6×12 - 2×13 = 4(m). 在第2s 末的位移大小为x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0, 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). [注意]第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+.并由上述数据求出量值.证:依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t ------- (1) 根据速度与位移的关系式 v t 2 = v o 2 + 2as , 得a = (n 2 – 1)v o 2/2s ------- (2) (1}平方之后除以 (2)式证得22(1)(1)n sa n t -=+.计算得加速度为22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角?解:方法一:分步法.(1)夹角用θ表示,人和车(他)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当他达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式v t 2 - v 02 = 2a s , 可得上升的最大高度为h 1 = v y 02/2g = 30.94(m).他从最高点开始再做自由落体运动,下落的高度为h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为图1.32t =. 因此他飞越的时间为t = t 1 + t 2 = 6.98(s).他飞越的水平速度为v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得他落地的竖直速度大小为v y = gt = 69.8(m·s -1), 落地速度为v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上的方向为正,他在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得0(sin t v g θ=. 这里y = -70m ,根号项就是他落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为t = 6.98(s). 由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k=+. 证:(1)分离变量得2d d vk t v=-, 积分020d d vtv vk t v =-⎰⎰, 可得 011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分 00001d d(1)(1)xtx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕. [讨论] 当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma .由于a = d 2x /d t 2,而 d x /d t = v ,所以 a = d v /d t ,分离变量得方程 d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-,积分得ln v = -kt + C . 当t = 0时,v = v 0,所以C = ln v 0,因此ln v/v 0 = -kt ,得速度为 v = v 0e -kt .而d v = v 0e -kt d t ,积分得0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此 0(1-e )ktv x k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-.当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-, 读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值?解:(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =2r r ω=, 即22(12)24t = 解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2,即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a =m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? 解:建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ,v 0y = v 0sin θ.加速度的大小为a x = a cos α,a y = a sin α.运动方程为2012x x x v t a t =+,2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,例如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.解:圆盘边缘的切向加速度大小等于物体A 下落加速度. 由于212t h a t =∆,所以a t = 2h /Δt 2 = 0.2(m·s -2). 物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算: (1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+; 螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t =.算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程 h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.证:(1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为1222l l vlt v u v u v u=+=+-- 022222/1/1/t l v u v u v ==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.AAB vv + uv - uABvu uvv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?解:雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h . 方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+, 即 12(sin cos )lv v hθθ=+.方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t ,h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.图1.101h l α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学
一、选择题
⒈ D ; ⒉C,D ;⒊ CDE ; ⒋ ACDF ; ⒌ F ; 6.B ; 7.B ; 8.C ; 9.C
二、填空题
⒈ j R i R
- ;
R 2;
2
R
π ; j i
υυ+ ;
υ2 ; 0 。
⒉ 23t 12t 9-+- ; 6t 12- ; s /3m ; m 2- ; 6m 。
⒊ 2
192
x y -= ; j i 114+ ; j i 82- ; j i 42- 。
⒋ 3-LT ; 2021kt +υ ; 3006
1
kt t x ++υ 。
⒌ t π2 ;π2 ; 222t π ; n t e t e
2222ππ+ 。
⒍ θs i n g -;
θυc o s
2
g 。
⒎ t ππ+10 ;π ;R π ;2)10(t R ππ+。
⒏ h
lu
≥
υ。
9. 1s ; 1m
三、问答题
1. 答:运动方程:质点空间位置随时间变化的函数。
已知运动方程时,就可
以获得关于质点在任意时刻的位置、速度、加速度、轨道等。
2. 答:r
∆ 表示位移矢量的模,即位移的大小,
它反映了r
的大小、方向两个因素的变化,即代表t ∆间隔内运动轨迹的弦长。
r ∆表示位移大小的增量,即12r r r -=∆,
它只反映r
的大小变化。
如图所示:
四、计算题
1. 证明:
(1) 由题目知:x =A 1cosωt , y =A 2sinωt , 消去t 得轨迹方程:
122
2
212=+A y A x ,此为椭圆方程。
(2)j t A i t A t r
ωωωωυcos sin d d 21+-==
j t A i t A t
a ωωωωυsin cos d d 2212--==
r j t A i t A
2212)sin cos (ωωωω-=+-=
故a 与r
反向,即加速度指向椭圆中心。
(3)方法一:
t =0时,x =A 1, y =0, 即位于图中P 点, 经过一个时间元dt , 由x =A 1cosωt, y =
A 2sinωt ,可知 x >0,y >0, 即该质点位于坐标
系第一象限,故可知该质点为逆时针方向转动。
在M 点,合加速度的方向与速度方向夹角大于90o ,因此质点在该点做减速运动。
方法二:
(3)因为 t
r
d d
=v j i ωt A ωt A cos sin 21ωω+-=
j i ωt A ωt A a sin cos 22
12ωω--=
而 v
⋅a ⋅--=)sin cos (2212j i ωt A ωt A ωω)cos sin (21j i ωt A ωt A ωω+-
)(cos sin 2
2213A A ωt ωt -=ω
由题意知,此时行星在通过图中在第二象限的M 点,有
0sin >ωt ,0cos <ωt ,且21A A >,0>ω
则 0<⋅v
a
即当质点运动到M 点时,a 与v 夹角为钝角,表明在M 点切向加速度t a 的方向与速度v
的方向相反。
所以,质点在通过M 点时速率会减小。
2. 解:(1) υυ
B A t a -==
d d t B A d d =-υ
υ
⎰⎰=---t t B A B A B 00d )
d(1υ
υ
υ
Bt A
B A -=-υ
ln
Bt e A B A -=-υ ⇒ )1(Bt e B A
--=υ (2))1(d d Bt e B
A t y --==υ , t e
B A
y Bt d )1(d --=
t
Bt
y
B e t B A y 0
)]([(d -+=⎰
)]1(1
[-+=
-Bt e B t B A y )1(2-+=-Bt e B
A
t B A y
3. 解:t
a t d d υ
=,R 2υ=n a
θυ
υ
ctg d d 2==R
t a a n t
θυυctg d d 2
⋅=R t ,
t R d d c t g 2=⋅υ
υθ ⎰⎰=⋅t 02d d ctg 0t R υυυ
υθ,t R =-⋅υ
υυθ0)1(ctg ,t R =+-⋅)1
1(ctg 0υυθ
t
R R
00ctg -υθυυ⋅=
4.解:
(1)2012
128.1gt t y y -
++= 2021.02t t y y ++=
(2)y 1=y 2
即 202
1
28.1gt t y -++=201.02t t y ++
⇒ t =0.6s
五、附加题
解:在半径为r 处取径向宽度dr 的环带状音轨,则其长度为2πrndr ,
对应的放音时间为dt =2πrn d r/v , 全部放音时间为: ⎰
⎰=
=2
1
2R R r d r
n
dt T υ
π=min 3.69)(212
2=-R R n υ
π (2)r =0.05m 时角速度: s r a d r
/2605
.03
.1==
=
υ
ω 角加速度: dt dr r r dt d dt d 2)(υυωβ-===
,由前已知: nr
dt dr πυ
2=
于是:23-3
2
2/103.312s rad nr
dt dr
r ⨯=-=-=πυυβ。