1.1.2集合间的基本关系
集合间的基本关系

1.1.2 集合间的基本关系一、子集,相等集合,真子集的概念1、子集:集合A 为集合B 的子集⇔ ,用数学语言表述是 ,用图形语言表述是:集合A 不为集合B 的子集⇔ ,用数学语言表述是 ,用图形语言表述是:2.集合相等A=B ⇔ ,用数学语言表述是 ,用图形语言表述是:3.真子集A 是B 的真子集⇔ ,用数学语言表述是 ,用图形语言表述是:4.子集与真子集的性质由上面的概念可以得到哪些结论:(1)任何集合是它本身的 ,即 ;(2)对于集合A 、B 、C ,如果,A B ⊆且,B C ⊆那么 ;(3)对于集合A 、B 、C ,如果A B ,且B C ,那么A C ;(4)空集∅是任何集合的 ,是任何非空集合的 。
思考1:分别写出集合{},{,}a a b 和{,,}a b c 的所有子集,并得出子集的个数.从中可得到什么结论?思考2:已知集合A={a ,a +b , a +2b },B={a ,a c, a c 2}.若A=B ,求c 的值。
思考3:(1)下列表述正确的是( )A .}0{=∅B .}0{⊆∅C .}0{⊇∅D .}0{∈∅(2)已知集合A ={∅,{a},{b},{a ,b} },则下列结论中正确的有 。
A .∅∈AB .a ∈AC .{∅}∈AD .{a} A二、典例例1、设(,)|1y x A x y y x ⎧=⎫⎧=⎨⎨⎬=+⎩⎩⎭,2(,)|21y x B x y y x ⎧=⎫⎧=⎨⎨⎬=-+⎩⎩⎭,判断集合A 与集合B 的关系。
例2、(1) 设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是( )A .P QB .Q ⊆PC .P =QD .Q P(2) 若P ={y |y=x 2, x ∈R},Q ={(x ,y )|y=x 2 , x ∈R},则必有( )A . P QB .P=QC .P QD .以上都不对例3、已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x ≤2p -1}.若BA ,求实数p 的取值范围。
1.1.2《集合间的基本关系》

y-3 2.设x, y R,A {(x,y) | y - 3 x - 2}, B {(x,y) | 1}, x-2 则A,B的关系是______.
2.集合相等:
如果集合A 是集合B的子集( A⊆B)且集合B也 是集合A的子集( B⊆A),因此集合A和集合B 中的元素是一样的,就说A与B相等,记A=B。
符号语言: A⊆B,B⊆A⇔A=B
3.真子集: 如果集合A是集合B的子集, 但存在元素x∈B, 且x∈ A,称集合A是集合 A) B的真子集,记作:A Ì B 或 ( B É ¹ ¹
例3:已知集合A {x | 1 x 2}, B {x | x a}, 若A B,求实数a 的取值范围。
例4:已知集合A {x |1 x 2}, B {x | ax 2 0}, 若A B,求实数a 的值组成的集合。
例6 已知A {x | 2 x 5}, B {x | a 1 x 2a 1}, B A,求实数a的取值范围 . 解: A, 当B ,有a 1 2a 1, 即a 2
2 a 1 a 1 当B 时,有a 1 -2 2 a 1 5 2 a 3 综上所述,a的取值范围a 3.
补充:已知M {x | a x a 3}, N {x | x 1, 或x 5},
若M N,求实数a的取值范围。(做作业本上)
2. 若A={x |-3≤x≤4}, B={x | 2m-1≤x≤m+1},当B 求实数m的取值范围.
1.1.2集合间的基本关系

则A, B的关系是 _A__⊇__B___
3、下列写法中,错误写法的个数是( 3 )
(1){1}∈{0,1};(2)⊆{0};(3)0∈; (4){0,-1,1}⊆{-1,0,1};(5){(0,0)}={0}
例1:已知集合A={x|1≤x<4},B={x|x<a},若A B.
求实数a的取值范围
将0,- 4代 入方 程x2 2(a 1)x a2 1 0,
即(02 4)22(a2(a1)01)(a24)
1
a
0 2
1
0
(2)当B A时 , 又 可 分 为 :
解得a 1
(a) B 时 , 即B {0}, 或B {-4}, 即 方 程 只 有 一 个 解
4(a 1)2 4(a2 1) 0, 解 得a 1, 此 时B {0} 满足条件;
2、设集合A={x|-2≤x<1},B={x|0≤x-a≤1}, 若B⊆A,求实数a的取值范围.
3、已知集合A={1,2},B={x|x2-ax+(a-1)=0}, 若B⊆A,求实数a的值.
读作:“A含于B”(或B包含A) 数学语言表示形式:
若对任意x∈A,有x∈B,则 A⊆B。
若A不是B的子集,则记作:A⊈B(或B⊉A)
例:A={2,4},B={3,5,7}; 则A⊈B。
2.图示法表示集合
A⊆B的图形语言
用平面上封闭的曲 线的内部表示集合,
这图叫Venn图
A
B
3.集合相等
等腰三角形
a≤3
变式:已知A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}, 若B⊆A.求实数a的取值范围
解 : A,当B , 有a 1 2a 1,即a 2 2a 1 a 1
集合间的基本关系讲义

1.1.2集合间的基本关系一、子集一子集:对于两个集合A、B;如果集合A中任意一个元素......都是集合B中的元素;我们就说这两个集合有包含关系;称集合A为集合B的子集;记作A⊆B或B⊇A;读作“A含于B”或“B包含A”数学语言表示形式为:若对任意的x∈A有x∈B;则A⊆B子集关系用文氏图表示为:A⊆B或B⊇A根据子集的定义;我们可以知道A⊆A;也就是说任何集合都是它本身的一个子集.对于空集φ;我们规定φA.;.即空集是任何集合的子集............例1:用适当的符号填空0____{0}φ____{0}2____{2}2____N{2}____N变式练习1:已知A={x|x2-3x+2=0};B={1;2};C={x|x<8;x∈N};用适当的符号填空A___________BA___________C{2}__________C2_________C例2:写出集合{,,,}a b c d的所有子集..解析集合{,,,}a b c d的所有子集可以分为五类;即:1含有0个元素的子集;即空集φ;2含有一个元素的子集:{},{},{},{}a b c d;3含有二个元素的子集:{,},{,},{,},{,},{,},{,}a b a c a d b c b d c d;4含有三个元素的子集:{,,},{,,},{,,},{,,}a b c a b d a c d b c d;5含有四个元素的子集:{,,,}a b c d.结论:如果集合A中有n个元素;则集合A共有2n个子集变式练习1:已知集合A={x∈N+︱-1≤x<4};则集合A的子集有_________个..解析:8个二、集合相等:如果集合A 是集合B 的子集A ⊆B;且集合B是集合A 的子集B ⊆A;则集合A 与集合B 相等;记作集合A =集合B..即:A ⊆B 且B ⊆A 则A =B.. 上节两个集合相等:两个集合的元素完全相同例3:已知集合A 和集合B 都是含三个元素的集合;且集合A ={a;a +b;a +2b};B ={a;ac;ac 2};若A ⊆B 且B ⊆A;求c 的值..解析1若⎩⎨⎧=+=+22acb a ac b a 消去b 得:ac 2+a -2ac =0; a =0时;集合B 中的三元素均为零;和元素的互异性相矛盾;故a ≠0.∴c 2-2c +1=0;即c =1;但c =1时;B 中的三元素又相同;此时无解.2若⎩⎨⎧=+=+acb a ac b a 22消去b 得:2ac 2-ac -a =0;∵a ≠0;∴2c 2-c -1=0;即c -12c +1=0;又c ≠1;故c =-21.. 变式练习:已知集合A 和集合B 都含有三个元素;A ={x;xy;x -y};B ={0;|x |;y};若A ⊆B 且B ⊆A;求2x +y 的值..解析:∴由集合的互异性;∴x -y =0;则x =y;此时A ={x;x 2;0};B ={0;|x |;x};则x 2=|x |且x ≠x 2;故x =y =-1;此时A ={-1;1;0};B ={0;1;-1};符合题意;综上所述;2x +y =-3..三、真子集:如果集合A ⊆B;但存在元素x ∈B;且x ∉A;我们称集合A 是集合B 的真子集..记:A B 或B AA 真含于BB 真包含A注意:即如果A ⊆B 且A ≠B;那么集合A 是集合B 的真子集;记作A B 或B A..例如{1;2}N 、{a;b}{a;b;c}等..子集与真子集的区别在于“.A .⊆B .”允许...A .=.B .或.A .B .;.而.A .B .是不允许“.....A .=.B .”的..;.所以如果....A .B .成立..;.则一定有....A .⊆B .成立;...但如果有....A .⊆B .成立..;.A .B .不一定成立.........空集是任何集合的子集;空集是任何非空集合的真子集..例4:分别写出集合{a};{a;b}和{a;b;c}的所有子集和真子集..集合{a}的子集有φ;{a};共有2个子集;()A B真子集有{a};共1个真子集..集合{a;b}的子集有φ;{a};{b};{a;b};共有4个子集;真子集有φ;{a};{b};共3个真子集..集合{a;b;c}的子集有:φ;{a};{b};{c};{a;b};{a;c};{b;c};{a;b;c};共有8个即个子集;真子集有φ;{a};{b};{c};{a;b};{a;c};{b;c};共7个真子集.. 结论..:.如果集合....A .中有..n .个.元素..;.则集合...A .共有..2.n .个子集...;.2.n .-.1.个真子集........例5:有适当的符号填空..1A ={2;3;6}B ={x ︱x 是12的约数}A_____B2A ={0;1}B ={x ︱x 2+y 2=1;y ∈N}A_____B3A ={x ︱-1<x <2}B ={x ︱-2<x <2}A_____B4A ={x;y ︱x ×y <0}B ={x;y ︱x >0;y >0}A_____B5A ={x ︱x 2=1}B ={y ︱y 2-2y +4=0}A_____B解析:12345变式练习1:已知集合A ={0;1};B ={z ︱z =x +y;x ∈A;y ∈B};则B 的子集有 A :8个B :2个C :4个D :7个解析:集合B 中有3个元素;子集有8个..A变式练习2:已知集合A ={x ∈Z ︱031≤-+x x };B ={y ︱y =x 2+1;x ∈A};则集合B 的含有元素1的子集个数为A :5B :4C :3D :2解析:A ={x ∈Z ︱-1≤x <3}={-1;0;1;2};则B ={1;2;5};则集合B 的含有元素1的子集有{1};{1;2};{1;5};{1;2;5}共四个;B变式练习3:已知A ={x ︱x =a +61;a ∈Z};B ={x ︱x =2b -31;b ∈Z};C ={x ︱x =2c +61;c ∈Z};则集合A 、B 、C 满足的关系是 A :A =B CB :A B =CC :A B CD :B C A解析:A ={6x ︱6x =6a +1;a ∈Z};B ={6x ︱x =3a -2=3a -1+1;b ∈Z};C ={6x ︱x =c 3+1;c ∈Z}..则A B =CB变式练习4:已知A ={x ︱y =122+-x x };B ={y ︱y =122+-x x };C ={x ︱122+-x x =0};D ={x ︱122+-x x <0};E ={x;y ︱y =122+-x x };则下列结论正确的是A :A ⊆B ⊆C ⊆DB :D C B AC :B =ED :A =B解析:B变式练习5:若集合A 满足{1;2}⊆A ⊆{1;2;3;4};则满足条件的集合A 的个数为_____个..解析:4个二、子集的有关性质1、空集φ:我们把不含有任何元素的集合叫做空集;记为φ;并规定:空集是任何集合的子集;任何非空集合的真子集;即空集..φ只有一个子集就是它本身...........;.而空..集没有真子集........ 2、子集与真子集的性质1任何集合是它本身的子集;即A ⊆A ;2对于集合A 、B 、C;如果A ⊆B 且B ⊆C;那么A ⊆C ;3对于集合A 、B 、C;如果A B;且B C;那么A C ;4空集φ是任何集合的子集;是任何非空集合的真子集..例5:下列集合只有一个子集......的是 A :{x |x 2≤0}B :{x |x 3≤0}C :{x |x 2<0}D :{x |x 3>0}解析:C例6:下列表述正确的是A :φ={0}B :φ⊆{0}C :φ⊇{0}D :φ∈{0}解析:B例7:设A ={x |2m -1<x <m +3};B ={x ∈R |x 2+1=0}问m 为何值时能使得A =B..解析1显然B =φ;欲使A =B;必须且只需A =φ即可..由于2m -1≥m +3可得m ≥4;此时A ={x |2m -1<x <m +3}=φ.综上可知;当m ≥4时;A =B例8:已知集合A ={x |x 2+x -2=0};B ={x |x -a =0};若B ⊆A;则a =_______________..解析易求A ={-2;1};B ={1}或{-2}当B ={1};a =1;B ={-2};a =-2综上:a =1或a =-2变式练习1:已知集合A ={x |x 2-8x +15=0};B ={x |a x -1=0};若B ⊆A;则a =_______________..解析:0或31或51例9:设集合A ={x |)4)(1(-+x x ≤0};B ={x |x ≤a };若A ⊆B ;则a 的取值范围是__________..解析:a ≥4变式练习1:已知集合A ={x |-3≤x ≤5};若集合B ={x |-2m -1≤x ≤m +1};若A ⊆B ;则求m 的取值范围..解析-2m -1≤-3<5≤m +1;即⎩⎨⎧-≤--≥+31251m m m ≥4 变式练习2:集合A ={x |-2≤x ≤5};B ={x |m +1≤x ≤2m -1};若B ⊆A;则求m 的取值范围..解析:1若B =φ;即m +1>2m -1时;即m <2;2若B ≠φ;则m 满足⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m 解之得2≤m ≤3;综上所述;m ≤3变式练习2:已知函数fx =b ax x ++2a 、b ∈R;且集合A ={x |x =fx};B ={x |x =ffx};1求证:A ⊆B ;2当A ={-1;3}时;用列举法表示B..解析:1任取x ∈A;则有x =fx;则ffx =fx =x;故x ∈B;故A ⊆B ;2∵A ={-1;3};故⎩⎨⎧++=+-=-b a b a 39311得⎩⎨⎧-=-=31b a ;故fx =32--x x ; ∴ffx =3)3()3(222------x x x x ;故3)3()3(222------x x x x =x0)3(222=---x x x ;∴x =3;x =-1;x =3±;故B ={-1;3;3;3-}课后综合练习1、下列关系中正确的个数为 ①0∈{0};②φ{0};③{0;1}⊆{0;1};④{a ;b }={b ;a }A :1B :2C :3D :4解析:B2、下列图形中;表示M ⊆N 的是解析:C 3、设a 、b ∈R;集合{1;a +b ;a }={0;a b ;b };则b -a = A :1B :-1C :2D :-2解析:C4、设集合A ={x ︱x =k 21+41;k ∈Z};若x =29;则下列关系正确的是 A :x ∉AB :x ∈AC .{x}∈AD .{x}∉A解析:A5、用适当的符号填空:1φ______{x |x 2-1=0};2{1;2;3}________N ;3{1}_________{x |x 2-x =0};40________{x |x 2-2x =0}解析:∈6、已知集合A ={x |1≤x <4};B ={x |x <a };若A B;求实数a 的取值范围________..解析:a ≥47、已知A ={x |x 2-3x +2=0};B ={x |a x -2=0}且B ⊆A;则实数a 组成的集合C 是________..解析:{0;2;1}8、写出集合A ={x |0≤x <3;x ∈N +}的真子集..解析:3个9、已知M ={x |-2≤x ≤5};N ={x |a +1≤x ≤2a -1}..1若M ⊆N;求实数a 的取值范围..2若M ⊇N;求实数a 的取值范围..解析:1φ2a ≤310、若集合A ={x |a ≤x ≤a +2};B ={x |x ≤1};若A ⊆B;则a 的取值范围为_____..解析:a ≤-111、已知集合A ={x |24x y -=};B ={x |a ≤x ≤a +1};B ⊆A;则a 的取值范围为_____..解析:-1≤a ≤2MN AM N B N M C M N D12、已知集合A ={y |x y 23-=;x ∈-213;23};B ={x |1-m ≤x ≤m +1};若B ⊆A;则m 的取值范围为_____..解析:A ={y |x y 23-=;x ∈-213;23}=0;4m ≤1。
1.1.2集合间的基本关系

任何一个元素都是集合B中的元素,我们就说这两个集 合有包含关系。称集合A为集合B的子集(subset)。 记作合是它本身的子集,即A A
结论2 若集合中的元素有n个,其子集个数 为2n,真子集个数为2n-1,非空真子 集个数为2n-2。
试一试
判断下列2个集合之间的关系
(1) A={1,2,4} B={X|X是8的约数}
(2) A={X|X=3k,k∊Z} B={X|X=6k,k∊Z} (3) A={X|X是4与10的公倍数,X∊N+} B={X|X=20m,m∊N+}
读作:“A含于B”(或B 包含A) 数学语言表示形式:
若对任意x∊A,有x ∊B,则 A⊆B。
A⊆B的图形语言
你能用图形形象地表示A⊆B?
用平面上封闭 的曲线的内部 代表集合,这 图叫Venn图
B
A
韦恩图
判断集合A是否为集合B的子集,若是则在 ( )打√,若不是则在( )打×: ①A={1,3,5}, B={1,2,3,4,5,6} ( ②A={1,3,5}, B={1,3,6,9} ③A={0}, B={x x2+2=0} ( ) )
把不含有任何元素的集合叫做空集(empty set)
记作∅。
规定:空集是任何集合的子集.
即对任何集合A, 都有: A
思考
{0} 与∅有什么区别?
写出集合{a,b}的所有子集,并指出哪些 是它的真子集。
1.1.2集合间的基本关系

目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
故事记忆法小妙招
费曼学习法
费曼学习法-简介
理查德·菲利普斯·费曼 (Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解, 这也是这个学习法命名的由来!
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
硬背“在复合句中,修饰某一名词或代词的从句叫做定语从句”这个概念。
3.这个步骤可以使用思维导图或流程图,可以更好加深自己的理解哦~
1.1.2集合间的基本关系

课堂练习
设集合A={x|1≤x≤3} B={x|xA={x|1≤x≤3}, 1 设集合A={x|1≤x≤3},B={x|x-a≥0} 的真子集,求实数a的取值范围。 若A是B的真子集,求实数a的取值范围。 A={1,2},B={x|x⊆A}, 2 设A={1,2},B={x|x⊆A},问A与B有什 么关系?并用列举法写出B 么关系?并用列举法写出B?
3.已知A = { x | −2 ≤ x ≤ 5}, B = { x | a + 1 ≤ x ≤ 2a − 1}, B ⊆ A, 求实数a的取值范围.
∵ 解: ∅ ⊆ A, 当B = ∅,有a + 1 > 2a − 1, 即a < 2 ∴ 2 a − 1 ≥ a + 1 当B ≠ ∅时,有a + 1 ≥ -2 2 a − 1 ≤ 5 ∴2 ≤ a ≤ 3 综上所述,a的取值范围a ≤ 3.
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
5.反馈演练 5.反馈演练
1、下列命题: 空集没有子集; 任何集合至少有两个 (1) (2) 子休; 空集是任何集合的真子集; 若∅ ⊂ A,则A ≠ (3) (4) ∅.其中正确的有( A.0个 ) D.3个 B.1个 C.2个
y-3 2.设x, y ∈ R,A = {(x, y) | y - 3 = x - 2}, B = {(x, y) | = 1}, x-2 则A,B的关系是______.
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一 班女生的全体组成的集合 为新华中学高一(2)班女生的全体组成的集合 为新华中学高一 班女生的全体组成的集合, B为这个班学生的全体组成的集合 为这个班学生的全体组成的集合; 为这个班学生的全体组成的集合 是两条边相等的三角形}, ⑶ 设C={x|x是两条边相等的三角形 ,D={x|x是 = 是两条边相等的三角形 是 等腰三角形}. 等腰三角形
1.1.2集合间的基本关系附答案教师版

1.1.2集合间的基本关系一、单选题1.集合A={x∈N|-1<x<4}的真子集个数为()A.8B.15C.16D.17【答案】B【解析】【解答】由题意,集合={∈U−1<<4}={0,1,2,3},所以集合的真子集的个数为24−1=15个.故答案为:B.【分析】求得集合={0,1,2,3},根据集合真子集个数的计算方法,即可求解. 2.设,∈,集合={1,+s V,={0,,V,若=,则−=()A.2B.−1C.1D.−2【答案】A【解析】【解答】由已知,≠0,故+=0,则=−1,所以=−1,=1.故答案为:A【分析】由已知集合相等=列式,得到=−1,=1,即可求出b-a的值.3.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9【答案】C【解析】【解答】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.【分析】依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.4.若集合={∈b−1<<2},则A的真子集个数为()A.1B.2C.3D.4【答案】C【解析】【解答】因为集合={∈b−1<<2},所有集合={0,1},所以A的真子集个数为:22−2=3。
故答案为:C【分析】利用集合A的定义求出集合A,再利用真子集的定义,从而求出集合A的真子集的个数。
5.下列各组两个集合A和B表示同一集合的是()A.={V,={3.141 59}B.={2,3},={(2,3)}C.={1,3,V,={s1,|−3|}D.={U−1<≤1,∈V,={1}【答案】C【解析】【解答】A选项中集合A中的元素为无理数,而B中的元素为有理数,故≠HB选项中集合A中的元素为实数,而B中的元素为有序数对,故≠HD选项中集合A中的元素为0,1,而B中的元素为1,故≠.故答案为:C.【分析】两个集合相等,必须是两个集合的元素完全相同才行,观察各选项中两个集合的元素是不是完全相同得到正确选项.6.已知集合={∈∗|0≤<2},则集合的子集的个数为()A.2B.3C.4D.8【答案】A【解析】【解答】={∈∗|0≤<2}={1},则集合的子集的个数为2.故选:A.【分析】根据已知条件,求出={1},再根据子集的含义得出答案.7.已知集合P={-1,0,1,2},Q={-1,0,1},则()A.B.C.D.【答案】C【解析】【解答】集合P={-1,0,1,2},Q={-1,0,1},可知集合Q中的元素都在集合P中,所以Q⊆P.【分析】根据P和Q中的元素,判断两集合的关系即可.8.下列各组中的两个集合和表示同一集合的是()A.={V,={3.1415926}B.={0,1},={(0,1)}C.={∈U2=1},={0,1}D.={∈∗|−1<≤1},={1}【答案】D【解析】【解答】A选项,集合中元素为无理数,中元素为有理数,故≠;B选项,集合中元素为实数,中元素为有序数对,故≠;C选项,集合中元素为-1,1,中元素为0,1,故≠.故答案为:D.【分析】两个集合是同一集合必须所有元素完全相同才行.9.已知集合A={x∈Z|x2+x-2<0},则集合A的一个真子集为()A.{x|-2<x<0}B.{x|0<x<2}C.{0}D.{Ø}【答案】C【解析】【解答】解不等式得-2<x<1因为x∈Z所以x=-1,0所以集合A的真子集为,{−1},{0},{−1,0}故答案为:C【分析】计算出集合A,结合子集的写法,即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合相等 示例2:
A={ x|x是两边相等的三角形}, B={ x|x是等腰三角形},
若AB,BA,则A=B.
课堂练习
练习1:观察下列各组集合,并指明两个
集合的关系
① A=Z ,B=N;
BA
② A={长方形}, B={平行四边形};
AB
③ A={x|x2-3x+2=0},
B={1,2}.
A=B
基本概念
3.真子集 示例3:A={1, 2, 7},B={1, 2, 3, 7},
如果AB,但存在元素x∈B,且 x A,称A是B的真子集.
记作:A B(或者B A)
课堂练习
练习2:
子集的传递性
基本概念:
任何一个集合是它本身的子集,即 A A; 对于集合A,B,C,如果A B,A B且 B C,那么A C .
1.1.2集合间的基本关系
平凉一中:黄丽霞
新课引入
思考:实数有相等关系,大小关系,如5=5,
5<7,5>3,等等.类比实数之间的关系,集合 之间是否具备类似的关系? 示例1:观察下面三个集合, 找出它们之 间的关系:
A={1,2,3} B={1,2,7}
C={1,2,3,4,5}
新课引入
观察下面三个集合, 你能发现两个集合间 的关系吗?
一般地,集合A含有n个元素, 则A的子集共有2n个,A的真子集 共有2n-1个.
典型例题
例2在以下六个写法中
①{0}∈{0,1} ②{0} ③{0,-1,1}{-1,0,1}
④{1, 2} {1},{2} ,{1, 2}
⑤{} ⑥{(0,0)}={0}.
错误个数为
( A)
A.3个 B.4个 C.5个 D.6个
课堂小结
子集:AB任意x∈Ax∈B.
真子集:AB x∈A,x∈B,但存在
x0∈A且x0A. 集合相等:A=BAB且BA. 空集:.
性质:②①AAA.,若③AA非B空,,B则CAA. C.
课堂练习
1.教科书7面练习第2、3题 2.教科书12面习题1.1第5题
基本概念
4.空 集 示例4:考察下列集合,并指出集合中的 元素是什么? A={x| x2+1=0,x∈R}.
不含任何元素的集合为空集,记作.
规定:空集是任何集合的子集,空集 是任何非空集合的真子集.
典型例题
例1:(1)写出集合{a,b}的所有子集; (2)写出所有{a,b,c}的所有子集; (3)写出所有{a,b,c,d}的所有子集.
(1)A={1,2,3} B={1,2,3,4,5}
(2)设A为平凉一中高一(?)班全 体女生组成的集合,B为这个班全体学 生组成的集合;
基本概念
1.子 集
一般地,对于两个集合,如果A中 任意一个元素都是B的元素,称集合A 是集合B的子集,记作AB.读作“A包 含于B”或“B包含A”.这时说集合A是集 合B的子集.