梯形中常见的辅助线2
8下梯形中常见辅助线

8下梯形中常见辅助线本文将介绍在8下梯形中常见的辅助线。
平行线在8下梯形中,常见的辅助线是平行线。
平行线是指在同一个平面内,永远不会相交的两条直线。
在梯形中,有以下两组平行线:- 上底和下底:上底和下底是平行的,它们在梯形的上下方分别连接两侧的顶点。
- 两斜边:两斜边是平行的,它们在梯形的两侧连接两个顶点。
这些平行线有助于我们在解答梯形相关的问题时,理解各线段之间的关系,并推导出有用的结论。
等腰梯形的辅助线等腰梯形是指具有两条等长边的梯形。
在等腰梯形中,常见的辅助线是中线。
中线是连接梯形的两个上底顶点与两个下底顶点的线段。
中线满足以下特点:- 中线与上底、下底平行。
- 中线的长度等于上底和下底长度之和的一半。
通过画出中线,我们可以将等腰梯形分成两个等腰三角形。
这样可以帮助我们推导出等腰梯形的性质和解决相关问题。
高线高线是指从梯形的一个顶点到与底边平行的另一条边上的垂直线段。
在梯形中,通过画出高线,我们可以将梯形分割成两个直角三角形。
高线满足以下特点:- 高线与底边垂直。
- 高线与另一条边上的线段平行。
通过计算和利用等腰三角形的性质,我们可以利用高线解决梯形相关的问题。
总结在8下梯形中,常见的辅助线包括平行线、中线和高线。
这些辅助线有助于我们理解梯形各线段之间的关系,并且可以帮助我们解决相关的问题。
在解题时,我们应合理利用这些辅助线,推导出有用的结论和解决方案。
请注意,在实际问题中,可能存在其他类型的辅助线,具体问题具体分析。
中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形:1.作底边上的高,构成两个全等的直角三角形2.作一腰上的高; 3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1.垂直于平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.作对角线——把一个平行四边形分成两个三角形3.做高——形内形外都要注意矩形1.对角线2.作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
全等梯形问题中常见的8种辅助线的作法(有答案解析)

全等梯形问题中常见的8种辅助线的作法(有答案解析)梯形是一种四边形,其中两条边是平行而另外两条边不平行。
在解决全等梯形问题时,我们可以使用一些辅助线的方法来简化问题并找到解答。
以下是常见的8种辅助线的作法,每种方法都附有答案解析。
1. 垂直辅助线法:垂直辅助线法是最基本的辅助线作法之一,它通过引入垂直辅助线来将梯形划分为上下两个小三角形或小梯形,并利用全等三角形的性质来解题。
2. 高度辅助线法:高度辅助线法通过引入高度辅助线来找到梯形的高,并利用相似三角形的性质来解题。
3. 中位线辅助线法:中位线辅助线法通过引入中位线辅助线来将梯形划分为两个全等的平行四边形,并利用平行四边形的性质来解题。
4. 对角线辅助线法:对角线辅助线法通过引入对角线辅助线来将梯形划分为两个全等的三角形,并利用全等三角形的性质来解题。
5. 平行边辅助线法:平行边辅助线法通过引入平行边辅助线来将梯形划分为两个全等的梯形,并利用梯形的性质来解题。
6. 外接圆辅助线法:外接圆辅助线法通过引入外接圆辅助线来找到梯形的外接圆,并利用外接圆的性质来解题。
7. 中心对称辅助线法:中心对称辅助线法通过引入中心对称辅助线来将梯形划分为两个全等的三角形,并利用全等三角形的性质来解题。
8. 连接线辅助线法:连接线辅助线法通过引入连接线辅助线来划分梯形并利用形成的图形的性质来解题。
这些辅助线的作法可以帮助我们在解决全等梯形问题时更简单而有条理地进行推导和解答。
通过灵活运用这些方法,我们可以提高解决问题的效率和准确性。
请注意:本文档中的答案解析仅供参考,具体解答的正确性应根据实际情况进行确认。
梯形中添加辅助线的六种常用技巧

梯形中添加辅助线的六种常用技巧Prepared on 22 November 2020梯形中添加辅助线的六种常用技巧浙江唐伟锋梯形是不同于平行四边形的一类特殊四边形,解决梯形问题的基本思路是通过添加辅助线,将梯形进行割补、拼接转化为三角形、平行四边形问题进行解决。
一般而言,梯形中添加辅助线的常用技巧主要有以下几种——一、平移一腰从梯形的一个顶点作一腰的平行线,将梯形转化为平行四边形和三角形,从而利用平行四边形的性质,将分散的条件集中到三角形中去,使问题顺利得解。
例1、如图①,梯形ABCD中AD∥BC,AD=2cm,BC=7cm,AB=4cm,求CD的取值范围。
解:过点D作DE∥AB交BC于E,∵AD∥BC,DE∥AB∴四边形ABED是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=AB=4cm,BE=AD=2cm∴EC=BC-BE=7-2=5cm在△DEC中,EC-DE<CD<EC+DE(三角形两边之和大于第三边,两边之差小于第三边)∴1cm<CD<9cm。
二、延长两腰将梯形的两腰延长,使之交于一点,把梯形转化为大、小两个三角形,从而利用特殊三角形的有关性质解决梯形问题。
例2、如图②,已知梯形ABCD中,AD∥BC,∠B=∠C,求证:梯形ABCD是等腰梯形。
证明:延长BA、CD,使它们交于E点,∵AD∥BC∴∠EAD=∠B,∠EDA=∠C(两直线平行,同位角相等)又∵B=∠C∴∠EAD=∠EDA∴EA=ED,EB=EC(等角对等边)∴AB=DC∴梯形ABCD是等腰梯形(两腰相等的梯形是等腰梯形)。
三、平移对角线从梯形上底的一个顶点向梯形外作一对角线的平行线,与下底延长线相交构成平行四边形和一特殊三角形(直角三角形、等腰三角形等)。
例3、如图③,已知梯形ABCD中,AD=1.5cm,B C=3.5cm,对角线AC⊥BD,且BD=3cm,AC=4cm,求梯形ABCD的面积。
解:过点D作DE∥AC交BC延长线于E∵AD∥BC,DE∥AC∴四边形ACED是平行四边形(两组对边分别平行的四边形是平行四边形)∴CE=AD=1.5cm,DE=AC=4cm∵AC ⊥BD∴DE ⊥BD∴S 梯形ABCD =111()()222AD BC h CE BC h BE h +⨯=+⨯=⨯(h 为梯形的高) 211346cm 22BD DE =⨯=⨯⨯= 。
初中几何辅助线大全(潜心整理)

初中几何辅助线口诀三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线作辅助线的方法一、中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二、垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三、边边若相等,旋转做实验。
梯形中常见的辅助线

梯形中的常见辅助线一、平移1、平移一腰:例1.如图所示,在直角梯形ABCD中,/ A = 90° AB // DC, AD = 15, AB = 16, BC = 17.求CD的长.例2如图,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:例3 如图,在梯形ABCD 中,AD//BC,/ B + Z C=90° , AD=1 , BC=3 , E、F 分别是AD、BC 的中点,连接EF,求EF的长。
3、平移对角线:例4、已知:梯形ABCD 中,AD//BC , AD=1 , BC=4 , BD=3 , AC=4,求梯形ABCD 的面积.例5 如图,在等腰梯形ABCD 中,AD//BC , AD=3 , BC=7 , BD= 5 - 2,求证:AC 丄BD。
例6如图,在梯形ABCD 中,AD//BC , AC=15cm , BD=20cm,高DH=12cm,求梯形ABCD 的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
例7如图,在梯形ABCD 中,AD//BC,/ B=50 °,/ C=80 ° , AD=2 , BC=5,求CD 的长。
例8.如图所示,四边形ABCD中,AD不平行于BC, AC = BD , AD = BC.判断四边形ABCD的形状,并证明你的结论三、作对角线即通过作对角线,使梯形转化为三角形。
例9如图6,在直角梯形ABCD中,AD//BC ,AB 丄AD , BC=CD , BE 丄CD 于点E,求证:四、作梯形的高1、作一条高例10如图,在直角梯形ABCD中,AB//DC,/ ABC=90 ° , AB=2DC,对角线AC丄BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
2、作两条高例11、在等腰梯形ABCD 中,AD//BC , AB=CD,/ ABC=60 ° , AD=3cm , BC=5cm ,AD=DE 。
梯形的常用辅助线

梯形的常用辅助线一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1],梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2],在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,连接EF,求EF的长。
3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
[例3]如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=25,求证:AC⊥BD。
变式训练1.已知等腰梯形ABCD的两条对角线AC ,BD互相垂直,上底AD=11,下底BC=19,求梯形ABCD的面积2.在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
[例3]在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
三、作梯形的高作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形。
[例4]在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE 是等腰梯形。
C第9题图跟踪练习1等腰梯形的上底、下底、高之比为1∶3∶1,则下底角的度数是( ) A 30° B 45° C 60° D 75°2.在梯形ABCD 中,AD ∥BC ,∠B =90°,∠C =45°,CD =10 cm ,BC =2AD ,则梯形的面积为_______.3.梯形的上底长为5 cm ,将一腰平移到上底的另一端点位置后与另一腰和下底所构成的三角形的周长为20 cm ,那么梯形的周长为_______.4直角梯形的斜腰长为12cm ,这条腰和一底所成的角为30°,则另一腰是________5如图4-84,ABCD 是一梯形,DC AB //,AB =5,23=BC ,︒=∠45BCD ,︒=∠60CDA ,DC 的长度是()A .338+B .8C .219 D .38+6 如图,梯形ABCD 中,AD ∥BC ,AB=CD ,AC ⊥BD 于点O ,∠BAC=60°,若,则此梯形的面积为( )A .2 B.1C.27.梯形ABCD中,AD ∥BC ,AB=CD=AD=1,∠B=60°,直线MN 为梯形ABCD 的对称轴,P 为MN上一点,那么PC+PD 的最小值为8 如图2,等腰等形ABCD 中,AD ∥BC ,AD=5, ∠B=60°,BC=8, 且AB ∥DE ,(1)求ΔDEC 的周长和面积 (2)求梯形的面积9已知:如图,在梯形ABCD 中,AD ∥BC ,AD=2,BD=6,AC=BC=8。
初中数学须掌握的几何辅助线技巧

初中数学必须掌握的几何辅助线技巧01几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添角平分线加垂线,三线合一试试看线段垂直平分线,常向两端把线连线段和差及倍半,延长缩短可试验线段和差不等式,移到同一三角去三角形中两中点,连接则成中位线三角形中有中线,倍长中线得全等四边形平行四边形出现,对称中心等分点梯形问题巧转换,变为三角或平四平移腰,移对角,两腰延长作出高如果出现腰中点,细心连上中位线上述方法不奏效,过腰中点全等造证相似,比线段,添线平行成习惯等积式子比例换,寻找线段很关键直接证明有困难,等量代换少麻烦斜边上面作高线,比例中项一大片圆形半径与弦长计算,弦心距来中间站圆上若有一切线,切点圆心半径连切线长度的计算,勾股定理最方便要想证明是切线,半径垂线仔细辨是直径,成半圆,想成直角径连弦弧有中点圆心连,垂径定理要记全圆周角边两条弦,直径和弦端点连弦切角边切线弦,同弧对角等找完要想作个外接圆,各边作出中垂线还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦内外相切的两圆,经过切点公切线若是添上连心线,切点肯定在上面要作等角添个圆,证明题目少困难02由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等如图,已知AB>AD,∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180°。
分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90°,BD为∠ABC的平分线,CE⊥BE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梯形中的常见辅助线
一、平移
1、平移一腰:
例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17. 求CD 的长.
例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。
2、平移两腰:
例3如图,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。
3、平移对角线:
例4、已知:梯形ABCD 中,AD//BC ,AD=1,BC=4,BD=3,AC=4,求梯形ABCD 的面积.
A
B
C
D
例5如图,在等腰梯形ABCD 中,AD//BC ,AD=3,BC=7,BD=2
5
,求证:AC ⊥BD 。
例6如图,在梯形ABCD 中,AD//BC ,AC=15cm ,BD=20cm ,高DH=12cm ,求梯形ABCD 的面积。
二、延长
即延长两腰相交于一点,可使梯形转化为三角形。
例7如图,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。
例8. 如图所示,四边形ABCD 中,AD 不平行于BC ,AC =BD ,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.
三、作对角线
即通过作对角线,使梯形转化为三角形。
例9如图6,在直角梯形ABCD 中,AD//BC ,AB ⊥AD ,BC=CD ,BE ⊥CD 于点E ,求证:AD=DE 。
A
B
C
D
四、作梯形的高
1、作一条高
例10如图,在直角梯形ABCD 中,AB//DC ,∠ABC=90°,AB=2DC ,对角线AC ⊥BD ,垂足为F ,过点F 作EF//AB ,交AD 于点E ,求证:四边形ABFE 是等腰梯形。
2、作两条高
例11、在等腰梯形ABCD 中,AD//BC ,AB=CD ,∠ABC=60°,AD=3cm ,BC=5cm , 求:(1)腰AB 的长;(2)梯形ABCD 的面积.
例12如图,在梯形ABCD 中,AD 为上底,AB>CD ,求证:BD>AC 。
A
B
C
D
E
F
五、作中位线
1、已知梯形一腰中点,作梯形的中位线。
例13如图,在梯形ABCD 中,AB//DC ,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD 。
2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线。
例14如图,在梯形ABCD 中,AD//BC ,E 、F 分别是BD 、AC 的中点,求证:(1)EF//AD ;(2))(2
1AD BC EF -=。
3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。
例15、在梯形ABCD 中,AD ∥BC , ∠BAD=900
,E 是DC 上的中点,连接AE 和BE ,求∠AEB=2∠
例16、已知:如图,在梯形ABCD 中,AD//BC ,AB ⊥BC ,E 是CD 中点,试问:线段AE 和BE 之间有怎样的大小关系?
A
B D
C
E
F
例17、已知:梯形ABCD中,AD//BC,E为DC中点,EF⊥AB于F点,AB=3cm,EF=5cm,求梯形ABCD的面积.
【模拟试题】(答题时间:40分钟)
1. 若等腰梯形的锐角是60°,它的两底分别为11cm,35cm,则它的腰长为__________cm.
2. 如图所示,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,则此等腰梯形的周长为()
A. 19
B. 20
C. 21
D. 22
D
A
B C
**3. 如图所示,AB∥CD,AE⊥DC,AE=12,BD=20,AC=15,则梯形ABCD的面积为()
A. 130
B. 140
C. 150
D. 160
A B
C
D
E
*4. 如图所示,在等腰梯形ABCD中,已知AD∥BC,对角线AC与BD互相垂直,且AD=30,BC=70,求BD的长.
D
A
B C
5. 如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm和49cm,求它的腰长.
A
D
B C
6. 如图所示,已知等腰梯形ABCD中,AD∥BC,AC⊥BD,AD+BC=10,DE⊥BC于E,求DE的长.
D
A
B C
E
7. 如图所示,梯形ABCD 中,AB ∥CD ,∠D =2∠B ,AD +DC =8,求AB 的长.
A
B
C
D
8. 如图所示,梯形ABCD 中,AD ∥BC ,(1)若E 是AB 的中点,且AD +BC =CD ,则DE 与CE 有何位置关系?(2)E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系?
A
B C
D
E。