初二上梯形辅助线专题训练(非常经典)

合集下载

八年级数学梯形中常见辅助线

八年级数学梯形中常见辅助线

ABCD的面积.
A
D
BE
FC
作梯形的高,梯形转化成:长方形和 直角三角形.
⒊如图,在梯形ABCD中,AD∥BC,E是DC 的中点,EF⊥AB于点F.
求证:S梯形ABCD=AB×EF.
AD F
E
B
CG
平移底,梯形转化成:三角形.
⒋如图,等腰梯形ABCD中,AD∥BC,
AC⊥BD, AD+BC=10,DE⊥BC于E,求DE
的长.
A
D
B
E CF
平移对角线,将梯形转化成:
平行四边形、三角形.
2.在梯形ABCD中,AB∥DC,AD=BC,
AB=1,DC=5,AC⊥BD,BE⊥CD,则
梯形的面积=

AB
D
CF
E
3.如图,在梯形ABCD中,AD∥BC,E、F 分别是AD、BC的中点,∠B+∠C= 90°, 请说明EF= (BC-A1D).
梯形中常见辅助线
例题精讲
1.如图,在梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,
求证:CD=BC-AD.

CB
F
C
延长两腰,将梯形转化成三角形.
A
D
B
F
C
平移一腰,梯形转化成:平行四边形和 三角形.
2.如图,在梯形ABCD中,AD∥BC,
AB=DC=AD=5,BC=11;求梯形
2
AE D
BG
F
HC
教学反思:
你能总结梯形中常见辅助线吗?
;led防爆灯的量 防爆手电筒的量 / led防爆灯的量 防爆手电筒的量 ;
异能,最终还是忍住不问.因为亭飞正在一边冷眼旁观,她那天の话犹历历在目.“不用谢,”陆

初二数学辅助线题大全

初二数学辅助线题大全

10 道初二数学辅助线题题目一已知在三角形ABC 中,AB = AC,D 是BC 中点,求证:AD⊥BC。

解析:连接AD,因为AB = AC,D 是BC 中点,根据等腰三角形三线合一的性质,可知AD⊥BC。

题目二在平行四边形ABCD 中,E 是AB 中点,F 是CD 中点,连接EF,求证:EF 平行且等于AD 的一半。

解析:连接AF、EC,因为四边形ABCD 是平行四边形,所以AB⊥CD,AB = CD。

又因为E 是AB 中点,F 是CD 中点,所以AE = CF。

可得四边形AECF 是平行四边形,所以EF⊥AC,EF = AC 的一半。

又因为平行四边形ABCD 中,AD = BC,AC = 2AO(O 为对角线交点),所以EF 平行且等于AD 的一半。

题目三在三角形ABC 中,⊥A = 90°,AB = AC,D 是BC 中点,连接AD,E、F 分别是AB、AC 上的点,且BE = AF,求证:ED⊥DF。

解析:连接AD,因为AB = AC,⊥A = 90°,D 是BC 中点,所以AD = BD = CD,且AD⊥BC,⊥BAD = ⊥CAD = 45°。

可证⊥BDE⊥⊥ADF(SAS),所以⊥BDE = ⊥ADF,又因为⊥ADB = 90°,所以⊥EDF = 90°,即ED⊥DF。

题目四在梯形ABCD 中,AB⊥CD,⊥A + ⊥B = 90°,E、F 分别是AB、CD 的中点,求证:EF = (AB - CD) / 2。

解析:延长AD、BC 交于点G,因为AB⊥CD,所以⊥GDC = ⊥A,⊥GCD = ⊥B。

又因为⊥A + ⊥B = 90°,所以⊥G = 90°。

因为E、F 分别是AB、CD 的中点,所以EF 是梯形ABCD 的中位线,所以EF = (AB + CD) / 2。

在直角三角形GDC 和直角三角形GAB 中,F、E 分别是斜边CD、AB 的中点,所以GF = CD/2,GE = AB/2。

《梯形》辅助线专题训练

《梯形》辅助线专题训练

《梯形》辅助线专题训练通常情况下,通过做辅助线,把梯形转化为三角形、平行四边形,是解决梯形问题的基本思路。

至于选取哪种方法,要结合题目图形和已知条件。

常见的几种辅助线的作法如下:作法图形平移腰,转化为三角形、平行四边形。

ABCD E平移对角线,转化为三角形、平行四边形。

ABCDE延长两腰,转化为三角形。

ABCD E作高,转化为直角三角形和矩形。

ABCD EF中位线与腰中点连线。

ABCD EF一、平移1、平移一腰例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17. 求CD 的长。

解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD ,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2.梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。

解:过点B 作BM//AD 交CD 于点M ,在△BCM 中,BM=AD=4, CM=CD -DM=CD -AB=8-3=5,所以BC 的取值范围是:5-4<BC<5+4,即1<BC<9。

2、平移两腰例3.如图,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。

ABCDABCD E解:过点E 分别作AB 、CD 的平行线,交BC 于点G 、H ,可得∠EGH +∠EHG=∠B +∠C=90° 则△EGH 是直角三角形因为E 、F 分别是AD 、BC 的中点,容易证得F 是GH 的中点所以)(2121CH BG BC GH EF --==1)13(21)(21)]([21)(21=-=-=+-=--=AD BC DE AE BC DE AE BC3、平移对角线例4.已知:梯形ABCD 中,AD//BC ,AD=1,BC=4,BD=3,AC=4,求梯形ABCD 的面积。

梯形辅助线专题训练 (1)

梯形辅助线专题训练 (1)

梯形辅助线专题训练 (1)梯形辅助线专题训练题(5.1作业)班级姓名常见的梯形辅助线规律口诀为:梯形问题巧转化,变为△和□;要想尽快解决好,添加辅助线最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为□和△.基本图形如下:课后练习:1、如图,已知在梯形ABCD 中,AB ∥DC ,∠D=60°,∠C=45°,AB=2,AD=4,求梯形ABCD 的面积.2、在梯形ABCD 中,AD//BC ,AB=DC=AD=2, BC=4,求∠B 的度数及AC 的长。

3、已知等腰梯形ABCD 中,AD ∥BC ,∠B =60°,AD =2,BC =8,求等腰梯形的周长。

A BCD4、 如图所示,AB ∥CD ,AE ⊥DC ,AE =12,BD =20,AC =15,求梯形ABCD 的面积。

5、 在等腰梯形ABCD 中,已知AD ∥BC ,对角线AC 与BD 互相垂直,且AD =30,BC =70,求BD 的长. 6、 已知等腰梯形的锐角等于60°,它的两底分别为15cm 和49cm ,求它的腰长.7、 已知等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD +BC =10,DE ⊥BC 于E ,求DE 的长.8、已知:如图,梯形ABCD 中,AD ∥BC ,AB=DC ,ABCDABCDB CA DE∠BAD 、∠CDA 的平分线AE 、DF 分别交直线BC 于点E 、F .求证: CE=BF .9、如图,在梯形ABCD 中,AD BC ∥,9038BD CD BDC AD BC =∠===,°,,.求AB的长.10、如图6,在梯形ABCD 中,AD BC ∥,90A ∠=︒,︒=∠45C ,DE=EC ,AB=4,AD=2,求BE 的长.ABCDE11、已知:如图,梯形ABCD 中,DC ∥AB ,AD=BC ,对角线AC 、BD 交于点O ,∠COD=60°,若CD=3,AB=8,求梯形ABCD 的高.12、已知如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,△APD 中边AP 上的高为 .13、如图,在四边形ABCD 中,AC 平分∠BAD ,10CD B C ==,21AB =,9AD =.求AC 的长.BC DOA12题特殊四边形补充题:1.如图,将边长为8㎝的正方形ABC D 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cm B .4cm C .5cm D .6cm2.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.43.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ).A .2 B .4π- C .π D .π1- 4.如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为( ) A .4x B .12x C .8xD .16xAB CQR MD5.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A 、3B 、2C 、3D 、326.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P , 使PD PE +的和最小,则这个最小值为( )A .23B .26C .3D .6 7.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N = (用含有n 的式子表示)8.如图,在菱形ABCD 中,72ADC ∠=,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则CPB ∠=________度.A DE PB C ADF9.矩形ABCD 中,对角线AC 、BD 交于点O ,AE BD ⊥于E ,若13OE ED =∶∶,3AE =,则BD = .10.如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.11.若正方形ABCD 的边长为4,E 为BC 边上一点,BE =3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF =AE ,则BM 的长为 .12.如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、 两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由; (2)当AB DC =时,求证:ABCD 是矩形.13.已知:如图,四边形ABCD 是菱形,过AB 的中点EF DCA BE MFD CABE MA D CF E B作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F .(1)求证:AM =DM ;(2)若DF =2,求菱形ABCD 的周长.14.如图所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD .(1)求证:四边形AFCD 是菱形;(2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?A DF CE G B15.在菱形ABCD 中,对角线AC 与BD 相交于点O ,56AB AC ==,.过点D 作DE AC ∥交BC 的延长线于点E.(1)求BDE △的周长;(2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q .求证:BP DQ =.16.在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x=上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图). (1)求边OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p值是否有变化?请证明你的结论.xA Q DEB PC O17.如图,直线l 的解析式为4y x =-+,它与x 轴、y 轴分别相交于A B 、两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方形以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M N 、两点,设运动时间为t 秒(04t <≤). (1)求A B 、两点的坐标;(2)用含t 的代数式表示MON △的面积1S ;(3)以MN 为对角线作矩形OMPN ,记MPN △和OAB △重合部分的面积为2S ,①当2t <≤4时,试探究2S 与t之间的函数关系式; ②在直线m 的运动过程中,当t 为何值时,2S 为OAB △面积的516?18.如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF= 90 ,使EF交矩形的外角平分线BF于点F,设C(m,n).(1)若m = n时,如图,求证:EF = AE;(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.(3)若m= tn(t>1)时,试探究点E在边OB的何tE的坐标.19.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)D第19题图③第19题图②D 第19题图①。

辅助线典型例题练习

辅助线典型例题练习
分析:本题要想从已知条件直接求出此三角形的面积确实有些困难,如果从题设∠BAC=45°,AD⊥BC出发,可以捕捉到利用轴对称性质构造一个正方形的信息,那么问题立即可以获解。
略解:
5.补成梯形
例9.如图9,已知:G是△ABC中BC边上的中线的中点,L是△ABC外的一条直线,自A、B、C、G向L作垂线,垂足分别为A1、B1、C1、G1。求证:GG1= (2AA1+BB1+CC1)。
分析:因为平行四边形的对角线互相平分,故要证结论,需考虑四边形GEHF是平行四边形。
略证:
2.补成矩形
例6.如图6,四边形ABCD中,∠A=60°,∠B=∠D=90°,AB=200m,CD=100m,求AD、BC的长。
分析:矩形具有许多特殊的性质,巧妙地构造矩形,可使问题转化为解直角三角形,于是一些四边形中较难的计算题不难获解。
分析:本题从已知条件可知,中点多、垂线多特点,联想到构造直角梯形来加以解决比较恰当,故过D作DD1⊥L于D1,则DD1既是梯形BB1C1C的中位线,又是梯形DD1A1A的一条底边,因而,可想到运用梯形中位线定理突破,使要证的结论明显地显示出来,从而使问题快速获证。
略证:
三、练习1、在△ABC中,AC=BC,D是AC上一点,且AE垂直BD的延长线于E,又AE= BD,求证:BE平分∠ABC。
略解:
4.补成等边三角形
例4.图4,△ABC是等边三角形,延长BC至D,延长BA至E,使AE=BD,连结CE、ED。
证明:EC=ED
分析:要证明EC=ED,通常要证∠ECD=∠EDC,但难以实现。这样可采用补形法即延长BD到F,使BF=BE,连结EF。
略证:
二、补成特殊的四边形
1.补成平行四边形
例5.如图5,四边形ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点,并且E、F、G、H不在同一条直线上,求证:EF和GH互相平分。

梯形中常见辅助线及例题

梯形中常见辅助线及例题

例谈梯形中的常用辅助线在解(证)有关梯形的问题时,常常要添作辅助线,把梯形问题转化为三角形或平行四边形问题。

本文举例谈谈梯形中的常用辅助线,以帮助同学们更好地理解和运用。

一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。

[例1]如图1,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。

2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。

[例2]如图2,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。

3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。

[例3]如图3,在等腰梯形ABCD 中,AD//BC ,AD=3,BC=7,BD=25,求证:AC ⊥BD 。

【变式1】(平移对角线)已知梯形ABCD 的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线长为_____________[例4]如图4,在梯形ABCD 中,AD//BC ,AC=15cm ,BD=20cm ,高DH=12cm ,求梯形ABCD 的面积。

二、延长即延长两腰相交于一点,可使梯形转化为三角形。

[例5]如图5,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。

【变式2】如图所示,四边形ABCD 中,AD 不平行于BC ,AC =BD ,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.【变式3】(延长两腰)如图,在梯形中,,,、为、的中点。

三、作对角线即通过作对角线,使梯形转化为三角形。

[例6]如图6,在直角梯形ABCD 中,AD//BC ,AB ⊥AD ,BC=CD ,BE ⊥CD 于点E ,求证:AD=DE 。

最新梯形中的常用辅助线总结与对应练习题

最新梯形中的常用辅助线总结与对应练习题

. 求证: 中,
. . 求证:梯

是等腰梯形 .
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。 [例 2]如图,在梯形 ABCD中, AB//CD,∠D+∠ C=90°,BC=1,AD=3,E、F 分别是 AB、CD的中点, 连接 EF,求 EF的长。
【变式】如图,在梯形
【变式 1】在等腰梯形 ABCD中, AD//BC,AD=3,BC=7,BD=5 2 ,求证: AC⊥ BD。
精品文档
精品文档
【变式 2】(平移对角线)已知梯形 ABCD的面积是 32,两底与高的和为 16,如果其中一条对角线与 两底垂直,则另一条对角线长为 _____________ [例 4]在梯形 ABCD中, AD//BC,AC=15cm,BD=20cm,高 DH=12cm,求梯形 ABCD的面积。
D
C
A
B
三、作对角线: 即通过作对角线,使梯形转化为三角形。
[例 6]在直角梯形 ABCD中, AD//BC,AB⊥ AD,BC=CD,BE⊥CD于点 E,求证: AD=D。E
四、作梯形的高 1、作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形。
精品文档
精品文档
[例 7]如图,在直角梯形 ABCD中, AB//DC,∠ ABC=9°0 , AB=2DC,对角线 AC⊥BD,垂足为 F,过 点 F 作 EF//AB,交 AD于点 E,求证:四边形 ABFE是等腰梯形。
中,

1 EF=2(CD-AB)
, 、 为 、 的中点。求证:
3、平移对角线:一般是过上底的一个端点作一条对角线的平行线 , 与另一底的延长线相交 , 得到一个 平行四边形和三角形 , 把梯形问题转化为平行四边形和三角形问题解决.

八年级数学梯形中常见辅助线

八年级数学梯形中常见辅助线
A D
B
E
C
F
平移对角线,将梯形转化成: 平行四边形、三角形.
2.在梯形ABCD中,AB∥DC,AD=BC, AB=1,DC=5,AC⊥BD,BE⊥CD,则 梯形的面积= .
A
B
D
E
C
F
3.如图,在梯形ABCD中,AD∥BC,E、F 分别是AD、BC的中点,∠B+∠C= 90°, 1 请说明EF= (BC-AD).
A
D
B
E
F
C
作梯形的高,梯形转化成:长方形和 直角三角形.
⒊如图,在梯形ABCD中,AD∥BC,E是DC 的中点,EF⊥AB于点F. 求证:S
梯形ABCD
=AB×EF.
A F 转化成:三角形.
⒋如图,等腰梯形ABCD中,AD∥BC, AC⊥BD, AD+BC=10,DE⊥BC于E,求DE 的长.
2
A B
E
D
C
G
F
H
教学反思:
你能总结梯形中常见辅助线吗?
;微商软件 / ;
糊の身影时,他の心头却突然再次响起了那诡异の声音.白重炙迷茫の四处一扫,却发现四周の人毫无异样.内心不禁震愕起来.这次他没有盘坐在山上,也没有进入入定状态,这声音却是就这样莫名响起…… 本书来自 聘熟 当前 第柒肆2章 没大没不咋大的 "咚,咚,咚!" 声音连绵不绝,响个不 停,频率比以前更快更欢乐了几分,并且听着非常清晰,非常の稳定,没有以往の飘渺,异常の欢乐,异常の亲热,宛如许久没见の亲人重逢一样. "俺叉,没想到离开了几个月,还有这效果?" 白重炙目瞪口呆,因为此刻他几多の清楚,这声音の源头在何方,并且他内心中有种莫名の感觉,此刻他绝对可 以几步登顶.因为声音の源头…就在那五
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梯形辅助线专题训练口诀:梯形问题巧转换,变为△和□。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

通常情况下,通过做辅助线,把梯形转化为三角形、平行四边形,是解梯形问题的基本思路。

至于选取哪种方法,要结合题目图形和已知条件。

常见的几种辅助线的作法如下:作法 图形平移腰,转化为三角形、平行四边形。

ABCDE平移对角线。

转化为三角形、平行四边形。

ABCDE延长两腰,转化为三角形。

ABCD E作高,转化为直角三角形和矩形。

ABCD E F中位线与腰中点连线。

ABCD EF(一)、平移1、平移一腰:例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC=17. 求CD 的长.解:过点D 作DE ∥BC 交AB 于点E. 又AB ∥CD ,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得 AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。

解:过点B 作BM//AD 交CD 于点M ,在△BCM 中,BM=AD=4, CM=CD -DM=CD -AB=8-3=5, 所以BC 的取值范围是: 5-4<BC<5+4,即1<BC<9。

2、平移两腰:例3如图,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。

解:过点E 分别作AB 、CD 的平行线,交BC 于点G 、H ,可得ABCDABCDE∠EGH+∠EHG=∠B+∠C=90°则△EGH是直角三角形因为E、F分别是AD、BC的中点,容易证得F是GH的中点所以)(2121CHBGBCGHEF--==1)13(21)(21)]([21)(21=-=-=+-=--=ADBCDEAEBCDEAEBC3、平移对角线:例4、已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形AB CD的面积.解:如图,作DE∥AC,交BC的延长线于E点.∵AD∥BC ∴四边形ACED是平行四边形∴BE=BC+CE=BC+AD=4+1=5,DE=AC=4∵在△DBE中, BD=3,DE=4,BE=5∴∠BDE=90°.作DH⊥BC于H,则512=⨯=BEEDBDDH6251252DHBC)(ADABCD=⨯=⨯+=∴梯形S.例5如图,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=25,求证:A C⊥BD。

解:过点C作BD的平行线交AD的延长线于点E,易得四边形BCED是平行四边形,则DE=BC,CE=BD=25,所以AE=AD+DE=AD+BC=3+7=10。

ABDC EH在等腰梯形ABCD 中,AC=BD=25,所以在△ACE 中,22222100)25()25(AE CE AC ==+=+,从而AC ⊥CE ,于是AC ⊥BD 。

例6如图,在梯形ABCD 中,AD//BC ,AC=15cm ,BD=20cm ,高DH=12cm ,求梯形ABCD 的面积。

解:过点D 作DE//AC ,交BC 的延长线于点E , 则四边形ACED 是平行四边形, 即DCE ACD ABD S S S ∆∆∆==。

所以DBEABCD S S ∆=梯形由勾股定理得2222DH AC DH DE EH -=-=9121522=-=(cm )1612202222=-=-=DH BD BH (cm ) 所以)(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆,即梯形ABCD 的面积是150cm 2。

(二)、延长即延长两腰相交于一点,可使梯形转化为三角形。

例7如图,在梯形ABCD 中,AD//BC ,∠B=50°,∠C=80°,AD=2,BC=5,求CD 的长。

解:延长BA 、CD 交于点E 。

在△BCE 中,∠B=50°,∠C=80°。

所以∠E=50°,从而BC=EC=5 同理可得AD=ED=2 所以CD=EC -ED=5-2=3例8. 如图所示,四边形ABCD 中,AD 不平行于BC ,AC =BD ,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形.证明:延长AD 、BC 相交于点E ,如图所示. ∵AC =BD ,AD =BC ,AB =BA , ∴△DAB ≌△CBA. ∴∠DAB =∠CBA.∴EA =EB.又AD =BC ,∴DE =CE ,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB ,∴DC ∥AB. 又AD 不平行于BC , ∴四边形ABCD 是等腰梯形.(三)、作对角线即通过作对角线,使梯形转化为三角形。

例9如图6,在直角梯形ABCD 中,AD//BC ,AB ⊥AD ,BC=CD ,BE ⊥CD 于点E ,求证:AD=DE 。

解:连结BD ,由AD//BC ,得∠ADB=∠DBE ;ABCDABCDE由BC=CD,得∠DBC=∠BDC。

所以∠ADB=∠BDE。

又∠BAD=∠DEB=90°,BD=BD,所以Rt△BAD≌Rt△BED,得AD=DE。

(四)、作梯形的高1、作一条高例10如图,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线A C⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。

证:过点D作DG⊥AB于点G,则易知四边形DGBC是矩形,所以DC=BG。

因为AB=2DC,所以AG=GB。

从而DA=DB,于是∠DAB=∠DBA。

又EF//AB,所以四边形ABFE是等腰梯形。

2、作两条高例11、在等腰梯形ABCD中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5c m,求:(1)腰AB的长;(2)梯形ABCD的面积.解:作AE⊥BC于E,DF⊥BC于F,又∵AD∥BC,∴四边形AEFD是矩形, EF=AD=3cm∵AB=DCcmEFBCFCBE1)(21=-==∴∵在Rt△ABE中,∠B=60°,BE=1cmAB CDE F∴AB=2BE=2cm ,cm BE AE 33== ∴2342)(cm AEBC AD S ABCD =⨯+=梯形例12如图,在梯形ABCD 中,AD 为上底,AB>CD ,求证:BD>AC 。

证:作AE ⊥BC 于E ,作DF ⊥BC 于F ,则易知AE=DF 。

在Rt △ABE 和Rt △DCF 中, 因为AB>CD ,AE=DF 。

所以由勾股定理得BE>CF 。

即BF>CE 。

在Rt △BDF 和Rt △CAE 中 由勾股定理得BD>AC(五)、作中位线1、已知梯形一腰中点,作梯形的中位线。

例13如图,在梯形ABCD 中,AB//DC ,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD 。

证:取AD 的中点E ,连接OE ,则易知OE 是梯形ABCD 的中位线,从而OE=21(AB +CD )①在△AOD 中,∠AOD=90°,AE=DE 所以AD OE 21=②由①、②得AB +CD=AD 。

2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线。

例14如图,在梯形ABCD 中,AD//BC ,E 、F 分别是BD 、AC 的中点,求证:(1)EF//AD ;(2))(21AD BC EF -=。

证:连接DF ,并延长交BC 于点G ,易证△AFD ≌△CFG 则AD=CG ,DF=GF由于DE=BE ,所以EF 是△BDG 的中位线 从而EF//BG ,且BG EF 21=因为AD//BG ,AD BC CG BC BG -=-= 所以EF//AD ,EF )(21AD BC -=3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的。

例15、在梯形ABCD 中,AD ∥BC , ∠BAD=900,E 是DC 上的中点,连接AE 和BE ,求∠AEB=2∠CBE 。

解:分别延长AE 与BC ,并交于F 点 ∵∠BAD=900且AD ∥BC ∴∠FBA=1800-∠BAD=900 又∵AD ∥BC∴∠DAE=∠F(两直线平行内错角相等) ∠AED=∠FEC (对顶角相等) DE=EC (E 点是CD 的中点) ∴△ADE ≌△FCE (AAS ) ∴ AE=FE在△ABF 中∠FBA=900 且AE=FE∴ BE=FE (直角三角形斜边上的中线等于斜边的一半) ∴ 在△FEB 中 ∠EBF=∠FEB∠AEB=∠EBF+ ∠FEB=2∠CBE例16、已知:如图,在梯形ABCD 中,AD//BC ,AB ⊥BC ,E 是CD 中点,试问:线段AE 和BE 之间有怎样的大小关系?解:AE=BE ,理由如下: 延长AE ,与BC 延长线交于点F . ∵DE=CE ,∠AED=∠CEF , ∠DAE=∠F ∴△ADE ≌△FCE ∴AE=EF∵AB ⊥BC , ∴BE=AE .例17、已知:梯形ABCD 中,AD//BC ,E 为DC 中点,EF ⊥AB 于F 点,AB=3c m ,EF=5cm ,求梯形ABCD 的面积.解:如图,过E 点作MN ∥AB ,分别交AD 的延长线于M 点,交BC 于N 点. ∵DE=EC ,AD ∥BC ∴△DEM ≌△CNE四边形ABNM 是平行四边形 ∵EF ⊥AB ,∴S 梯形ABCD =S □ABNM =AB ×EF=15cm 2.【模拟试题】(答题时间:40分钟)1. 若等腰梯形的锐角是60°,它的两底分别为11cm ,35cm ,则它的腰长为__________cm .2. 如图所示,已知等腰梯形ABCD 中,AD ∥BC ,∠B =60°,AD =2,BC =8,则此等腰梯形的周长为( )A. 19B. 20C. 21D. 22AB CDAB DCEFA BCD EFM N3. 如图所示,AB ∥CD ,AE ⊥DC ,AE =12,BD =20,AC =15,则梯形ABCD 的面积为( )A. 130B. 140C. 150D. 160ABCDE*4. 如图所示,在等腰梯形ABCD 中,已知AD ∥BC ,对角线AC 与BD 互相垂直,且AD =30,BC =70,求BD 的长.AB CD5. 如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm 和49cm ,求它的腰长.AB CD6. 如图所示,已知等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD +BC =10,DE ⊥BC 于E ,求DE 的长.ABCDE7. 如图所示,梯形ABCD 中,AB ∥CD ,∠D =2∠B ,AD +DC =8,求AB 的长.ABCD**8. 如图所示,梯形ABCD 中,AD ∥BC ,(1)若E 是AB 的中点,且AD +BC =CD ,则DE 与CE 有何位置关系?(2)E 是∠ADC 与∠BCD 的角平分线的交点,则DE 与CE 有何位置关系?A B C DE。

相关文档
最新文档