正余弦函数的性质的练习题
正弦、余弦函数的图像和性质的练习题

一题多变
2
新余市第六中学 高中数学 必修④
三、解答题
解: 令 sin x t , 则 1 t 1 7 2 则有函数 f (t ) t t (1 t 1) 4 画出函数f (t )的图像,如图所示
7 12、求函数 f ( x) sin x sin 2 x( x R)的值域 4
2
2
1
令 cos x t , 则有-1 t 1
2
则有f (t ) 1 t 3t (1 t 1)
2
-1
1
O
1
2
x
画出函数f (t )的图像,如图所示
通过观察发现
2
3
新余市第六中学 高中数学 必修④
一题多变
三、解答题
判断函数f ( x) sin 2 x 3 cos x( x R)的奇偶性,并求其值域 。
解得
a0
a的取值范围为 a0
一题多变 m 1 m3 已知 - x , cos x , 则m的取值范围是 __________ 。 6 3 m 1
新余市第六中学 高中数学 必修④
二、填空题
。 [0, ] 2 11 、不等式sin x 0在x [0,2 ]上的解集为__________ ____
y
2 1
通过观察发现
-1
1
O
1
2
x
1 b b 当x 1时, f (1) min 当x 时, f ( ) max 2 4 2a 2a 7 1 2 函数 f (t ) t t (1 t 1)的值域为 [ ,2] 4 4 7 1 函数 f ( x) sin 2 x sin x ( x R)的值域为 [ ,2] 4 4
高一数学(必修一)《第五章 正弦函数、余弦函数的性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 正弦函数、余弦函数的性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()sin 0f x x ωω=>的最小正周期为2π,则ω的值为( ) A .4B .2C .1D .122.设函数()2sin()3f x x π=+,若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1﹣x 2|的最小值是( )A .4πB .2πC .πD .2π 3.下列函数中,既是偶函数又在()0,∞+上单调递增的是( )A .y =B .cos y x =C .3x y =D .ln y x =4.函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数的一个充分条件( )A .6π=ϕ B .6πϕ=-C .3πϕ=D .3πϕ=-5.已知α是第四象限角,且23sin 8cos αα=,则2021cos 2πα⎛⎫+= ⎪⎝⎭( )A .B .13-C D .136.已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是( )A . ,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈ZB . ,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈ZC . 2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z D . ,2k k πππ⎡⎤-⎢⎥⎣⎦()k ∈Z7.已知函数()()()2sin 00πf x x ωϕωϕ=+><<,的部分图象如图所示,点(0A 和π,03B ⎛⎫⎪⎝⎭,则下列说法中错误的是( )A .直线π12x =是图象的一条对称轴 B .()f x 的图象可由()2sin2g x x = 向左平移π3个单位而得到C .的最小正周期为πD .在区间ππ-,312⎛⎫⎪⎝⎭上单调递增8.已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意()(),2x R f x f x ∈=-;③当[]0,1x ∈时,则()32f x x =;若过点()1,0-的直线l 与函数()f x 的图象在[]0,4x ∈上恰有4个交点,则直线l 的斜率k 的取值范围是( ) A .60,11⎛⎫ ⎪⎝⎭B .30,5⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .30,8⎛⎫ ⎪⎝⎭9.已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x 和[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π10.将函数()sin(2)(0)f x x ϕϕπ=+<<的图象向右平移6π个单位长度得到()g x 的图象,若()g x 的图象关于直线3x π=对称,则6g π⎛⎫= ⎪⎝⎭( )A .B .12-C .0D .12二、填空题11.函数321,0,()1211,0,2xx x x f x x x ⎧+->⎪=⎨⎛⎫--+≤⎪ ⎪⎝⎭⎩,则[(2)]f f -=___________. 12.已知函数()f x 是在R 上连续的奇函数,其导函数为()f x '.当x >0时,则()()20xf x f x '+>,且()11f =,则函数()()21g x f x x =-的零点个数为______. 13.()()11sin cos cos sin 22f x x x x x =+--,下列说法错误的是______. ①()f x 的值域是[]1,1-; ②当且仅当222k x k πππ<<+(k Z ∈)时,则()0f x >;③当且仅当24x k ππ=+(k Z ∈)时,则()f x 取得最小值;④()f x 是以π为最小正周期的周期函数.14.设函数(),12,1x x a x f x x -+<⎧=⎨≥⎩的最小值为2,则实数a 的取值范围是______.15.若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是____________.三、解答题16.已知幂函数()f x x α=的图象经过点1(8,)2,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.17.比较下列各组数的大小.(1)cos870,cos890︒︒;(2)37π49πsin ,sin 63⎛⎫- ⎪⎝⎭. 18.已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =和()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.19.已知函数()21cos cos 2f x x x x =⋅-.(1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值. 20.已知函数()1sin 62f x x π⎛⎫=+- ⎪⎝⎭.(1)若函数()f x 在区间[]0,a 上是严格增函数,求实数a 的取值范围; (2)求函数()f x 在区间[]0,2π上的所有零点.21.已知函数()2x f x x =. (1)判断并证明函数()f x 的奇偶性;(2)判断函数()f x 在区间[)0,+∞上的单调性(不用证明),并解不等式()()221f x f x +>-.22.已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件②、条件③这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π; 条件②:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件③:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分. 23.已知某海滨浴场的海浪高度是时间t (h )(024t ≤≤)的函数,记作()y f t =.下表是某日各时的浪高数据.经长期观测,()y f t =的曲线可近似地看成是函数cos y A t b ω=+.(1)根据以上数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?四、双空题24.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,,且2222b c a a +=+,则A = _______,△ABC 的面积的取值范围是 _________ .参考答案与解析1.A【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】由2T πω=∴2242Tππωπ===. 故选:A. 2.C【解析】首先得出f (x 1)是最小值,f (x 2)是最大值,可得|x 1﹣x 2|的最小值为函数的半个周期,根据周期公式可得答案.【详解】函数()2sin()3f x x π=+ ∵对任意x ∈R 都有f (x 1)≤f (x )≤f (x 2) ∴f (x 1)是最小值,f (x 2)是最大值; ∴|x 1﹣x 2|的最小值为函数的半个周期 ∵T =2π∴|x 1﹣x 2|的最小值为π 故选:C. 3.D【分析】根据基本初等函数的奇偶性与单调性判断即可.【详解】解:对于A :y =[)0,∞+,函数为非奇非偶函数,故A 错误; 对于B :cos y x =为偶函数,但是函数在()0,∞+上不具有单调性,故B 错误;对于C :3x y =为非奇非偶函数,故C 错误;对于D :()ln y f x x ==定义域为{}|0x x ≠,又()()ln ln f x x x f x -=-==故ln y x =为偶函数,又当()0,x ∈+∞时ln y x =,函数在()0,∞+上单调递增,故D 正确; 故选:D 4.A【分析】根据函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数,由,Z 32k k ππϕπ+=+∈求解.【详解】解:若函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数所以,Z32k k ππϕπ+=+∈则,Z6k k πϕπ=+∈故选:A 5.C【分析】利用三角函数的基本关系式与条件可求得sin α的值,再利用诱导公式化简2021cos 2πα⎛⎫+ ⎪⎝⎭即可求得结果.【详解】因为23sin 8cos αα=,所以429sin 64cos αα=又因为22sin cos 1αα+=,所以2264sin 64cos 64αα+=,即2464sin 9sin 64αα+= 整理得429sin 64sin 640αα+-= 解得28sin 9α=或2sin 8α=- (舍去)又因为α是第四象限角,所以sin 0α<,故sin α=所以2021cos cos 101022ππααπ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭cos sin 2παα⎛⎫=+=- ⎪⎝⎭. 故选:C. 6.B【分析】根据题意可得6f π⎛⎫⎪⎝⎭为函数()f x 的最大值,进而结合()0,2πϕ∈可得π6ϕ=,从而有()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,再求解其单调递增区间即可.【详解】()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则6f π⎛⎫⎪⎝⎭为函数()f x 的最大值,即()π22πZ 62k k πϕ⨯+=+∈,则()π2πZ 6k k ϕ=+∈,又()0,2πϕ∈,所以π6ϕ=,所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭. 令()πππ22π,2πZ 622x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦,则()πππ,πZ 36x k k k ⎡⎤∈-+∈⎢⎥⎣⎦.故选:B. 7.B【分析】根据五点作图法可得,然后利用正弦函数的性质,代入逐一进行检验即可.【详解】由函数()()2sin (0,0π)f x x ωϕωϕ=+><<部分图象,点(A ,π,03B ⎛⎫ ⎪⎝⎭,故sin ϕ=,由于点A 在单调递增的区间上,π3ϕ=或2π3ϕ= (舍去),再根据五点法作图可得 ππ+=π33ω⋅,求得2ω=,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭ .对于A,令π12x =,求得()2f x =,为最大值,故直线π=12x 是()f x 图象的一条对称轴,故A 正确; 对于B,把()2sin2g x x =向左平移π3个单位,可得2π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,故B 错误;对于C,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为2π=π2,故C 正确; 对于D ,ππ-,312x ⎛⎫∈ ⎪⎝⎭和πππ2-,332x ⎛⎫+∈ ⎪⎝⎭ ,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭单调递增,故D 对.故选:B 8.D【分析】根据条件可知()f x 是周期为2的函数,作出函数图像,数形结合即可得解.【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-,又因为对于任意()(),2x R f x f x ∈=-,所以()()()2f x f x f x =-=-从而()()2f x f x =+,即()f x 是周期为2的函数 结合当[]0,1x ∈时,则()32f x x =,可作出()f x 在[]0,4的图像以及直线l 的图像,如下图所示:当3x =时,则易知()32f x =,则直线MA 的斜率()3032318MA k -==-- 过点()1,0-的直线l 与函数()f x 的图象在[]0,4上恰有4个交点,则只需直线l 斜率k 的取值范围是30,8⎛⎫⎪⎝⎭.故选:D. 9.C【分析】根据函数图象求得()12sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据图象变换可得()g x 的解析式,结合()()129g x g x =,1x ,[]20,4x π∈,求得21,x x 的值,可得答案.【详解】设()f x 的最小正周期为T ,则由图可知372433T ππ⎛⎫=-- ⎪⎝⎭,得4T π=,则212T πω==,所以()1sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭又由题图可知()f x 图象的一个对称中心为点2,03π⎛⎫-⎪⎝⎭故1223k πϕπ⎛⎫⨯-+= ⎪⎝⎭,Z k ∈故3k πϕπ=+,Z k ∈ 因为0ϕπ<<,所以3πϕ=,所以()1sin 23f x A x π⎛⎫=+ ⎪⎝⎭.又因为1323f π⎛⎫= ⎪⎝⎭故131135sin sin sin 2323322f A A A A πππππ⎛⎫⎛⎫=⨯+==== ⎪ ⎪⎝⎭⎝⎭ 所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭;将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象;因为()()129g x g x =,所以12,x x 同时令()g x 取得最大值3由()2sin 2133g x x π⎛⎫=++= ⎪⎝⎭,可得()11212k x π+=Z k ∈又[]12,0,4x x π∈,要求21x x -的最大值,故令0k =,得112x π=;令3k =,得23712x π=,所以21x x -的最大值为3731212πππ-=故选:C. 10.D【分析】由平移变换写出()g x 的表达式,由()g x 的对称性求得ϕ,然后计算函数值. 【详解】由已知()sin[2()]sin(2)63g x x x ππϕϕ=-+=-+()g x 的图象关于直线3x π=对称,则2,Z 332k k πππϕπ⨯-+=+∈,又0ϕπ<<,所以6π=ϕ 所以()sin(2)6g x x π=-,所以1()sin(2)6662g πππ=⨯-=.故选:D . 11.11【分析】根据函数解析式,先求得(2)f -再求解. 【详解】因为函数321,0,()1211,0,2xx x x f x x x ⎧+->⎪=⎨⎛⎫--+≤⎪ ⎪⎝⎭⎩所以21(2)|2(2)1|122f -⎛⎫-=⨯---+= ⎪⎝⎭ 32(2)22111f =+-=故答案为:11 12.1【分析】函数()()21g x f x x=-的零点就是方程()21x f x =的根, 设()()2h x x f x =,对()h x 求导,结合题意知()h x 为()0,∞+上的增函数,由()()111h f ==,即可得出答案.【详解】()()()22211x f x g x f x x x -=-=则函数()()21g x f x x=-的零点就是方程()21x f x =的根. 设()()2h x x f x =由题意得()()()()()22h x x f x x f x h x -=--=-=-因为()h x 的定义域为R ,所以()h x 为R 上连续的奇函数.易得()()()()()222h x xf x x f x x xf x f x '''=+=+⎡⎤⎣⎦由题知,当x >0时,则()()20xf x f x '+>,则()0h x '> 即函数()h x 为()0,∞+上的增函数又因为()h x 为R 上连续的奇函数,所以()h x 为R 上的增函数.由()11f =,得()()111h f ==,则方程()21x f x =只有一个根故函数()()21g x f x x =-只有1个零点. 故答案为:1. 13.①③④【解析】将函数解析式化简并用分段函数表示出来,画出函数图象,数形结合即可判断. 【详解】解:()()()()sin ,cos sin 11sin cos cos sin cos ,cos sin 22x x x f x x x x x x x x ⎧>⎪=+--=⎨≤⎪⎩则画出函数图象如下:观察函数图象可得:函数的值域为⎡-⎢⎣⎦,故①错误;当且仅当222k x k πππ<<+(k Z ∈)时,则()0f x >,故②正确; 当22x k ππ=-或2x k ππ=+(k Z ∈)时,则()f x 取得最小值,故③错误;函数()f x 是以2π为最小正周期的周期函数,故④错误;故错误的有:①③④故答案为:①③④【点睛】本题主要考查三角函数的性质和三角函数图象的应用,属于中档题.14.[)3,+∞【解析】分别求1≥x 和1x <时函数的值域,再根据题意比较两部分的最小值,求a 的取值范围.【详解】当1≥x 时,则()22x f x =≥,当1x <时,则()1f x a >-由题意知,12a -≥ 3a ∴≥.故答案为:[)3,+∞【点睛】本题考查根据分段函数的最值求参数的取值范围,属于基础题型.15.[]1,2【分析】根据偶函数的性质得到11x -≤≤时()0f x ≥,即可将不等式化为21331x x -≤-+≤,解得即可.【详解】解:因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤ 所以原不等式的解集为[]1,2.故答案为:[]1,216.答案见解析.【分析】根据给定条件求出α值,判断奇偶性,写出单调区间及单调性,画出()f x 的草图作答.【详解】因幂函数()f x x α=的图象经过点1(8,)2,则182α=,即3122α-=,31α=-解得13α=- 所以函数()f x 的解析式为13()f x x -=,其定义域是(,0)(0,)-∞+∞()f x =()()f x f x -===-,()f x 是奇函数函数()f x 在(0,)+∞上单调递减,在(,0)-∞上单调递减函数()f x 的大致图象如图17.(1)cos870cos890︒>︒,(2)37π49πsin sin 63⎛⎫-< ⎪⎝⎭【分析】(1)先利用诱导公式化简,然后利用余弦函数的单调性比较大小(2)先利用诱导公式化简,然后利用正弦函数的单调性比较大小.【详解】(1)cos870cos(2360150)cos150︒=⨯︒+︒=︒cos890cos(2360170)cos170︒=⨯︒+︒=︒∵余弦函数cos y x =在[]0,π上是减函数∴cos150cos170︒>︒,即cos870cos890︒>︒.(2)37πππ49πππsin()sin(6π)sin(),sin sin(16π)sin ,666333-=--=-=+= ∵正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上是增函数 ∴ππsin sin 63⎛⎫-< ⎪⎝⎭,即37π49πsin sin 63⎛⎫-< ⎪⎝⎭. 18.(1),32ππ⎡⎤⎢⎥⎣⎦(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)根据数量积的坐标表示及三角恒等变换公式将函数化简,再结合余弦函数的性质计算可得; (2)根据三角函数变换规则得到()g x 的解析式,再根据x 的取值范围求出46x π+的取值范围,再根据余弦函数的性质及图象计算可得;(1) 解:因为2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =且()f x m n =⋅所以()22sin 22sin 6f x m n x x π⎛⎫=⋅=-+- ⎪⎝⎭()122cos 21cos 22x x x ⎫=-+--⎪⎪⎝⎭1cos 221cos 2123x x x π⎛⎫=+=++ ⎪⎝⎭ 即()cos 213f x x π⎛⎫=++ ⎪⎝⎭ 令2223k x k ππππ-≤+≤ k Z ∈ 解得236k x k ππππ-≤≤- k Z ∈ 又因为0,2x π⎡⎤∈⎢⎥⎣⎦所以函数()f x 的单调增区间为:,32ππ⎡⎤⎢⎥⎣⎦(2)解:因为()cos 213f x x π⎛⎫=++ ⎪⎝⎭所以将函数()f x 的图象所有的点向右平移12π个单位得到cos 21cos 21121236f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦将所得图象上各点横坐标缩短为原来的 12(纵坐标不变)再向下平移1个单位得到()cos 46g x x π⎛⎫=+ ⎪⎝⎭ 又因为5,824x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,63t x πππ⎡⎤=+∈-⎢⎥⎣⎦ 令4036x ππ-≤+≤,解得824x ππ-≤≤- 令046x ππ≤+≤,解得52424x ππ-≤≤ 即函数()g x 在,824ππ⎡⎤--⎢⎥⎣⎦上单调递增,在5,2424ππ⎡⎤-⎢⎥⎣⎦上单调递减,且1cos 832g ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭ 作出cos 3y t t ππ⎛⎫=- ⎪⎝⎭≤≤图像可得:所以m 的取值范围1,12⎡⎫⎪⎢⎣⎭. 19.(1),36k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ) (2)最大值为1,最小值为-12.【分析】(1)由三角函数降幂公式与二倍角公式,根据辅助角公式,化简函数为单角三角函数,根据正弦函数的单调性,可得答案;(2)利用整体思想,根据正弦函数的图象性质,可得答案.(1)()f x =1cos211cos2sin 22226x x x x x π+⎛⎫-=+=+ ⎪⎝⎭. 因为y =sin x 的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ) 令22,2622x k k πππππ⎡⎤+∈-+⎢⎥⎣⎦(k ∈Z ),得,36x k k ππππ⎡⎤∈-+⎢⎥⎣⎦(k ∈Z ). 所以()f x 的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). (2)因为x ∈[0,2π],所以2x +7,666πππ⎡⎤∈⎢⎥⎣⎦. 当2x +6π=2π,即x =6π时,则()f x 最大值为1 当2x +6π=76π,即x =2π时,则()f x 最小值为-12.20.(1)0,3π⎛⎤ ⎥⎝⎦;(2)所有零点是0,23π和2π. 【分析】(1)先求得函数()f x 的在y 轴右侧的包含0的单调递增区间,进而得到实数a 的取值范围; (2)利用正弦函数的性质,利用整体代换法求得函数()f x 的所有零点,进而得到在[]0,2π上的所有零点.【详解】(1)由πππ2π2π262k x k -+++,得2ππ2π2π33k x k -++ k ∈Z 取0k =,可得2ππ33x - ∵函数()π1sin 62f x x ⎛⎫=+- ⎪⎝⎭在区间[]0,a 上是严格增函数 ∴实数a 的取值范围是π0,3⎛⎤ ⎥⎝⎦.【点睛】关键要注意求函数的零点时不要丢根.1πsin 2π+26x x k =⇔=或()5π2π+6x k k Z =∈. 21.(1)()f x 为偶函数,证明见解析 (2)()f x 在[)0,+∞上单调递增,不等式解集为1,33⎛⎫- ⎪⎝⎭【分析】(1)先判断函数定义域是否关于原点对称,然后再检查(),()f x f x -之间的关系;(2)先将函数作简单变型,分析出单调性,再根据单调性来解不等式.(1)()f x 为偶函数.证明如下:依题意,函数()f x 的定义域为R .对于任意x ∈R ,都有()()22x x f x x x f x --=-==,所以函数()f x 是R 上的偶函数.(2)函数())22x x f x x x ==-2x =[)0,+∞上单调递增.因为函数()f x 是R 上的偶函数,所以()()221f x f x +>-等价于()()221f x f x +>-.因为函数()f x 在[)0,+∞上单调递增,所以221x x +>-,即23830x x --<,解得133x -<<,所以不等式()()221f x f x +>-的解集为1,33⎛⎫- ⎪⎝⎭. 22.(1)选择①②:π()sin(2)6f x x =+,()f x 的最小值为1-;选择①③:π1()sin(2)62f x x =++, ()f x 的最小值为12-; (2)选择①②:t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭;选择①③:t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭. 【分析】(1)首先利用三角恒等变换公式以及辅助角公式化简()f x ,然后根据条件①②或①③求其解析式即可,若选择②③,m 的取值有两个,舍去;(2)根据零点即是函数图像与x 轴的交点横坐标,令()0f x =求出横坐标,即可判断t 的取值范围.(1)由题可知2()cos cos ωωω=+f x x x x m112cos222ωω+++x x m π1sin(2)62ω=+++x m . 选择①②: 因为2ππ2T ω==,所以1ω=. 又因为1(0)12f m =+=,所以12m =-. 所以π()sin(2)6f x x =+. 当ππ22π62x k +=-,k Z ∈即ππ3x k =-,k Z ∈时,则()1f x =-. 所以函数()f x 的最小值为1-.选择①③: 因为2ππ2T ω==,所以1ω=. 又因为函数()f x 的最大值为3322m +=所以0m =. 所以π1()sin(2)62f x x =++. 当ππ22π62x k +=-,k Z ∈即ππ3x k =-,k Z ∈时 πsin(2)16x +=- 所以函数()f x 的最小值为11122. 选择②③: 因为1(0)12f m =+=,所以12m =- 因为函数()f x 的最大值为3322m +=,所以0m =m 的取值不可能有两个,∴无法求出解析式,舍去. (2)选择①②:令πsin(2)06x +=则π2π6x k += k Z ∈ 所以ππ212k x =- k Z ∈ 当1,2k =时,则函数()f x 的零点为5π11π,1212 由于函数()f x 在区间[0,]t 上有且仅有1个零点所以5π11π1212t ≤<. 所以t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭. 选择①③:令π1sin(2)062++=x 则π722π+π66+=x k k Z ∈ 或π1122π+π66+=x k k Z ∈ 所以ππ+2=x k k Z ∈ 或5π+π6=x k k Z ∈.当0k =时,则函数()f x 的零点分别为π5π,26由于函数()f x 在区间[0,]t 上有且仅有1个零点所以π5π26t ≤<. 所以t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭. 23.(1)T =12,A =0.5 1cos 126y t π=+; (2)一共有6个小时.【分析】(1)根据给定的数表直接求出周期T ,振幅A ,进而求出函数表达式.(2)根据给定条件解不等式1cos 1126t π+>即可计算作答. (1)依题意,观察数表得:最小正周期12T =,最高浪高为1.5米,最低浪高为0.5米 则 1.50.5122A -== 1.50.512b +== 22126T πππω====6π 所以函数解析式为:1cos 126y t π=+ (2)由(1)知,令1cos 1126t π+>,得:22(Z)262k t k k πππππ-<<+∈ 123123Z ()k t k k -<<+∈而820t <<,则1k = 915t <<所以从9点到15点适合对冲浪爱好者开放,一共有6个小时.24. 3π【分析】由2222b c a a +=+结合余弦定理可得cos a bc A =,由△ABC ,可是1sin 2bc A ==,两式结合可求得tan A =A ;利用正弦定理,余弦定理,三角函数等变换的应用可得311sin(2)2264B a π=-+,可求出范围52(,)666B πππ-∈,利用正弦函数的性质可求解a 的范围,进而可求得△ABC 的面积的取值范围【详解】解:因为2222b c a a +=+,所以2222b c a a +-= 所以由余弦定理得2222cos 22b c a a a A bc bc bc+-===,所以cos a bc A =因为△ABC所以1sin 2bc A ===所以1sin cos 2bc A A ==所以tan A 因为(0,)A π∈,所以3A π=因为1cos 2a bc A bc ==所以1sin 2ABC Sbc A ==因为由正弦定理可得b B =,2)3c B π=-和2a bc = 所以2422sin sin()33a a B B π=- 所以311sin(2)2264B a π=-+ 因为△ABC 为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<< 所以52(,)666B πππ-∈ 所以31113sin(2)(,]226424B a π=-+∈ 所以[2,3)a ∈,所以1sin 2ABC Sbc A ==∈ 故答案为:3π。
正余弦函数图像和性质练习题

正余弦函数图像和性质练习题1.4.1 正弦函数、余弦函数的图像和性质一、选择题1.下列说法只有一个不正确的是:A) 正弦函数、余弦函数的定义域是R,值域是[-1,1];B) 余弦函数当且仅当x=2kπ(k∈Z)时,取得最大值1;C) 余弦函数在[2kπ-π/3,2kπ+π/3](k∈Z)上都是减函数;D) 余弦函数在[2kπ-π,2kπ](k∈Z)上都是减函数。
2.函数f(x)=sinx-|sinx|的值域为:A) {0}B) [-1,1]C) [0,1]D) [-2,0]3.若a=sin46,b=cos46,c=cos36,则a、b、c的大小关系是:A) c>a>bB) a>b>cC) a>c>bD) b>c>a4.对于函数y=sin(π/3-x),下面说法中正确的是:A) 函数是周期为π的奇函数B) 函数是周期为π的偶函数C) 函数是周期为2π的奇函数D) 函数是周期为2π的偶函数5.函数y=2cosx(0≤x≤2π)的图像和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是:A) 4B) 8C) 2πD) 4π6.为了使函数y=sinωx(ω>0)在区间[0,1]内至少出现50次最大值,则ω的最小值是:A) 98πB) 197π/199C) πD) 100π/22二、填空题7.函数值sin1.sin2.sin3.sin4的大小顺序是:sin1 < sin3 < sin2 < sin4.8.函数y=cos(sinx)的奇偶性是:奇函数。
9.函数f(x)=lg(2sinx+1)+2cosx-1的定义域是:x∈[0,π/2]。
10.关于x的方程cos2x+sinx-a=0有实数解,则实数a的最小值是:-1.三、解答题11.用“五点法”画出函数y=sinx+2,x∈[0,2π]的简图。
12.已知函数y=f(x)的定义域是[0,1],求函数y=f(sin2x)的定义域。
第一章 1.4.2 正弦函数、余弦函数的性质练习题

1.函数y =sin(x +θ)(0<θ≤π)是R 上的奇函数,则θ的值是( )A .0B.π4C.π2 D .π解析:选D.当θ=π时,y =sin(x +π)=-sin x 是奇函数,故选D.2.已知函数f (x )=sin(πx -π2)-1,则下列命题正确的是( ) A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数解析:选B.∵f (x )=-cosπx -1,∴f (-x )=-cos(-πx )-1=-cosπx -1=f (x ),周期T =2ππ=2. 3.若函数f (x )=2cos(ωx +π3)的最小正周期为T ,且T ∈(1,3),则正整数ω的最大值是__________.解析:1<2πω<3⇒2π3<ω<2π, ∵ω∈N *,∴ω的最大值是6.答案:64.函数y =2sin(π6-2x )(x ∈(0,π])的递增区间为________. 解析:y =2sin(π6-2x )=-2sin(2x -π6), 欲求函数y =2sin(π6-2x )的增区间,只需求y =2sin(2x -π6)的减区间. 由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z , 又∵x ∈[0,π],∴π3≤x ≤5π6. 答案:⎣⎡⎦⎤π3,5π6[A 级 基础达标]1.下列函数中,周期为π2的是( ) A .y =sin x 2B .y =sin 2xC .y =cos x 4D .y =cos 4x解析:选D.对于函数y =cos 4x ,周期T =2π4=π2. 2.函数y =cos 2x 在下列哪个区间上是减函数( )A .[-π4,π4] B .[π4,3π4] C .[0,π2] D .[π2,π] 解析:选C.函数y =cos x ,x ∈R 在[0,π]上是减函数,所以函数y =cos 2x 在[0,π2]上是减函数.3.函数y =cos(x +π2),x ∈R 是( ) A .奇函数B .偶函数C .非奇非偶函数D .无法判定解析:选A.y =cos(x +π2)=-sin x ,为奇函数. 4.函数y =|sin x |+sin x 的值域是__________.解析:∵y =|sin x |+sin x =⎩⎪⎨⎪⎧2sin x (sin x ≥0),0 (sin x <0), ∴y ∈[0,2],即函数的值域为[0,2].答案:[0,2]5.函数y =sin 2x -sin x +1(x ∈R)的最大值为__________.解析:y =sin 2x -sin x +1=(sin x -12)2+34. ∵-1≤sin x ≤1,∴当sin x =-1时,y 取得最大值,且最大值为3.答案:36.比较下列各组数的大小:(1)cos(-235π)与cos(-174π); (2)sin194°与cos160°;(3)sin1,sin2,sin3.解:(1)cos(-235π)=cos(-6π+75π)=cos 75π, cos(-174π)=cos(-6π+74π)=cos 74π, ∵π<75π<74π<2π,且y =cos x 在(π,2π)递增, ∴cos 75π<cos 74π, 即cos(-235π)<cos(-174π). (2)sin194°=sin(180°+14°)=-sin14°,cos160°=cos(180°-20°)=-cos20°=-sin70°.∵0°<14°<70°<90°,且y =sin x 在(0°,90°)递增,∴sin14°<sin70°.从而-sin14°>-sin70°,即sin194°>cos160°.(3)∵1<π2<2<3<π, 又sin(π-2)=sin2,sin(π-3)=sin3,0<π-3<1<π-2<π2,而y =sin x 在(0,π2)上递增, ∴sin(π-3)<sin1<sin(π-2),即sin3<sin1<sin2.[B 级 能力提升]7.若0<α<β<π4,a =2sin(α+π4),b =2sin(β+π4),则( ) A .a <bB .a >bC .ab <1D .ab > 2解析:选A.∵0<α<β<π4,∴π4<α+π4<β+π4<π2. 而正弦函数y =sin x ,x ∈[0,π2]是增函数, ∴sin(α+π4)<sin(β+π4). ∴2sin(α+π4)<2sin(β+π4),即a <b . 8.设函数f (x )=sin 3x +|sin 3x |,则f (x )为( )A .周期函数,最小正周期为π3B .周期函数,最小正周期为23π C .周期函数,最小正周期为2πD .非周期函数解析:选B.f (x )=⎩⎪⎨⎪⎧0,sin 3x ≤02sin 3x ,sin 3x >0的图象大致如图所示:由图可知,f (x )为周期函数,最小正周期为23π,故选B. 9.函数y =2sin(π3+ωx )的最小正周期是4π,则ω=__________. 解析:由最小正周期的定义,经计算可知最小正周期为2π|ω|.令2π|ω|=4π,∴|ω|=12,∴ω=±12. 答案:±1210.若函数y =a -b sin x (b >0)的最大值为32,最小值为-12,求函数y =-4a sin bx 的最值和最小正周期.解:∵y =a -b sin x (b >0),∴函数的最大值为a +b =32,① 函数的最小值为a -b =-12,② 由①②可解得a =12,b =1. ∴函数y =-4a sin bx =-2sin x .其最大值为2,最小值为-2,最小正周期T =2π.11.(创新题)已知函数f (x )=log 12|sin x |.(1)求其定义域和值域;(2)判断奇偶性;(3)判断周期性,若是周期函数,求其周期;(4)写出单调区间.解:(1)|sin x |>0⇒sin x ≠0,∴x ≠k π(k ∈Z).∴定义域为{x |x ≠k π,k ∈Z}.∵0<|sin x |≤1,∴log 12|sin x |≥0,∴函数的值域是{y |y ≥0}.(2)∵f (-x )=log 12|sin(-x )|=log 12|sin x |=f (x ),∴函数f (x )是偶函数.(3)∵|sin x |在定义域{x |x ≠k π,k ∈Z}内是周期函数,且最小正周期是π,∴函数f (x )=log 12|sin x |是周期函数,最小正周期为π.(4)单调递增区间是[k π-π2,k π)(k ∈Z),单调递减区间是(k π,k π+π2](k ∈Z).。
1.4.2正、余弦函数的性质(一)练习题(解析版)

1.4.2正、余弦函数的性质(一)1.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )2.函数)62sin(2π+=x y 的最小正周期( )A .π4B .π2C .πD .2π3.满足函数x y sin =和x y cos =都是增函数的区间是()A .]22,2[πππ+k k , Z k ∈B .]2,22[ππππ++k k , Z k ∈C .]22,2[ππππ--k k , Z k ∈D .]2,22[πππk k -Z k ∈4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位5.函数)252sin(π+=x y 的图象的一条对称轴方程是( )A .2π-=xB .4π-=x C .8π=xD .45π=x6.函数y=cos2x –3cosx+2的最小值是( )A .2B .0C .41D .6二、填空题7、设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:X 0 3691215182124Y1215.1 12.1 9.111.9 14.9 11.9 8.9 12.1经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数有(填序号)________(1).]24,0[,6sin312∈+=t t y π(2).]24,0[),6sin(312∈++=t t y ππ(3).]24,0[,12sin312∈+=t t y π(4).]24,0[),212sin(312t t y ππ++=8.函数x x f cos 21)(-=的定义域是___________________________9、函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,则如下结论中正确的序号是 _____ ①、图象C 关于直线11π12x =对称; ②、图象C 关于点2π03⎛⎫ ⎪⎝⎭,对称; ③、函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数; ④、由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C .三、解答题:10. 已知函数f(x)=Asin(ωx+ϕ)的图象如图所示,试依图指出:(1)、f(x)的最小正周期; (2、)使f(x)=0的x 的取值集合; (3)、使f(x)<0的x 的取值集合; (4)、f(x)的单调递增区间和递减区间;(5)、求使f(x)取最小值的x 的集合; (6)、图象的对称轴方程;(7)、图象的对称中心.11.已知cos3(0)y a b x b =->的最大值为32,最小值为12-。
初三正弦余弦正切练习题

初三正弦余弦正切练习题正文:1. 已知角A的终边AB与单位圆x^2 + y^2 = 1相交于点B(-3/5, 4/5),求角A的三角函数值。
解析:根据给定条件,我们可以得知点B的坐标为(-3/5, 4/5)。
由此可得,三角函数sinA和cosA的值分别为y坐标和x坐标,即sinA = 4/5,cosA = -3/5。
根据三角函数的定义可知,tanA = sinA / cosA,即tanA = (4/5) / (-3/5) = -4/3。
2. 已知角B的终边BC与单位圆x^2 + y^2 = 1相交于点C(3/5, -4/5),求角B的三角函数值。
解析:根据给定条件,我们可以得知点C的坐标为(3/5, -4/5)。
由此可得,三角函数sinB和cosB的值分别为y坐标和x坐标,即sinB = -4/5,cosB = 3/5。
根据三角函数的定义可知,tanB = sinB / cosB,即tanB = (-4/5) / (3/5) = -4/3。
3. 若在直角三角形ABC中,已知∠A=30°,∠B=60°,求∠C的三角函数值。
解析:根据直角三角形的性质可知,三角函数中的sin、cos和tan分别对应直角三角形中的对边、邻边和斜边的比值。
且在该直角三角形中,∠A=30°,∠B=60°。
根据三角函数的定义可知,sinA = BC/AC,cosA= AB/AC,tanA = BC/AB,sinB = AC/BC,cosB = AC/AB,tanB =AB/BC。
代入已知条件,我们可以得到sinA = 1/2,cosA = √3/2,tanA = √3/3,sinB = √3/2,cosB = 1/2,tanB = √3。
根据三角函数的性质,我们知道sin和cos是以1为半径的单位圆上的点坐标,因此C点的坐标为(1, 0),即∠C=90°。
综上,∠C的三角函数值为sinC = 1,cosC = 0,tanC = 无穷大。
高中数学:正弦函数、余弦函数的性质(二)练习

高中数学:正弦函数、余弦函数的性质(二)练习(25分钟60分)一、选择题(每小题5分,共25分)1.(·北京高一检测)已知函数y=sinx和y=cosx在区间M上都是增函数,那么区间M可以是( )A. B.C. D.【解析】选D.y=sinx在和上是增函数,y=cosx在(π,2π)上是增函数,所以区间M可以是.【补偿训练】下列函数中,周期为π,且在上为减函数的是( )A.y=sinB.y=cosC.y=sinD.y=cos【解析】选A.对于A,y=sin=cos2x,周期为π,在上为减函数,故A正确,对于B,y=cos=-sin2x,周期为π,在上为增函数,故B错误,对于C,D,两个函数的周期为2π,故C,D错误.2.当-≤x≤时,函数f(x)=2sin有( )A.最大值为1,最小值为-1B.最大值为1,最小值为-C.最大值为2,最小值为-2D.最大值为2,最小值为-1【解析】选D.因为-≤x≤,所以-≤x+≤,所以-≤sin≤1,所以-1≤2sin≤2,即f(x)的最大值为2,最小值为-1.【补偿训练】y=2sin在[π,2π]上的最小值是( ) A.2 B.1 C.-1 D.-2 【解析】选C.因为x∈[π,2π],所以+∈,所以当+=时y min=2×=-1.3.下列关系式中正确的是( )A.sin11°<cos10°<sin168°B.sin168°<sin11°<cos10°C.sin11°<sin168°<cos10°D.sin168°<cos10°<sin11°【解析】选C.cos10°=sin80°,sin168°=sin12°,因为0°<11°<12°<80°<90°,且y=sinx在上为增函数,所以sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.4.(·衡阳高一检测)函数y=-cos的单调递增区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【解析】选D.转化为求函数y=cos的单调递减区间,由2kπ≤-≤2kπ+π,解得4kπ+≤x≤4kπ+,k∈Z.所以函数y=-cos的单调递增区间是,k∈Z.5.(·泉州高一检测)函数y=sin2x-sinx+2的最大值是( )A.2B.3C.4D.5【解析】选C.y=sin2x-sinx+2=+由x∈R知sinx∈[-1,1],所以当sinx=-1时y max=(-1)2-(-1)+2=4.二、填空题(每小题5分,共15分)6.函数y=sin的值域是________.【解析】因为∈[0,+∞),所以sin∈[-1,1].函数y=sin的值域是[-1,1].答案:[-1,1]7.(·宜昌高一检测)函数y=2sin,x∈[0,π]的单调递减区间是________.【解题指南】先求y=2sin的单调递减区间,再与[0,π]求交集.【解析】由2kπ+≤x+≤2kπ+,得2kπ+≤x≤2kπ+,k∈Z.设A=[0,π],B=,则A∩B=,所以y=2sin,x∈[0,π]的单调递减区间为.答案:8.(·三明高一检测)函数y=sin取最大值时自变量的取值集合是________.【解析】当-=2kπ+,即x=4kπ+,k∈Z时y max=1,所以函数y=sin取最大值时自变量的取值集合为.答案:三、解答题(每小题10分,共20分)9.比较下列各组数的大小:(1)sin250°与sin260°.(2)cos与cos.【解析】(1)因为函数y=sinx在[90°,270°]上单调递减,且90°<250°<260°<270°,所以sin 250°>sin 260°.(2)cos=cos=cos,cos=cos=cos.因为函数y=cosx在[0,π]上单调递减,且0<<<π,所以cos>cos,所以cos>cos.10.(·张家界高一检测)已知函数f(x)=sin(2x+)+1,x∈R.(1)写出函数f(x)的最小正周期.(2)当x∈时,求函数f(x)的最大值.【解析】(1)因为=π,所以函数f(x)的最小正周期为π.(2)当x∈时,2x+∈,所以当2x+=,即x=时,sin取得最大值,值为1,所以,函数f(x)的最大值为2. 【延伸探究】本题条件下(1)求f(x)的最小值及单调递减区间.(2)求使f(x)=时x的取值集合.【解析】(1)当2x+=2kπ-,即x=kπ-,k∈Z时[f(x)]min=-1+1=0.由2kπ+≤2x+≤2kπ+,得kπ+≤x≤kπ+,k∈Z,所以f(x)=sin+1的单调递减区间为,k∈Z.(2)由f(x)=得sin=,所以2x+=2kπ+或2kπ+,即x=kπ或x=kπ+,k∈Z.所以使f(x)=时x的取值集合为.(20分钟40分)一、选择题(每小题5分,共10分)1.函数y=-2cos在区间上是单调函数,则实数a的最大值为( )A. B.6π C. D.【解析】选D.x∈得t=+∈(,+],则必有y=-2cost在上单调.由于=3π+∈[3π,4π],y=-2cost在[3π,4π]上为减函数,所以⊆[3π,4π],所以+≤4π,故a≤.所以a的最大值为.2.(·天水高一检测)若f(x)=3sin(2x+φ)+a,对任意实数x都有f=f,且f()=-4.则实数a的值等于( )A.-1B.-7或-1C.7或1D.±7【解析】选B.因为对任意实数x都有f=f,所以直线x=是函数f(x)图象的一条对称轴.当x=时,f(x)取得最大值或最小值.所以f=3+a或-3+a.由3+a=-4得a=-7;由-3+a=-4得a=-1.【拓展延伸】正弦曲线与余弦曲线的对称性探究(1)正弦曲线、余弦曲线的对称轴分别过曲线的最高点或最低点,正弦曲线的对称轴是直线x=kπ+(k∈Z),余弦曲线的对称轴是直线x=kπ(k∈Z).(2)正弦曲线、余弦曲线的对称中心分别是正弦曲线、余弦曲线与x轴的交点,正弦曲线的对称中心是(k π,0)(k∈Z),余弦曲线的对称中心是(k∈Z).二、填空题(每小题5分,共10分)3.(·泰安高一检测)如果函数f(x)=sin(x+)++a在区间上的最小值为,则a的值为________.【解析】由x∈得x+∈.当x+=时,[f(x)]min=-++a=,所以a=.答案:4.(·唐山高一检测)定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则有下面三个式子:①f<f;②f<f;③f(sin1)<f(cos1);其中一定成立的是________.【解题指南】先用周期性求x∈[-1,0]时的解析式,再求[0,1]上的解析式,分析f(x)在[0,1]上的单调性,借助三角函数线比较sin与cos,sin与cos,sin1与cos1的大小.最后判断三个式子是否成立.【解析】当x∈[-1,0]时,x+4∈[3,4],所以f(x+4)=x+4-2=x+2.因为f(x)=f(x+2),所以f(x)是周期为2的函数,所以f(x)=f(x+4)=x+2.当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+2,又f(x)为偶函数,所以f(x)=f(-x)=-x+2,所以f(x)在[0,1]上为减函数.因为<<1<<,所以0<sin<cos<1,1>sin>cos>0,1>sin1>cos1>0,所以f>f,f<f,f(sin1)<f(cos1).答案:②③三、解答题(每小题10分,共20分)5.求函数y=1-2cos2x+5sinx的最大值和最小值.【解析】y=1-2cos2x+5sinx=2sin2x+5sinx-1=2-.令sinx=t,则t∈[-1,1],则y=2-.因为函数y=2t2+5t-1在[-1,1]上是增函数,所以当t=sinx=-1时,函数取得最小值-4,当t=sinx=1时,函数取得最大值6.【补偿训练】求函数y=2sin2x+2sinx-1的值域.【解析】将函数配方得y=2-.因为-1≤sinx≤1,所以当sinx=-时,y min=-;当sinx=1时,y max=3.所以函数的值域为.6.已知f(x)=log a cos(其中a>0且a≠1).(1)求f(x)的单调区间.(2)试确定f(x)的奇偶性和周期性.【解析】(1)当a>1时,函数f(x)的增区间为,k∈Z.函数f(x)的减区间为,k∈Z.当0<a<1时,函数f(x)的增区间为(kπ+,kπ+),k∈Z函数f(x)的减区间为,k∈Z.(2)函数f(x)的定义域不关于原点对称,函数f(x)既不是奇函数,也不是偶函数.函数f(x)的最小正周期是π.。
余弦正切练习题

余弦正切练习题一、选择题1. 以下哪个选项表示余弦函数的定义域?A. (-∞, ∞)B. [0, ∞)C. [-1, 1]D. (-1, 1)2. 余弦函数的周期是多少?A. πB. 2πC. 3πD. 4π3. 若sin(x) = 1/2,那么x等于多少?A. πB. 2πC. π/2D. -π/24. 以下哪个选项表示tan(π/4)的值?A. √2B. -√2C. 1D. -15. 若cos(θ) = 0.8,那么θ等于多少?A. 0.8B. 0.9C. 0.6D. 0.7二、填空题1. cos(0)的值为______。
2. tan(180°)的值为______。
3. 一个角的余弦为正,且它的正切为0.5,那么这个角的大小为______。
4. 若sin(x) = √3/2,那么x的值为______。
5. 若tan(α) = -4/3,那么α的值为______。
三、计算题1. 计算sin(π/3)的值。
2. 计算cos(π/6)的值。
3. 计算tan(5π/4)的值。
4. 若sin(x) = -1/2,求x的取值范围。
5. 若cos(θ) = -0.8,求θ的取值范围。
四、解答题1. 证明:tan^2(x) + 1 = sec^2(x)。
2. 解方程cos(2x) = sin(x)。
3. 画出函数y = sin(2x)在定义域[-π, π]上的图像。
五、应用题1. 一艘船从岸边出发,以每小时10公里的速度向东航行。
一小时后,一飞机从离岸100公里的地方起飞,飞机的速度为每小时600公里,且直线飞往船所在位置。
求飞机和船相遇时的角度。
2. 一辆车沿直线道路行驶,车速恒定为60公里/小时。
已知车头与道路之间的夹角为30°,求车头与北的夹角随时间变化的关系。
六、综合应用题1. 已知一条桥的长度为300米,桥的两端离地面的高度分别为60米和160米。
求桥上,离第一个桥端100米处的一点的高度和与地面的夹角。