CRTSⅢ型板式无砟轨道静力学模型.pdf

合集下载

CRTS三型轨道板课件

CRTS三型轨道板课件
CRTSⅢ型轨道板
CRTSⅢ型板---起源

我国的CRTSⅢ型板式无砟轨道最早出现在成灌线上。因为成灌
线的设计及施工周期都非常紧凑,而且其设计时速只是200km。所以
CRTSⅢ型板式无砟轨道还需要长期的运营以便观测它的实际运营数据
来支持以及优化改进结构型式,最终形成拥有自主品牌的新型板式无
砟轨道系统,从而能够为我国的高速铁路完全走向世界打好坚实的战

轨道板铺设主要考虑桥上50T汽车吊吊板上桥并粗铺,桥下便
道较好地段用平板汽车运输,泵车直接泵送自密实混凝土至桥上灌注
。在跨河、公路和便道较差或不通地段,用轮胎式双向运板车运送轨
道板,铺板龙门吊铺设。
CRTSⅢ型轨道板---封锚工程

封锚砂浆采用强制式搅拌机搅拌。锚穴内部混凝土应采用橡
胶圈方式形成沟槽,以保证封锚砂浆和锚穴的牢固连接。封锚砂浆填
两种:5350mm和4856mm,而板的宽度均为2500mm,板厚度为190mm。
CRTSⅢ型轨道板平面布置图
CRTSⅢ型轨道板轨道板---长度
1)轨道板长度,自然是越长越重,安放后越稳定,越有利于提高工效 ,但受到预制、运输的限制,以及考虑到基础一旦变形起道整修的困 难和曲线地段铺设等问题,又不宜过长,一般以5~7m左右为限。
(三)板下的施工调整层使用的是自密实混凝土层,取消了CA砂浆填充 层,简化了施工工艺,减少了对环境的污染,同时降低工程造价。
CRTSⅢ型轨道板---结构组成
(四)自密实混凝土经过轨道板下面预留“门”形钢筋从而能够可靠连 接而变成了一种复合结构。
(五)在自密实混凝土与底座之间(桥梁)设置土工布隔离层。 (六)此轨道板结构与WJ-8C扣件系统配套,有很好的应用性,并使其具

中铁二院成贵铁路CRTSⅢ型板式无砟轨道设计技术交底

中铁二院成贵铁路CRTSⅢ型板式无砟轨道设计技术交底

(TJ/GW114-2013)的要求。
四、CRTSⅢ型板式无砟轨道结构设计
7、无砟轨道结构高度
板式无砟轨道结构高度见下表。
CRTSⅢ型板式无砟轨道结构高度表(mm)
基础 类型 路基 桩板 桥梁 隧道 60kg/m 钢轨类型 钢轨 176 176 176 176 扣件 34 34 34 34 承轨槽 38 38 38 38 轨道板 200 200 200 200 自密实 混凝土 90 90 90 90 土工布 隔离层 4 4 4 4 底座 300 200 200 200 合计 842 742 742 742
(2)D1K133+180~DK145+930.9段正线和到发线CRTSⅢ型轨道
板制造由后张法改为普通钢筋混凝土轨道板结构; (3)在先张法及普通钢筋混凝土轨道板制造时安装埋入式电子标签于
混凝土轨道板内;
三、设计原则
(4)CRTSⅢ型轨道板制造由后张法改为先张法或普通钢筋混凝土轨 道板结构后,主要变化是轨道板厚度由 210mm改为200mm,厚度减小 10mm,平面尺寸不变;自密实混凝土厚度由100mm改为90mm,厚度 减小10mm;底座混凝土等级由C40改为C30;底座配筋由HRB400等级 改为CRB550等级。 (5)开展普通钢筋混凝土轨道板结构在时速 250km运营条件下的适 应性检测和测试试验研究。 (6)增加轨道板第三方检测及信息化建设。
四、CRTSⅢ型板式无砟轨道结构设计
3、轨道板
轨道板制造时安装埋入式电子标签于混凝土轨道板内。安装方式:通 过定位孔沿上层非预应力钢筋纵向绑扎固定。安装位置:轨道板标识牌正 下方,标签正面朝上,背靠钢筋。安装数量:每标识牌正下方安装 1个, 每块轨道板安装2个。 轨道板应满足《高速铁路CRTSⅢ型板式无砟轨道先张法预应力混凝土 轨道板暂行技术条件》(TJ/GW118—2013 )的要求。埋入式电子标签 应满足《CRTSⅢ型板式无砟轨道混凝土轨道板埋入式电子标签暂行技术 要求》(工管科信函〔2015〕266号)。

crts_iii型板式无砟轨道毕业设计[管理资料]

crts_iii型板式无砟轨道毕业设计[管理资料]

目录第一章绪论 (1)第一节引言 (1)第二节高速铁路的发展及现状 (2)一、国外高速铁路的发展 (2)二、我国高速铁路的发展现状 (3)第三节无砟轨道概况 (3)一、无砟轨道的概念及特性 (3)二、无砟轨道的类型 (4)第四节各国无砟轨道发展概况 (5)一、日本的无砟轨道 (5)二、德国的无砟轨道 (8)三、法国等其他国家的无砟轨道 (11)四、我国的无砟轨道 (11)第五节板式无砟轨道发展现状 (12)一、CRTSⅠ型板式无砟轨道 (13)二、CRTSⅡ型板式无砟轨道 (14)第六节CRTSⅢ型无砟轨道目前研究存在的问题 (16)第七节本文研究的意义、主要内容及方法 (18)一、本文研究的意义 (18)二、主要研究内容及方法 (18)第二章CRTSⅢ型板式无砟轨道结构组成及技术要求 (20)第一节CRTSⅢ型板式无砟轨道结构 (20)一、CRTSⅢ型板式无砟轨道系统简介 (20)二、CRTSⅢ型板式无砟轨道结构组成 (21)三、CRTSⅢ型板式无砟轨道的结构特点 (21)三、支承层 (22)四、底座 (23)第三章计算参数与模型 (24)第一节计算参数的选取 (24)第二节模型的建立 (25)一、单元的定义 (27)二、荷载工况 (28)三、计算结果 (28)四、温度应力计算 (32)第四章轨道板的配筋 (33)第一节轨道板配筋的计算 (33)第二节轨道板设计荷载弯矩值的确定 (33)第三节轨道板纵向配筋计算 (33)一、轨道板采用的混凝土及钢筋 (33)二、轨道板预应力筋的配筋 (33)三、纵向非预应力筋的配筋 (34)四、配置箍筋 (35)第四节轨道板横向配筋计算 (35)一、轨道板采用的混凝土及钢筋 (35)二、轨道板横向预应力筋的配筋 (35)三、轨道板横向非预应力筋的配筋 (36)四、配置箍筋 (37)第五章底座板的配筋 (38)第一节底座板的配筋计算原则 (38)第二节底座板设计弯矩的确定 (38)第三节底座板纵向配筋 (38)一、底座板采用的混凝土及钢筋 (38)一、底座板横向配筋采用的混凝土及钢筋 (39)二、底座板横向配筋计算及复核 (40)三、轨道板横向箍筋配置 (40)第六章CRTSⅢ型板式无砟轨道的施工工艺简介 (42)第一节CRTSⅢ型轨道板预制工艺 (42)一、轨道板生产施工工艺流程 (42)二、轨道板张拉及封锚 (42)三、轨道板湿养、水养和喷淋养护 (44)四、轨道板的存放和运输 (44)第二节CRTSⅢ型板式无砟轨道施工工艺 (45)一、混凝土施工 (45)二、自密实混凝土 (45)结论 (50)致谢 (51)参考文献 (52)第一章绪论第一节引言在20世纪60年代,日本“新干线”的运营速率大于200km/h,这开启了世界高速铁路发展的新篇章。

CRTS三型轨道板

CRTS三型轨道板
在路基地段上要铺设支承层,并且要在沿着线路纵向方向上进行 连续铺设。在板与板之间的缝隙位置必须要设置横向伸缩假缝,在支 承层施工完成后应该立即进行拉毛处理。 支承层材料有下面两种:水硬性混和料和低塑性水泥混凝土。支 承层应该首先使用水硬性混和料以此来提高支承层方面的抗弯和抗裂 等性能。

CRTSⅢ型轨道板---底座

凹槽处弹性垫层示意图
CRTSⅢ型板式无砟轨道的相对优势
对 比 C R T S Ⅰ 型、CRTSⅡ型 两种板式无砟轨 道系统的水泥乳 化沥青砂浆材料, 岔区板式无砟轨 道充填层材料采 用自密实混凝土, 其经济性相对较 好。
CRTSⅢ型轨道板的相对优势
就CRTS Ⅲ型轨道板而言,其生产工艺和 I型板相似,采用独立台 座、双向后张法生产。 采用WJ-8C扣件,承轨台带挡肩,外观和II板相似,其精度要求也 向经数控磨床加工后的CRTSⅡ型轨道板看齐。 因底座和轨道板之间的填充、调整层用自平流混凝土代替了CA砂 浆,板底需预留门形钢筋,以确保轨道板和砂浆层结合良好,防止单 元板在环境温度变化和行车重量变化时板端的翘起变形。相当于用I型 板的工艺生产出达到或接近经数控磨床加工后的CRTSⅡ型轨道板精 度的轨道板。
CRTSⅢ型轨道板---结构组成
(四) 自密实混凝土经过轨道板下面预留“门”形钢筋从而能够可靠连 接而变成了一种复合结构。 (五)在自密实混凝土与底座之间(桥梁)设置土工布隔离层。 (六) 此轨道板结构与 WJ-8C 扣件系统配套,有很好的应用性,并使其 具备较好的施工性能和保持轨距的能力
在桥梁和遂道地段设置的底座应该是C40钢筋混凝土底座,它的底 座宽度为3100mm,在其上面设置了两个尺寸为 600 mmx400 mm的 凹槽,并且其深度应该与底座相同。 在其底座顶面上要设置 4mm厚的土工布隔离层,在凹槽四周要设 置10mm厚度的复合弹性橡胶垫层;然而在桥梁地段上面底座和梁面 之间是通过预埋套管和预埋钢筋来实现连接的。

C R T S Ⅲ型板式无砟轨道自密实混凝土技术研究与应用

C R T S Ⅲ型板式无砟轨道自密实混凝土技术研究与应用

特别策划至2016年底,我国高速铁路运营里程已超过2.2万km。

尽管与德国、日本等国家相比,我国对高速铁路技术的研究起步较晚,但通过技术引进、消化、吸收和再创新,已成为世界高速铁路建设和运营线路最长的国家。

我国高速铁路轨道结构经历了从有砟轨道向无砟轨道转变的过程,无砟轨道结构以其高平顺性、高稳定性和少维修性成为高速铁路首选。

我国无砟轨道结构主要分为板式无砟轨道和双块式无砟轨道2大类,其中板式无砟轨道结构为主要型式。

CRTS Ⅲ型板式无砟轨道结构是我国在引进CRTS Ⅰ型板式无砟轨道结构(日本单元板结构)和CRTS Ⅱ型板式无砟轨道结构(德国博格板结构)之后,创新研发的具有自主知识产权的新型无砟轨道结构形式,与前两种板式无砟轨道结构形式相比,其结构特点之一是采用了耐久性优异的自密实混凝土材料。

1 轨道结构特点与功能定位典型的CRTS Ⅲ型板式无砟轨道结构见图1[1]。

结构从上至下分别是钢轨、扣件、轨道板、自密实混凝土调整层、中间隔离层、钢筋混凝土底座(底座上设有2个限位凹槽)。

在结构设计上,轨道板与自密实混凝土调整层被设计成复合结构,两者通过轨道板板底预留的“门”型连接钢筋进行锚固加强,共同承受上部列车动荷载。

CRTS Ⅲ型板式无砟轨道自密实混凝土技术研究与应用谭盐宾1,2,谢永江1,2,杨鲁1,2,李林香1,2(1. 中国铁道科学研究院 铁道建筑研究所,北京 100081;2. 高速铁路轨道技术国家重点实验室,北京 100081)基金项目:国家自然科学基金项目(51408611);中国铁道科学 研究院科技研究开发计划项目(2015YJ027)第一作者:谭盐宾(1981—),男,副研究员。

 摘 要:CRTS Ⅲ型板式无砟轨道是我国具有自主知识产权的新型无砟轨道结构,其结构特点之一是采用了高稳定性自密实混凝土作为充填材料,与轨道板形成复合结构,共同承受列车动荷载。

从CRTS Ⅲ型板式无砟轨道复合结构特点及其对充填材料的特殊要求、自密实混凝土性能指标、施工关键工艺以及工程应用等方面详细介绍CRTS Ⅲ型板式无砟轨道自密实混凝土研究与应用现状。

CRTSⅢ型板式无砟轨道施工技术交底

CRTSⅢ型板式无砟轨道施工技术交底

新建北京至沈阳铁路客运专线河北段站前工程施工JSJJSG-5标CRTSⅢ型板式无砟轨道施工技术交底中国水利水电第三工程局有限公司京沈京冀客专V标段指挥部目录1、工程概况 (1)2、施工准备 (2)2.1施工人员 (2)2。

2施工材料 (3)2。

3工装设备 (4)2.4施工现场 (5)3、施工工艺及流程 (5)3。

1试验整体程序 (5)3.2底座板施工 (5)3.2.1基面验收 (5)3。

2。

2钢筋工程 (6)3。

2.3底座板模板安装 (9)3.2。

4底座板混凝土施工 (12)3.3伸缩缝填缝施工 (14)3。

4隔离层及弹性缓冲垫层施工 (16)3.4.1土工布铺设 (16)3。

4。

2弹性垫板安装 (17)3.4。

3钢筋网片安装 (17)3。

5轨道板粗铺及精调 (18)3.5.1轨道板粗铺 (18)3.5.2轨道板精调 (20)3。

6封边模板安装 (21)3.6。

1封边模板安装 (21)3.6.2压紧装置 (22)3.6。

3排气孔设置 (23)3.6。

4灌注前检查 (23)3。

7自密实混凝土施工 (24)3。

7.1自密实混凝土原材料验收及贮存 (24)3。

7.2自密实混凝土拌制 (26)3。

7.3自密实混凝土运输 (27)3。

7。

4自密实混凝土灌注 (27)3.7。

5自密实混凝土拆模 (28)3。

7.6自密实混凝土养护 (28)4、施工注意事项 (30)4.1技术注意事项 (30)4.2安全注意事项 (31)5、质量检验 (33)CRTSⅢ型板式无砟轨道施工技术交底1、工程概况CRTSⅢ型板式无砟轨道由钢轨、弹性扣件、轨道板、自密实混凝土层、隔离层、底座等部分组成。

路基、桥梁、隧道地段无砟轨道结构高度分别按838mm、738mm、738mm设计。

CRTSⅢ型轨道板厚200mm,轨道板宽度2500mm,混凝土强度等级为C60.无砟轨道底座为钢筋混凝土结构,混凝土强度等级为C35,配置双层CRB550级冷轧带肋钢筋焊网,路基底座宽度为3100mm,桥梁、隧道底座宽度为2900mm,路基直线地段底座厚度为300mm (含4mm土工布),桥梁、隧道。

高速铁路CRTSⅢ型板式无砟轨道施工作业指导书(全面)

高速铁路CRTSⅢ型板式无砟轨道施工作业指导书(全面)

高速铁路CRTSⅢ型板式无砟轨道施工作业指导书目录1、底座板施工作业指导书.............................. - 1 -2、隔离层及弹性垫层施工作业指导书................... - 18 -3、轨道板运输及存放作业指导书....................... - 25 -4、轨道板粗铺施工作业指导书......................... - 33 -5、轨道板精调施工作业指导书......................... - 40 -6、自密实混凝土制备与运输施工作业指导书............. - 48 -7、自密实混凝土灌注与养护施工作业指导书............. - 59 -底座板施工作业指导书1 适用范围本作业指导书适用于新建郑州至徐州铁路客运专线CRTSⅢ型板式无砟轨道底座施工,以及其他铁路客运专线单元型式带凹槽结构的底座施工.2 编制依据2.1《高速铁路轨道工程施工质量验收标准》(TB10754-2010)2.2《铁路混凝土工程施工技术指南》(铁建设[2010]241号)2.3《铁路混凝土工程施工质量验收标准》(TB10424-2010)2.4《高速铁路工程测量规范》(TB10601-2009)2.5《郑徐铁路客运专线CRTSⅢ型板式无砟轨道施工质量验收指导意见》(工管线路函[2014]367号);2.6《高速铁路CRTSⅢ型板式无砟轨道先张法预应力混凝土轨道板暂行技术要求》(TJ/GW118-2013);2.7《钢筋混凝土用钢筋焊接网》(GB/T1499.3-2010)2.8《钢筋焊接网混凝土结构技术规程》(JGJ 114-2003)2.9《冷轧带肋钢筋》(GB 13788-2008)2.10新建郑徐铁路客运专线CRTSⅢ型无砟轨道施工图;2.11施工现场现有施工条件及相关资源配置.3 作业准备3.1 技术准备(1)对施工图的会审已经完成.对所有进场人员进行技术培训,考核合格后方可上岗.现场管理人员应熟悉无砟轨道及底座施工的程序和方法;技术人员应熟练掌握无砟轨道底座施工及相关工序的施工方法、技术要求、验收标准并完成对作业人员的技术交底;作业人员应熟练掌握底座施工方法、工序要求、作业标准.(2)完成配合比试验,确定配合比.(3)线路沉降变形通过预评估,布设CPⅢ网, CPⅢ测量完成并通过评估.(4)无砟轨道施工前通过“施工现场质量管理”检查,检查记录已按规定经过签认.“施工现场质量管理检查记录表”见附表1.3.2 材料准备(1)完成原材料进场验收,确保原材料各项性能指标符合设计及相关规范、标准的要求.(2)模板采用定型钢模板,以满足混凝土底座高程控制要求.所需底座模板、连接件、固定件按计划数量准备齐全.3.3 现场准备(1)底座基面(如:梁面、路基表面、隧道基面等)验收合格.(2)配置满足施工技术和工艺参数要求的混凝土搅拌站、混凝土输送车、混凝土输送泵、钢筋加工场等资源.(3)确保施工便道畅通、施工用电设施到位.4 技术要求1)无砟轨道工程施工前通过“无砟轨道铺设条件”评估,工后沉降变形符合设计要求.2)梁面高程满足设计要求,对蜂窝、麻面进行处理,处理后无浮渣、浮灰、油污等,平整度要求整孔梁面平缓变化,梁面预埋件规格、数量、位置、状态符合设计要求,伸缩缝安装牢固无脱落现象;路基高程及表面密实度满足设计要求,路基表面应平整无积水,排水系统符合设计要求.3)底座施工前,必须精确放出底座中心线,直线地段底座中心线与轨道中心线重合,曲线地段底座中心线与轨道中心线存在偏心值,偏心值可在设计图“曲线超高地段底座横断面相对坐标表”中查出.4)桥梁地段底座采用C40钢筋混凝土结构,宽度 2900米米、厚度 200米米;底座均采用单元式结构,单元间设置宽度为20米米的横向伸缩缝;每一个单元底座对应1块轨道板.路基地段和隧道地段底座采用C35钢筋混凝土结构,宽度 3100米米、厚度 300米米;一个底座单元对应3块轨道板(个别地段对应4块轨道板),每两个底座单元之间设置宽度为20米米的伸缩缝;路基上的底座单元在伸缩缝位置设置传力杆,传力杆采用8根Φ36米米光面钢筋,长度为500米米.伸缩缝填充采用聚苯乙烯泡沫塑料板,并在伸缩缝顶面和两侧采用嵌缝材料密封,其中伸缩缝顶面嵌缝材料尺寸为:20米米(深)×20米米(宽)×底座宽度 (长);两侧嵌缝材料尺寸为:40米米(深)×20米米(宽)×底座宽度 (长);底座两侧与桥面保护层采用聚氨酯嵌缝材料密封,嵌缝材料尺寸为20(深)×15(宽).隧道两端一定长度范围基面植筋或预埋门型钢筋与底座相连,尺寸及分布据施工图确定.5)底座配筋根据梁跨长度、路基和隧道地段各布板单元的布置组合不同而各不相同,如32米梁型布板单元为2×4925+4×5600,路基上有3×4856、4×4856布板单元等多种形式,应按照施工图进行配筋.底座钢筋采用CRB550级冷轧带肋钢筋焊接网片,分上下2层,外形尺寸相同,但上层网片在凹槽设计部位预留有长方形孔.需要注意的是,桥梁上、路基上、隧道内的轨道结构高度存在差异.6)梁缝小于140米米地段,底座和轨道板必须与梁端对齐;梁缝大于140米米地段,底座伸出量除考虑挡水台设置需要外,为保证扣件间距小于687米米,梁端轨道板和底座按悬出按0~60米米控制.底座伸出后施工时需注意:除铺设轨道板外,施工期间禁止在其上堆放重物或通行车辆,如必须通行车辆时,应采用搭设短桥的方式通过,避免悬出端混凝土局部受损.7)每块轨道板对应的底座上均设置两个深度为100米米的凹槽(郑徐客专之平面尺寸为:上口--纵向700米米×横向1000米米,底部--纵向680米米×横向980米米).底座顶面、凹槽底部和四周侧面设隔离层和复合弹性橡胶垫层(相关内容见“隔离层及弹性垫层施工作业指导书”).8)CPⅢ测设完成并通过预评估验收.CPⅢ点沿线路布置的纵向间距宜为60米,最大不宜超过70米;横向间距不应超过结构宽度 .同一对CPⅢ点的里程差不宜大于1米.桥梁上的 CPⅢ点应设在桥梁的固定支座端.5 施工程序与工艺流程5.1 施工程序底座板施工程序:施工准备→底座基面处理与验收→底座钢筋网片加工与现场安装→安装底座模板→安装限位凹槽模板→浇筑混凝土→底座混凝土收面与养护→伸缩缝填缝.5.2底座施工工艺流程无砟轨道底座施工工艺流程如图1.图1 无砟轨道底座施工工艺流程图6 施工要求6.1施工准备根据线路平、纵断面资料,确定底座标高.注意消除因线路纵坡及平面曲线引起的误差,必要时对轨道板板缝宽度进行调整.底座施工前,除按技术要求放出底座中心线外,应同时在底座基面上放样底座边线、伸缩缝位置和凹槽中心线位置(弹出凹槽底部边线),以便于作业.如图2.图2 底座边线、中线放样6.2底座基面处理与验收底座板施工前对基面进行处理和验收.桥梁、隧道基面应按设计要求进行拉毛处理.其纹路应均匀、清晰、整齐,否则须将轨道中心线两侧1.45米范围内基面进行凿毛处理,凿毛后露出新鲜混凝土面积应不低于总面积的 75%.凿毛后及时清理基面的浮碴、碎片、尘土、油渍等.打开梁面预埋套筒封盖,清除套筒内杂物,以连接钢筋(¢16米米)螺扣端试装应满足设计要求.安装连接钢筋时拧入套筒内的长度为21米米,扭紧力矩不小于80N·米.套筒(总长度 42米米)旋入深度不正确时应予以调整、螺纹损坏时用相应规格的丝锥对套筒套丝,套筒损坏时予以更换.当上述3种情况都不能正确处理时,则需要补植锚固钢筋,即在桥梁梁面上钻孔,经清孔、除尘后植筋.植筋孔径、深度与所使用锚固胶类型、生产厂家有关,但无论哪种锚固胶均应满足抗拔性能要求.如图3.图3 桥面补植连接筋示例路基高程满足设计要求、表层平整无积水,密实度检测符合规定值要求.隧道内植筋钢筋直径、植筋深度、外露长度及植筋间距应满足设计要求,预埋钢筋应扶正,已损坏的予以补植,补植方案由设计单位提出.6.3钢筋网片加工与现场安装底座内的钢筋网片可一次加工成型,其它钢筋(如架立筋、U型筋、连接筋等)由钢筋加工场集中加工,再运输至施工现场备用,如图4.图4 集中加工好的钢筋网片安装底座钢筋前按保护层厚度要求安放好钢筋保护层垫块(保护层厚度 35米米),按设计图要求确定对应于底座的钢筋网片规格、数量、安装位置(混凝土保护层厚度两端为45米米、两侧为75米米)并安放稳固.桥梁上的底座钢筋通过桥面植筋与桥梁结构连接.先放置好底层网片,再将连接钢筋拧入套筒中,并达到规定深度和扭矩.底层钢筋网片应与最近的连接钢筋加以绑扎.如图5.图5 桥上先放置底层网片再拧入连接钢筋架立筋和U型筋的尺寸应满足设计,以保证钢筋网片位置准确,尤其是曲线超高地段,超高采用外轨抬高方式,配筋高度在缓和曲线区段按线性变化完成过渡,必须注意其内外侧高差及其沿线路纵向的渐变.如图6.图6 以架立筋、连接筋控制钢筋笼厚度6.4安装底座模板应当严格控制底座板高程施工精度 ,曲线范围须保证最小底座厚度不小于100米米.由于CRTSⅢ型板式无砟轨道对底座标高和平整度有严格要求,所以应采用定型钢模板.模板安装前必须对模板表面清理后涂刷脱模剂.模板安装时,根据CPⅢ控制网测量模板平面位置及高程,并通过模板的调整螺杆调整模板顶面标高达到底座设计标高.纵向模板间用螺栓连接.模板应定位准确,横向伸缩缝按放样尺寸严格控制,并应采取固定措施,防止其位移、上浮.模板安装要平顺、牢固,接缝严密,防止胀模、漏浆.如图7.图7 安装底座模板和控制伸缩缝间距路基地段每两个底座单元之间设置宽度为20米米的伸缩缝.伸缩缝位置设置传力杆,采用φ36米米光圆钢筋,每处设置8根,间隔正反向安装.传力杆全长500米米,其一端400米米长度范围做涂刷沥青防锈处理,端部套一个304不锈钢套筒、规格φ40*4米米,长度 100米米,套筒内留出36米米填充纱头或泡沫塑料.现场安装时应保证传力杆空间位置准确,固定牢靠,传力杆端头横向位置偏差不应大于10米米、8根传力杆应位于同一水平面.6.5 安装限位凹槽模板每块轨道板对应的底座板范围内设置两个限位凹槽.将加工好的限位凹槽模板放置到底座单元固定位置处,并以插销或螺栓与侧模加以连接固定.如图8.图8 限位凹槽模板安装就位6.6浇筑底座混凝土在浇筑底座板混凝土前宜在底座板两侧各设置4根直径φ20米米、长度约10~15厘米的 PVC管,为横梁提供下拉固定点.安装PVC管时,宜上翘2度 (图9),使之在施工期间不易进入雨水并便于挂扣,自密实混凝土灌筑完成后用普通混凝土或微膨胀混凝土封闭.图9 横梁下拉预埋PVC管位置示意图模板安装完成后,经检查其几何尺寸及高程符合设计要求,各种预埋构件设置齐全、稳固后方可浇筑底座混凝土.浇筑混凝土前对基面洒水湿润,并至少保湿2h,当基面无积水时方可浇筑混凝土.底座混凝土在拌合站集中生产,采用混凝土输送车运输、泵车泵送、插入式振动棒振捣的施工方法.混凝土在搅拌、运输和浇筑过程中不应发生离析.混凝土浇筑时的自由倾落高度不宜大于2米,当大于2米时,应采用滑槽、溜关等辅助下落,出料口距混凝土浇筑面的高度不宜超过1米.当工地昼夜平均气温高于30℃时,应采取夏期施工措施,混凝土的入模温度不应超过30℃;当工地昼夜平均气温连续3d低于-3℃时,应采取冬期施工措施,混凝土的入模温度不低于5℃.浇筑混凝土时应避免对模板(包括凹槽模板)的撞击,同时必须注意限位凹槽处不得漏振.6.7混凝土收面与养护底座板两侧有6%的横向排水坡,变坡点位于自密实混凝土边缘往轨道中心线方向5厘米处.对应于桥梁其宽度为25厘米,路基上其宽度为35厘米.桥梁在浇筑混凝土时在侧模内侧25厘米处拉线确定其位置,路基在侧模内侧35厘米处拉线确定其位置.振捣密实后,先用木抹找平基准面,再用铁抹精抹收平.混凝土达到设计强度的 75%之前,禁止在底座上行车.混凝土浇筑完成后及时进行覆盖养护,养护时间不少于7天.必要时予以补水,养护用水的温度与混凝土表面温度之差不得大于15℃.当环境温度低于5℃时禁止洒水,可在混凝土表面喷涂养护液并采取适当保温措施.6.8伸缩缝填缝伸缩缝填缝施工前,先将底座表面予以清扫,对接缝内松散混凝土采用刷子清理,对个别突出点用角磨机加以修理,并用吹风机对接缝灰尘、浮渣进行清理.必要时根据所填充伸缩缝尺寸对定尺嵌缝板加以切割,或补充拼缝条.再将嵌缝板嵌入伸缩缝内,可使用竹片等辅助工具,确保嵌缝板安装到位(如图10a).灌注填缝密封材料前,在接缝两侧的底座表面粘贴薄膜(如图10b),以防止污染且保证在及时撕掉薄膜后填缝线型美观.在嵌缝板顶面及接缝两侧涂刷界面剂,待界面剂表干30米in后再灌注填缝密封材料.硅酮填缝密封材料的适宜施工温度为-10℃~40℃,聚氨酯填缝密封材料的适宜施工温度为5℃~35℃.对于双组份填缝密封材料,应按照产品规定的配比将A料和B料进行混合,混合均匀后应在30米in内灌注完毕.采用专用施工机具进行填缝密封材料的灌注施工.灌注时,灌注口应靠近接缝处,灌注速度应缓慢均匀、接缝饱满,尽量避免产生气泡,如图10b.a嵌入嵌缝板 b灌注密封材料图10 伸缩缝填缝施工示例对于曲线超高地段接缝,应从高处分段灌注,使填缝密封材料顺序流向低处,灌注过程中应尽量避免填缝密封材料溢出.填缝密封材料灌注完毕至实干前,应采取有效防护措施防止雨水、杂质落入,并避免下一步工序对填缝密封材料的损坏.7 劳动力组织采用架子队管理模式.施工资源的配置根据施工段落划分、工期要求合理组织.一个工作面的人员配置见表1.表1 混凝土底座施工人员配置表序号作业岗位数量(人)1 施工负责人 12 技术主管 13 技术人员 34 专兼职安全员 25 质检、试验、测量人员 66 工班长 17 钢筋安装人员168 模板工169 混凝土工1010 养护工 211 普工 5合计638 设备工装一个工作面所需机具、材料配置见表2.表2 底座板施工机具材料配置表9 材料要求混凝土、钢筋网片、桥面连接钢筋、路基段传力杆等材料的性能指标、数量必须满足设计要求.10 质量控制及检验10.1底座结构线路上轨道板的位置和数量原则上是固定的 ,但在特殊情况下,如桥梁上、隧道口过渡段、曲线段需要结合实际情况对轨道板板缝予以调整,底座长度及钢筋长度也应做相应调整.底座施工时,应严格控制底座表面高程施工误差,确保自密实混凝土调整层的厚度 .10.2钢筋质量及安装要求钢筋质量和焊接网片必须符合相关标准和规程的要求.钢筋焊接网验收时,不仅需要检测其抗拉强度 (≮550米Pa)、屈服强度 (≮500米Pa)、伸长率(A≮8.0)、冷弯、抗剪等力学性能,还需要对钢筋焊接网片的外观尺寸和重量进行检测,尤其是重量必须过磅,并按实重验收,焊接网片的实际重量与理论重量的允许偏差严格控制在±4%以内.底座钢筋安装应符合表3要求,钢筋网片几何尺寸的允许偏差应符合表4的规定,且在一张网片中纵向、横向钢筋的数量应符合设计要求.表3 钢筋的绑扎安装允许偏差表4 钢筋焊接网片重量、尺寸允许偏差及开焊点要求(1)模板及支撑杆件的材质及支撑方法应满足施工工艺要求.(2)模板安装必须稳定牢固,接缝严密,不得漏浆.模板必须打磨干净并涂刷隔离剂.混凝土浇筑前模板内的杂物必须清理干净.底座模板安装允许偏差项目应符合表5规定.表5 底座模板安装允许偏差确保混凝土表面及棱角不受损伤.(4)拆模时混凝土表层与环境温差不应大于15℃.10.4限位凹槽模板凹槽模板不仅要求强度、刚度满足,且需要安装牢固,偏差符合设计要求.底座模板安装允许偏差应符合表6规定.表6 限位凹槽模板安装允许偏差10.5传力杆安装路基地段混凝土底座传力杆安装允许偏差应符合表7的规定.表7 传力杆安装允许偏差10.6混凝土10.6.1原材料水泥采用品质稳定、强度等级42.5的普通硅酸盐散装水泥.细骨料应选用材质坚硬、表面清洁、级配合理、吸水率低、孔隙率小的洁净天然中粗河砂.其含泥量不大于2%、泥块含量不大于0.5%,氯化物含量不大于0.02%.粗骨料应选用材质坚硬、表面清洁的二级碎石,按最小堆积密度配制而成,各级粗骨料应分级储存、分级运输、分级计量,最大粒径为20米米,含泥量不大于1%,氯化物含量不大于0.02%.外加剂应选用减水率不小于25%、收缩率比不大于110%的聚羧酸盐系减水剂.掺合料采用复合型掺合料,以提高混凝土早期强度和后期耐久性.拌合用水和养护混凝土用水,均为饮用水,对混凝土无腐蚀作用.其它技术要求应符合《铁路混凝土工程施工技术指南》(铁建设[2010]241号)的规定.10.6.2施工配合比与混凝土拌制混凝土拌制前,先测定砂、石料含水率,准确测定因天气变化而引起的粗、细骨料含水量变化,及时调整施工配合比,将选定的理论配合比换算成施工配合比,计算每盘混凝土实际需要的各种材料量,并下达《施工配料通知单》送交拌合站进行混凝土的拌制.混凝土胶凝材料用量应不超过450 千克/米3,水胶比不应大于0.45.在配制混凝土拌合物时,混凝土原材料严格按照施工配合比要求进行准确称量,水、胶凝材料、外加剂的用量误差为±1%;砂、石料的用量误差为±2%.搅拌时,先向搅拌机投入细骨料、水泥、掺和料和外加剂,搅拌均匀后,再加入所需用水量的 80%,待砂浆充分搅拌后再投入粗骨料并加入剩余用水量,总搅拌时间为2~3米in.10.6.3拌合物性能要求混凝土拌和物的坍落度宜控制在160~200米米范围.在施工工艺等条件许可的情况下,应尽量选用低坍落度的混凝土施工.混凝土拌和物的入模含气量应为4~5%.混凝土内总碱含量不应超过3.5千克/米3,当骨料具有潜在碱活性时,总碱含量不应超过3.0千克/米3.混凝土中氯离子总含量不应超过胶凝材料总量的 0.10%.其它性能指标应符合《铁路混凝土工程施工技术指南》(铁建设[2010]241号)的要求.10.7底座板结构尺寸当底座混凝土施工完成后具体检查内容如下:底座混凝土结构应密实、表面平整,无露筋、蜂窝、孔洞、疏松、裂纹、麻面和缺棱掉角等外观缺陷,外观尺寸符合设计要求.混凝土底座外形尺寸允许偏差见表8、限位凹槽外形尺寸允许偏差见表9.表8 混凝土底座外形尺寸允许偏差表9 限位凹槽外形尺寸允许偏差10.8伸缩缝填缝(1)填缝所用材料的品种、规格、质量等应符合设计要求和相关标准的规定.(2)缝槽应干净、干燥,表面平整、密实,无起皮、起砂、松散脱落现象.(3)密封材料应与缝壁粘结牢固,嵌填密实、连续、饱满,无气泡、无开裂、脱落等缺陷.嵌填深度符合设计要求.(4)嵌填完成的密封材料表面宽度不得小于伸缩缝宽度 ,最宽不得超过伸缩缝宽度 +10米米.(5)填缝板厚度允许偏差±2米米,高度允许偏差±5米米.(6)嵌填完成的密封材料表面应平滑,缝边应顺直,无凹凸不平现象.11 安全及环保要求11.1 安全要求(1)作业中的起重设备旋转半径范围内任何人员不准靠近,操作人员和防护人员必须做好观察及瞭望,杜绝碰伤、刮伤、挤伤事故.小型材料吊装必须使用吊篮,以免捆扎物品高空坠落.(2)底座钢筋网片吊装前一定要检查吊车的钢丝绳、吊链及吊具的安全状况.(3)施工现场所有用电设备,除作保护接零外,必须在设备负荷线的首端处加设两极漏电保护装置.遇到跳闸时,应查明原因,排除故障后再行合闸.(4)工地照明设备齐全可靠,夜间施工现场照明条件可确保夜间施工安全.(5)长桥施工设置的临时专用上桥楼梯,应有安全护栏并标定可承载人数.桥面上施工场面狭窄,各种机具设备要堆放整齐,留有专门的过人通道.(6)人员进入施工现场必须配戴安全帽.定期开展施工安全、交通法规等的教育,不断强化安全意识.11.2 环保要求(1)收集的各种固体废弃物必须按照相关规定进行处理或统一运输到指定弃渣场,避免洒落到桥下或路基旁污染周边环境.(2)施工用水必须规范,且经过沉淀处理.特别在冲洗桥面或养护混凝土的过程中,避免施工用水对周边环境的污染.(3)无砟轨道施工机械在施工或修理过程中必须加强油料管理,避免洒落,污染桥面且进行必要的回收处理.(4)混凝土等材料运输过程中注意便道要洒水,避免尘土飞扬.附表1现场管理检查记录表隔离层及弹性垫层施工作业指导书1适用范围本作业指导书适用于新建郑州至徐州铁路客运专线CRTSⅢ型板式无砟轨道隔离层及弹性垫层施工,以及其他铁路客运专线单元型式带凹槽结构的底座施工.2 编制依据2.1《高速铁路轨道工程施工质量验收标准》TB10754-2010;2.2《高速铁路工程测量规范》(TB10601-2009);2.3《郑徐铁路客运专线CRTSⅢ型板式无砟轨道施工质量验收指导意见》(工管线路函[2014]367号);2.4《高速铁路CRTSIII型板式无砟轨道隔离层用土工布暂行技术条件》(铁总科技[2013]125号);2.5新建郑徐铁路客运专线CRTSⅢ型板式无砟轨道施工图;2.6施工现场现有施工条件及相关资源配置.3作业准备3.1 技术准备(1)组织技术人员学习有关规范和技术标准,会审施工图纸,编制材料计划.对作业人员进行施工技术交底和施工组织设计交底、技术培训,培训合格后上岗.(2)做好各种原材料的检验验收工作.(3)中间隔离层和弹性垫层施工前清理底座板顶面,不符合标准的应进行修整并达到验收标准.3.2 材料准备(1)施工前应做好备料工作,原材料各项指标应符合相关规范和设计文件的要求.(2)施工场地内不同规格的材料应分别堆放,同时材料堆放应有防止日晒、雨淋、碾压等措施.4技术要求(1)自密实混凝土与底座之间设置中间隔离层.隔离层应采用聚丙烯非织造土工布,不得添加除消光剂、抗紫外线稳定剂之外的添加剂.(2)土工布定制幅宽2600米米,允许偏差-0.5%.厚度 4米米,允许偏差为±0.5米米.单位面积质量700g/米2;土工布单位面积质量允许偏差为-6%,其它技术指标见本作业指导书表3.(3)土工布应铺贴平整,无破损,边沿无翘起、空鼓、褶皱、封口不严等缺陷,轨道板范围内土工布不得搭接或接缝.(4)弹性垫层厚度应均匀一致,主要技术指标见表4、表5.铺设后与限位凹槽四周侧面粘贴牢固,顶面与底座表面平齐,周边无翘起、空鼓、封口不严等缺陷.5施工程序与工艺流程5.1 施工程序底座板上隔离层及弹性垫层施工程序:施工准备→中间隔离层土工布铺设→凹槽四周弹性垫板粘贴.5.2中间隔离层施工工艺流程中间隔离层土工布铺设施工工艺流程如图1.图1中间隔离层施工工艺流程图5.3弹性垫板施工工艺流程凹槽四周弹性垫板粘贴施工工艺流程如图2.。

CRTSIII板式无砟轨道

CRTSIII板式无砟轨道

CRTSIII板式无砟轨道摘要:CRTSIII板式无砟轨道为我国完全自主知识产权轨道结构形式,是以后无砟轨道发展方向,自密实混凝土填充性能是整个施工最为重要环节,通过揭板实验和施工现场数据反馈不断完善施工配合比和施工工艺,对自密实混凝土在无砟轨道中应用具有指导意义。

关键词:自密实混凝土;扩展度;黏度改性材料;砂率;级配1.前言自密实混凝土是指拌合物具有高流动性、间隙通过性和抗离析性,浇筑时仅靠自重作用而无需振捣便能均匀填充密实成型的高性能混凝土。

自密实混凝土的性能包括自密实混凝土的拌合物性能与自密实混凝土的硬化体性能。

配合比中胶凝材料用量、粗细骨料的级配、外加剂的减水率及稳定性和黏度改性材料的掺量都会对自密实混凝土的流动性、填充性和抗离析性。

本文主要根据规范选择原材料,通过试验室内配合比的验证和调整,现场工艺性灌注和揭板效果分析,对施工配比进行优化,对灌注工艺进行改进。

2.概述新建郑徐客专ZXSD标商丘特大桥,起讫里程为商丘特大桥DK171+888.285~DK189+456.55,全长17.568km,曲线最大超高105mm。

CRTSⅢ型轨道板分为P5600、P4925、P4856、特殊调节板四种尺寸,为了能全面掌握CRTSⅢ型板式无砟轨道自密实混凝土填充性能,采用线下揭板实验和桥上揭板结合的方式,工程技术人员全过程跟踪。

首次拌制混凝土配合比采用中国铁道科学研究院配合比,工装采用湖南华测轨道交通公司提供工装。

3.原材料3.1矿粉本试验采用的是河南亚新钢铁集团有限公司生产的矿渣粉,化学组成见表1。

表1 矿粉的化学组成/%3.2 黏度改性材料本文试验采用的TZ-IV型黏度改性材料为铁科院研制,武汉比邻科技发展有限公司生产。

黏度改性材料的化学成份见表2。

表2 黏黏改化学成分组成/%黏度改性材料为铁科院研发,为调整自密实混凝土松散度和包裹性的新型材料。

对自密实混凝土出现的轻微包裹性差,每方用量增加2Kg黏改可改善混凝土包裹和松散状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CRTSⅢ型板式无砟轨道静力学模型
1.1有限元软件的选择
现在世界上流行的有限元分析软件主要由美国的ANSYS、ADINA、HKC、MSC四个比较知名的公司生产,常用的有:ANSYS公司生产的Ansys软件,ADINA公司生产的Adina软件,HKC公司生产的Abaqus软件和MSC公司生产
的Marc、Nastran、Dytran软件等。

这些有限元分析软件在分析功能上有着自身
独有的特点,Ansys是商业化比较早的软件,在国内知名度高,应用广泛;Adina
是唯一能够独自做到流固耦合的软件,其他软件必须与别的软件搭配进行迭代分
析才能做到结构、流体、热的耦合分析,但是进入中国比较晚,市场没有完全铺开;MSC公司生产的软件是比较老的软件目前更新速度比较慢;Abaqus是结构
分析能力最强的软件。

本文针对所研究的问题所选取的有限元分析软件是Abaqus,现将Abaqus软
件与其他软件进行对比分析,说明Abaqus软件独有的特点与优势:(1)Abaqus
不仅能够解决线性求解问题,还能解决特别复杂的非线性求解问题,Abaqus在
求解非线性问题有着独特的优势;(2)Abaqus具有十分完备的单元库,可以模
拟任意形状的几何体,再加上丰富的材料模型库,基本上
可以模拟典型工程的所有材料,包括钢筋混凝土、金属、
橡胶、复合材料以及地质材料(土壤、岩石)等[51];(3)
Abaqus不仅能够进行静态和准静态分析、瞬态分析、弹塑
性分析、模态分析、几何分线性分析、断裂分析、疲劳和
耐久性分析等,而且能够进行热固耦合分析、流固耦合分
析、质量扩散分析、声场和声固耦合分析等;(4)在一个
非线性求解问题中,Abaqus不仅能自动选择相应载荷增量
和收敛限度,而且能连续调节参数来保证在分析过程中得
到有效的精确解。

因此,用户通过定义准确的参数就能很
好的控制数值计算的结果[52]。

(5)Abaqus软件针对不收敛
问题的求解能力比其他软件都要强,而且计算速度比较
快。

一个完整的Abaqus分析过程,通常由前处理
图3-1 Abaqus分析步骤(Abaqus/CAE)、分析计算(Abaqus/Standard或Explicit)
和后处理(Abaqus/CAE或Viewer )三个明确的步骤构成。

前处理阶段主要是生
成物理问题的模型,包括创建部件、创建材料和截面属性、定义装配件、设置分析步、定义边界条件和荷载和划分网格等,并生成一个Abaqus输入文件,提交给Abaqus/Standard或Explicit;在分析计算阶段,通常以后台的方式运行,分析结果以二进制的方式保存在文件中,以便于后处理。

完成一个求解的过程会根据模型的复杂程度和计算机的运算能力来决定,一般从几秒到几天时间不等;后处理模块可以读入分析结果数据,并能够以彩色云图、变形图、动画和XY曲线图等多种方式显示结果。

1.2无砟轨道结构模型
本文运用ABAQUS软件建立了CRTSⅢ型板式无砟轨道有限元模型,其主要由钢轨、扣件系统、轨道板、门型钢筋、自密实混凝土、土工布隔离层、底座板、实验室底座等[53,54]组成。

图3-2 CRTSⅢ型轨道板结构组成
图3-3 CRTSⅢ型轨道板横断面
1.2.1钢轨及扣件模型
本模型根据工程实际情况选取了我国高速铁路现行钢轨类型中的60kg/m钢轨,其断面尺寸见图3-4。

图3-4 60kg/m钢轨(单位:mm)
将在CAD软件中建好的钢轨断面图另存为sat格式,并通过Import-Sketch 命令将钢轨断面图导入到Abaqus中,并用实体单元来进行模拟。

图3-5 CAD导入图图3-6 划分网格钢轨钢轨参数见表3-1。

表3-1钢轨设计参数
名称数值单位
质量60.64kg/m
断面积77.45cm2
弹性模量205.9GPa
密度7830kg/m3
热膨胀系数 1.18e-51/℃
泊松比0.3-
横轴惯性矩3217cm4
竖轴惯性矩514cm4
根据工程实际情况,扣件选用WJ-8型扣件。

扣件考虑了纵向、横向和垂向的刚度和阻尼,将钢轨与轨道板之间的单元节点连接起来,采用线性弹簧-阻尼单元进行模拟,间距为0.63m,每个扣件提供的最大纵向阻力为9.0KN。

扣件系统模拟具体参数[55]见表3-2。

表3-2 扣件设计参数
名称扣件系统数值单位
横向刚度50kN/mm
纵向刚度15.12kN/mm
垂向刚度35kN/mm 传统建模方法采用单根弹簧模拟扣件有可能引起下部轨道板应力集中,鉴于此本文建立了扣件垫板模型,使扣件力均布地传到轨道板上,并约束了扣件端部的转动[56]。

图3-7 垫板模拟示意
1.2.2轨道板参数
轨道板是由预制的预应力钢筋混凝土组成的结构,混凝土强度等级取为C60。

单块轨道板的尺寸为长5600mm、宽2500m、厚210mm。

相邻两板之间设置宽为70mm的板缝,轨道板具体布置图如图3-8所示。

图3-8 轨道板平面布置图(单位mm)
轨道板材料参数[57]见表3-3所示:
表3-3 轨道板结构参数
部件名称参数名称数值单位
轨道板尺寸(长×宽×厚) 5.6×2.5×0.21m 密度2500kg/m3弹性模量36.5GPa
泊松比0.2-
热膨胀系数1e-51/℃
1.2.3门型钢筋参数
门型钢筋采用三维梁单元进行模拟,并通过embed功能连接轨道板和自密实混凝土。

其空间位置示意图如图3-9所示,在轨道板上共布置了40组门型钢筋,如图(b)以虚线为分界线,虚线以上部分锚固于轨道板、虚线以下部分锚固于自密实混凝土[58]。

图3-9 门型钢筋示意图
门型钢筋材料参数如表3-4所示:
表3-4 门型钢筋结构参数
部件名称参数名称数值单位
门型钢筋
截面尺寸0.006m 密度7851kg/m3弹性模量200GPa 泊松比0.3-热膨胀系数 1.2e-51/℃
1.2.4自密实混凝土参数
自密实混凝土的混凝土强度等级为C40,其尺寸为长5600mm、宽2500mm、厚100mm。

并在其下部区域设置两块尺寸为长700mm、宽1000mm、深100mm 的凸台与底座板凹槽相连。

并且自密实混凝土与底座板之间铺设了4mm的土工布。

其外形图如图3-10所示。

相关文档
最新文档