数形结合思想在小学数学中的应用

合集下载

“数形结合思想”在小学数学教学中的应用探究

“数形结合思想”在小学数学教学中的应用探究

“数形结合思想”在小学数学教学中的应用探究“数形结合思想”是指通过将数学概念与几何图形相结合,利用图形的形状、大小、位置等特点,来帮助学生理解和掌握数学知识的一种教学方法。

在小学数学教学中,数形结合思想可以应用于多个知识点,有助于激发学生的兴趣和思维能力,提高学习效果。

下面以几个具体的例子来探究“数形结合思想”的应用。

1. 初识分数在小学三年级,学生初学分数,通常会通过画图解决一些简单的分数计算问题。

给学生发一块巧克力,要求学生将其分成4份,然后问学生得到了几分之几的巧克力。

通过画图的方式,学生可以直观地看到巧克力被平均分成了4份,每份都是1/4,因此得到了1/4的巧克力。

在实际操作中,学生通过将巧克力分成4份,再仔细观察其形状,可以帮助学生理解分数的基本概念和意义。

2. 计算面积小学四年级学生学习了面积的概念,通常会通过直观的图形模型来计算面积。

给学生一块长方形的纸,要求学生将其剪成两个相等的正方形,然后问学生每个正方形的边长是多少。

学生可以通过观察纸张的形状和剪切后的图形,发现纸张的面积没有改变,只是形状发生变化,因此可以利用数形结合思想,将纸张的面积等分成两个相等的部分,得出每个正方形的边长。

3. 探索正方体的表面积和体积小学五年级学生学习了正方体的表面积和体积的计算方法。

在教学中,可以通过将正方体展开成一个平面图形,来帮助学生计算表面积。

给学生一份模型图纸,要求学生将其折叠成一个正方体,并计算其表面积。

学生可以通过将模型拆解成若干个平面图形,然后计算每个图形的面积,再将各个面积加起来,得到正方体的表面积。

这种通过图形的拆解和组合,结合数学的计算方法的教学方式,可以帮助学生更好地理解和掌握正方体的表面积和体积的概念。

4. 运算符号的理解小学六年级学生学习了运算符号的理解和运用,在教学中可以通过图形的比较来帮助学生理解不同运算符号的含义。

给学生两个数的图形表示,要求学生通过观察图形的大小和形状,来判断两个数的大小关系,并用相应的运算符号表示。

数形结合思想在小学数学教学中的应用

数形结合思想在小学数学教学中的应用

数形结合思想在小学数学教学中的应用摘要:随着我国经济社会的不断进步,学生素质教育越来越受到人们的重视。

在我国新课程教学改革的背景下,对小学图形与数学的结合提出了更高的技术要求。

如今,越来越多的教育教学专家和学者越来越关注小学数形结合的教学理念。

将传统数学中抽象的图形和复杂的数学运算公式组合转化为数学语言,方便学生更好地学习和掌握数学基础知识,促进学生的未来发展。

关键词:数形结合思想;小学数学教学;应用小学阶段是学生学习和成长的关键时期,也是学生思维从特定意识形态向抽象意识形态转变的过程。

因此,小学数学教学应将数与形相结合的思想有机地结合起来,让学生发现数学中“数”与“形”的关系,以图形的形式表达抽象复杂的数学语言,有利于提高学生的数学逻辑思维和空间思维能力,提高学生数形结合的思维能力,有助于学生掌握和吸收数学知识,为学生今后的学习打下坚实的基础。

一、数形结合思想的特点1、直观性直觉性强的教学特点主要体现在各种数学图形中。

小学生在学习处理各种书面数学的实际应用问题时,建立数字与图形的交互,从而,将当前基础数学课程中的知识内容转化为更直观的图形,方便学生进行抽象理解、分析学习和应用。

在当前小学教育发展阶段,学生抽象思维学习能力的教育发展还不成熟。

数学教师在课堂讲授数学专题时,运用多种图形学习教学方法,直接获取并辅助小学生进行教学,有助于全面深化和培养小学生抽象思维学习能力。

在数学学科的学习和教学中,主要研究和应用多种数学教学方法,结合多维抽象思维的学习和教学方法,使更多的学生能够充分利用数形结合方法直接获得相关的数学知识,帮助学生加强对数学知识的印象。

2、形象性数学学习过程要求小学生具有较强的逻辑思维组合能力,在小学生数学教学中,教师仅通过数学语言进行教学,难以使小学生深入理解数学知识。

采用数形结合的教学方法,通过图形与数字的结合,帮助演绎和理解主题,有助于小学生形象思维与逻辑思维的结合与协调,切实加快小学生对数学知识的理解速度。

浅谈数形结合在小学数学教学中的应用

浅谈数形结合在小学数学教学中的应用

浅谈数形结合在小学数学教学中的应用数形结合是指数学中利用图形来解释或证明数学概念、性质以及运算法则的一种方法。

在小学数学教学中,数形结合可以使抽象的数学概念更加形象具体,帮助学生加深对数学的理解和记忆。

以下从几个方面来考察数形结合在小学数学教学中的应用。

一、加深对基本概念的理解小学数学的基本概念包括数的大小比较、数的四则运算、面积、周长、体积、图形的基本属性等。

通过数形结合的教学方式,可以帮助学生更加深入地理解数学概念,从而更好地应用于实际中。

例如,在学习整数加减法时,可以通过图形的方式让学生感受到正负数之间的加减关系,从而帮助学生更加深入地理解整数加减法的概念;在学习长方形面积和周长时,可以用图形来帮助学生理解长方形的性质和计算公式,从而更加深刻理解面积和周长的概念。

二、培养空间想象能力数学中的空间想象能力是指利用思维能力来理解图形和空间形态、关系、运动等方面的能力。

通过数形结合的教学方式,可以帮助学生锻炼和培养空间想象能力。

例如,在学习直线和射线时,可以通过画示例图形来帮助学生理解直线、射线的性质和分类标准,从而培养学生的空间想象能力。

三、促进创新思维和思维能力发展数形结合的教学方式可以促进学生的创新思维和思维能力的发展。

学生在数学学习中,需要通过各种方式思考问题,发现问题的本质,并通过创新的方式解决问题。

例如,在学习正方形的对角线时,可以通过解决问题的方法来推导出正方形对角线长度的公式,从而促进学生的创新思维和思维能力的发展。

四、提高学习兴趣和记忆效果数形结合的教学方式可以使教学内容更加生动有趣,从而提高学生的学习兴趣,使学生更加主动地参与到数学学习中。

通过图形的方式来呈现抽象的数学概念,可以帮助学生更加直观地理解和记忆,从而提高记忆效果。

例如,在学习平行四边形的面积时,可以通过画图来让学生直观地感受到平行四边形面积的计算公式,从而提高记忆效果。

综上所述,数形结合是一种有效的小学数学教学方法,在教学中应用数形结合能够帮助学生更加深入地理解数学概念,提高空间想象能力,促进创新思维和思维能力的发展,提高学习兴趣和记忆效果。

数形结合思想在小学数学教学中的应用分析

数形结合思想在小学数学教学中的应用分析

数形结合思想在小学数学教学中的应用分析数形结合思想是指在数学教学中,通过将数学概念与图形、形状相结合,从而帮助学生更好地理解和掌握数学知识。

在小学数学教学中,数形结合思想的应用可以提高学生的学习兴趣,培养他们的观察能力、想象力和逻辑思维能力。

下面将从几个方面对数形结合思想在小学数学教学中的应用进行分析。

在小学数学的基本概念教学中,数形结合思想可以帮助学生形象地理解和掌握概念。

在教授几何图形的性质时,通过将图形与数字相结合,可以更加清晰地展示图形的特征和性质。

在教学正方形时,可以通过画图形、标注边长和角度大小等方式,让学生直观地认识到正方形具有四个相等的边和四个直角。

这样一来,学生不仅能够记忆正方形的定义,还能够深入理解正方形的特征。

在问题解决和数学应用能力培养方面,数形结合思想也可以起到积极的作用。

在小学数学中,很多问题都可以通过绘制图形来解决。

通过将问题转化成图形,学生可以更好地理解问题的意义和条件,并通过观察图形来寻找解决问题的方法。

在解决长方形面积和周长问题时,可以通过画图的方式,将长方形划分成若干个单位正方形,从而帮助学生直观地理解面积和周长之间的关系,更容易找到解决问题的方法。

数形结合思想还可以培养学生的空间想象力和几何思维能力。

在小学数学教学中,几何是一个重要的内容,而几何问题常常与图形有关,通过运用数形结合思想,可以帮助学生形成空间思维和几何直观。

在教学平面图形的分类时,可以通过给学生展示不同形状的图形,并要求他们根据形状的特征和性质进行分类。

通过这样的训练,可以增强学生对图形的观察分辨能力和分类能力,同时也培养他们的几何思维能力。

在数学问题解决中,数形结合思想还可以帮助学生提高解决问题的思维能力。

通过运用数形结合思想,学生可以更准确地把握问题的条件和要求,从而更好地制定解决问题的策略和方法。

在解决比较大小问题时,可以通过绘制图像,让学生对比不同图形的大小和属性,从而找到解决问题的线索。

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用一、数形结合思想的基本概念数形结合思想是指通过数学的抽象思维和几何的形象思维相互贯通、相互补充、相互渗透,以求达到更好的教学效果。

这种教学思想不仅能够增加数学的趣味性和实用性,同时也有助于培养学生的综合思维能力和创造力。

数形结合思想在小学数学教学中的应用主要体现在以下几个方面:1. 利用图形帮助理解数学概念。

通过绘制图形可以帮助学生更好地理解几何图形的性质和关系,有利于强化学生对几何概念的理解和记忆。

2. 利用数学知识解释图形现象。

通过数学知识可以对图形的属性进行量化分析,从而更深入地理解图形的性质和规律。

3. 通过数学模型对实际问题进行分析和求解。

通过建立数学模型对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

1. 利用几何图形教学数学概念在小学数学的教学中,教师可以通过绘制几何图形的方式,来帮助学生更好地理解和掌握数学概念。

在教学加减法时,可以通过绘制几何图形,让学生直观地理解加减法的意义和运算规律。

在教学分数时,可以通过绘制图形让学生形象化地理解分数的大小和大小比较。

也可以通过观察图形的对称性来帮助学生理解和掌握对称性的概念。

2. 利用数学知识解释图形现象在小学数学教学中,教师可以通过数学知识来解释一些图形现象,从而帮助学生更深入地理解图形的性质和规律。

在教学三角形的面积时,可以通过数学知识来解释三角形面积与底和高的关系,从而让学生更好地理解三角形的面积计算方法。

3. 通过数学模型对实际问题进行分析和求解在小学数学的教学中,教师可以引导学生通过建立数学模型对实际问题进行分析和求解。

在教学解决实际问题时,可以通过建立代数方程或几何图形来对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

也可以通过绘制图形来帮助学生形象化地理解和解决实际问题。

三、数形结合思想在小学数学教学中的效果评价数形结合思想在小学数学教学中的实践应用,可以有效地提高小学生的数学学习兴趣,激发他们的学习动力,增强他们的数学综合素养。

“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用数学是一门抽象而又实际的学科,数形结合是指在数学教学中,通过数学概念和图形表达相互联系的思想方法。

这种方法在小学数学教学中起着非常重要的作用,能够帮助学生更好地理解数学知识,提高数学素养,培养学生的数学思维和创造力。

本文将就数形结合思想在小学数学教学中的应用进行简要阐述。

一、数形结合在数字认知中的应用数形结合是指数学与图形相结合,通过图形来帮助学生理解数学概念。

在小学数学教学中,数形结合可以帮助学生更直观地认识数字,提高数字的认知能力。

比如在学习整数的绝对值时,可以通过画坐标轴和点的方法来帮助学生理解绝对值的概念。

这样的教学方法能够使学生更加深刻地理解概念,加深对数学知识的记忆和理解。

在小学数学教学中,数形结合也可以应用在计算的教学中。

比如在教学加法和减法时,可以通过图形的方式来帮助学生理解运算的意义和方法。

通过画图的方式,可以让学生更加直观地理解加法和减法的运算规则,提高他们对计算的理解和掌握程度。

这种方法还可以提高学生的动手能力和空间想象能力,培养学生综合运用数学知识解决问题的能力。

在学习几何图形的教学中,数形结合也有着非常重要的作用。

通过引入几何图形的概念,可以帮助学生理解各种图形的特征和性质。

比如在学习三角形和矩形时,可以通过图形的方式来帮助学生理解两者的特征和区别。

通过让学生画图、测量边长和角度,可以加深学生对几何图形的理解,并且培养他们观察和辨别图形的能力。

在小学数学教学中,数形结合的应用是非常丰富和灵活的。

比如在教学小数时,可以通过把小数用图形表示出来,让学生更加直观地理解小数的意义和大小关系。

在教学面积和体积时,可以通过图形的方式帮助学生理解面积和体积的计算方法。

在解决问题时,可以通过引入图形和实际情境,让学生更好地理解问题的意义和解决方法。

这些都是数形结合在小学数学教学中的实际应用案例,显示了数形结合在提高教学效果和学生学习兴趣方面的重要作用。

数形结合思想在小学数学教学中的应用研究

数形结合思想在小学数学教学中的应用研究

数形结合思想在小学数学教学中的应用研究
数形结合思想是指通过对图形进行分析和变换,将数学问题转化为几何问题来解决的一种思考方式。

在小学数学教学中,数形结合思想可以帮助学生更好地理解抽象的数学概念,提高解决问题的能力。

本文就数形结合思想在小学数学教学中的应用进行研究。

1. 图形的分析与理解
数学教学中,常常通过图形来展示数学问题。

在教学加减法时,可以通过图形来表示具体的计算过程,帮助学生更好地理解数字的加减运算。

通过观察和分析图形,学生可以更清楚地理解数字之间的关系,加强对数学概念的理解。

数形结合思想还可以帮助学生进行图形的变换与推理。

在小学数学教学中,常常会出现一些与图形相关的问题,需要学生进行变换和推理。

在解决有关面积和周长的问题时,可以通过对图形进行变换和推理,来解决问题。

通过进行图形的变换,可以帮助学生更好地理解图形的性质,进而解决数学问题。

3. 数学问题的建模与解答
在教学实践中,可以通过引入一些与图形相关的活动和教具,来促进学生对数形结合思想的应用。

可以利用拼图、积木和几何图形等教具,进行一些有关图形分析和变换的活动。

通过这些活动,学生可以直观地感受到数形结合思想的应用,进而将其应用到解决实际问题中。

数形结合思想在小学数学教学中的应用

数形结合思想在小学数学教学中的应用

数形结合思想在小学数学教学中的应用数形结合思想在小学数学教学中是非常重要的。

数形结合是指将数学问题通过图形的方式来呈现,让学生通过观察、分析和推理的方式来解决数学问题。

这种方法不仅可以激发学生的兴趣和好奇心,同时也可以提高学生的思维能力和解题能力,使学生更好地理解和掌握数学知识。

一、图形展示数字关系在小学数学教学中,图形展示数字关系是非常常见的应用。

例如,在教学解一元一次方程时,通过绘制图形,可以用较简单的方法来解决问题。

例如,如果问题是求解y = 2x + 1和y = x + 5的交点,我们可以将两个方程的图形画在同一坐标系中,然后找到它们的交点。

通过这种方法,学生可以更直观、更简便地理解方程组的解法。

此外,在解决加减乘除问题时,也可以通过绘制图形来辅助解题。

例如,在教学如何计算数字间的比例时,可以通过绘制图形来让学生更好地理解比例的概念。

在这种情况下,使用圆形和矩形图形来比较数字的大小和相对关系,可以让学生更加直观地理解数学中的比例。

二、图形变换和几何体的认识在小学数学中,图形变换和几何体的认识也是非常重要的知识点。

通过图形变换和几何体来展示数学问题,可以让学生更好地理解这些概念。

例如,在教学如何识别图形时,可以通过形状的属性,如边缘和角来展示不同的图形。

三、图形解决实际问题最后,数形结合思想也可以应用于帮助解决实际问题。

例如,在解决运动问题时,可以通过绘制图形来呈现步数和距离的关系。

通过这种方式,可以帮助学生更好地理解运动惯性和速度的概念,从而更好地解决各种运动问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德宏师范高等专科学校毕业论文系部:数学系姓名:李*学号:103班级:2013级初等教育理科1班目录【摘要】 0【关键词】数形结合;小学数学;教学应用 0引言 01数学结合思想的简要概述 0数形结合思想的涵义 (1)数形结合在数学中的应用范围 (1)2数形结合在小学数学中的意义和价值 (1)数形结合是开启数学大门的金钥匙 (1)数形结合是形成概念的好帮手 (1)数形结合深化课堂知识目标化解难点 (2)数形结合有助于知识的理解和记忆 (3)数学结合有利于培养小学生的数学能力 (4)数形结合形”发展学生的空间观念,培养学生初步的逻辑思维能力 (4).2数形结合提高了小学生学习数学的趣味性 (4)能够增强学生学习数学的自信心 (6)3数形结合在小学数学中的应用 (6)巧用数形结合,形成概念教学 (6)巧用数形结合,突破几何难点 (8)巧用数形结合,解决实际问题 (8)4在运用数形结合教学中,应注意的问题 (9)教师应更新教学观念 (9)要培养学生运用数形结合思想的学习习惯 (10)充分发挥多媒体技术的作用 (10)【参考文献】 (11)数形结合思想在小学数学教学中的应用【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。

本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。

【关键词】数形结合;小学数学;教学应用引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。

随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。

在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显著提升。

数形结合思想在数学中得到了充分的重视。

运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。

新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验[1],说明人们已经意识到数学思想方法的重要性。

这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。

常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。

本文就数形结合思想进行讨论。

1数学结合思想的简要概述我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。

同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。

”这句话深刻阐明了“数形结合”的思想[2]。

依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。

数形结合思想的涵义数、形是一个数学事物两个方面的基本属性。

数形结合思想的实质是数字与形状一一对应的数学关系。

数形结合能够将抽象的数学语言、复杂的数量关系、直观的数学图形、清晰的位置关系一一结合起来,将抽象的数学问题具体化、形象化,将复杂的数学问题简单化和明了化。

并以此培养学生的抽象思维、空间想象思维和逻辑思维等。

数形结合在数学中的应用范围数形结合思想在数学的解题方法中十分常见,在数学领域应用十分广泛。

数形结合思想可以应用于集合问题、函数问题、方程与不等式问题、三角函数问题、线性规划问题、数列问题、解析几何问题、立体几何问题等诸多方面的数学问题。

在小学数学中数形结合思想可以具体应用于相遇问题、追及问题、和差问题、和倍问题、工程问题、分数应用题、比例应用题、代数问题、图形与几何问题、简单的统计问题、列方程解应用题等一系列的问题。

2数形结合在小学数学中的意义和价值我国的数学课程改革随着教育改革的推进也在不断发展与深入,因此数学方法的研究与应用对于数学教学研究意义重大。

数形结合的数学思想则能很好地培养小学生的抽象思维能力与直观推理能力,对于数学课堂教学意义重大。

众所周知,全球已经渐渐进入了知识经济时代,我国迫切需要大量德才兼备的创新型人才,这些人才来源于我国的基础教育,因此我国应重视小学数学课堂,重视小学基础教育,培养应该从小学开始。

数形结合是开启数学大门的金钥匙小学生的思维是以形象思维力主,逐步向抽象思维过渡的。

有些数学内容学习起来比较抽象,小学生不容易掌握,利用数形结合思想引导学生以“形”思“数”,可以帮助学生建立数感,构建直观的知识概念体系,利用数形结合,开启了学习数学的大门!数形结合是形成概念的好帮手数形结合形成概念的好帮手,形成概念就是学生从许多具体事例中以归纳的方式概括出一类事例的本质属性。

学生不能形成概念主要是因为没有经历“将丰富的感性材料加以去粗取精、去伪存真、由此及彼、由表及里”的改造过程,数形结合能使比较抽象的概念转化为清晰、具体的事物,从而让学生更好地发现事例的本质属性或规律。

【案例1】“三角形的认识”一课,可以这样引导学生形成概念:交流:这节课重点研究三角形( 板书:三角形) ,你在哪里见过三角形你对三角形已经有哪些了解引导:你会画三角形吗请闭上眼睛用彩色笔在纸上画一个大小适中的三角形。

展示:选择三幅典型的图。

分析:这三幅图是你印象中的三角形吗为什么交流:图形( 1) 中三条边不是线段,图形( 2) 不是封闭图形,图形( 3) 中两条线段的端点没有重合。

思考:你认为三角形是怎样一种图形板书:由三条线段围成的图形( 每相邻两条线段的端点相连) 叫三角形。

评析:利用数形结合,帮助学生很快形成了“三角形是怎样一种图形”的概念。

数形结合深化课堂知识目标化解难点教学目标的确定是教学设计的核心,深化课堂目标往往要借助于形象直观的事物,从教学实践入手,达到具有可操作性、具体的目标。

【案列1】如《长方体的认识》一课中,找找长方体的面、棱长、顶点的特征……分析:如图出示长方体,让学生通过小组合作,找出长方体的特征:长宽高,6个面,12条棱,8个顶点。

学生在理解长方体特征后,对后来求长方体的表面积有很大的帮助,例如计算抽屉、柱子的表面积时,先弄清这样的长方体有几个面,就计算几个面的面积。

在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利地、高效率地学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,为学生今后的数学学习打下坚实的基础。

数形结合有助于知识的理解和记忆由于数学语言比较抽象,而图形语言则比较形象。

利用图形语言进行记忆速度快,记得牢。

笛卡尔曾说:“没有任何东西比几何图形更容易印入脑际了。

因此,用这种方式来表达事物是非常有益的。

”同时,由于图象是“形象”的,语言是“抽象”的,因此对图形的记忆往往保持得比较牢固。

【案例1】有辆汽车自甲地驶向乙地,先上坡后平地,然后下坡,汽车上坡速度为20km/h,下坡速度为40km/h,平地速度为30km/h,汽车自甲地驶向乙地共用6h,平地用2h,下坡用4h,问汽车自乙地驶向甲地需要花多少时间分析:这道题当中有变量,也有不变量,不变量是平地及汽车的行驶速度,变量是上坡路和下坡路,当汽车自乙地驶向甲地时,原先的上坡路变为下坡路,下坡路变为上坡路。

根据此特点,教师可为学生画以下图形:示意图为:甲地到乙地通过图形学生就可迅速理解上坡路变为下坡路,下坡路变为上坡路,从而算出自乙地驶向甲地的上坡时间为:(40×4)÷20=8h下坡时间为:(20×6)÷40=3h平地时间不变,因此汽车自乙地驶向甲地所用时间为:8+3+2=13h.评析:在此解题过程当中,首先图形就吸引了学生的眼球,激发了学生的学习兴趣;其次利用图形可帮助学生建立了数学情感,使学生更容易理解上、下坡的转变,提高了学生的学习效率。

一个简单的图象就能表达复杂的思想,因此图象语言有助于数学思维的表达。

在数学中,有时看到学生遇到难题百思不得其解时,如能画个草图稍加点拔,学生往往思路大开。

充分发挥了图象语言的优越性。

数学结合有利于培养小学生的数学能力数形渗透思想有利于培养小学生的数学能力。

首先,数形渗透思想能够帮助提高小学生的算理能力。

计算贯穿于小学生数学学习的整个过程,计算能力是小学生的必要基本技能。

因此,教师必须在课堂中融入数形渗透的生运用感官对于抽象事物进行分析与理解,从而形成独特的抽象思维能力【3】。

数形结合形”发展学生的空间观念,培养学生初步的逻辑思维能力数形渗透思想能够培养小学生的数学抽象思维能力。

小学阶段的抽象思维能力的培养基本依赖于数学,是小学生数学能力的重要组成部分。

而数形结合满足了小学生对于直观图像进行观察与分析的认知需求,能够协助小学生运用感官对于抽象事物进行分析与理解,从而形成独特的抽象思维能力。

【案例1】教学“体积”概念。

让学生观察一块橡皮和一个铅笔盒,提问:哪个大,哪个小又出示一个魔方和一个骰子,提问:那个大,那个小分析:通过观察物体,学生对物体的大小有了感性认识。

接着我在一个盛有半杯水的玻璃杯里慢慢加入一块石头。

学生观察到,随着石头的投入,杯中的水位不断上升。

评析:玻璃杯里的水位为什么会上升学生从这一具体事例中获得了物体占有空间的表象。

学生很自然地领悟了“物体所占空间的大小叫体积”这一概念。

为了进一步使概念在应用中得到巩固,在盛满水的玻璃杯里放石子,学生看到水溢了出来,然后启发学生:你发现了什么学生思考后提出:杯里溢出的水的多少与放进去的石子有什么关系经过讨论得出:从杯里溢出水的体积等于石子的体积。

至此,学生不仅认识了概念,而且学会了应用概念。

一般来说是从直接感知到表象,再到形成科学概念的过程。

表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,发展学生的空间观念,培养初步的逻辑思维能力,具有十分重要意义。

.2数形结合提高了小学生学习数学的趣味性数形结合能够提升数学教学的趣味性,便于学生理解面对一些较为繁琐的数学问题,使用数形结合的方法,可以在很大程度上提高数学教学的趣味性,使繁琐的数学问题变得更加简单,这样不但为学生解题提供了便利,而且还可以大大激发学生学习数学知识的兴趣,从而为提高数学成绩打下扎实的基础。

【案例1】在一次数学练习课中,老师出了如下一题: 一块长1 米20 厘米、宽90 厘米的长方形铝片,剪成直径为30 厘米的圆片,最多可以剪几块学生列式为120×90÷[×(30/2)2]≈15( 块) 大家都以为这样列式是对的。

相关文档
最新文档