高中数学中的数形结合思想
数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。
这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。
二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。
教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。
对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。
2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。
通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。
教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。
3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。
教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。
教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。
2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。
数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。
3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。
通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。
2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。
数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。
在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。
本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。
通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。
【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。
高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。
在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。
有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。
1.3 研究意义数范围等。
【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。
数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。
数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。
研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。
深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。
2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。
数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。
高中数学数形结合思想必考题型全梳理(附例题)

⾼中数学数形结合思想必考题型全梳理(附例题)数学好教师2020-07-17⼀数形结合的三个原则⼀等价性原则在数形结合时,代数性质和⼏何性质的转换必须是等价的,否则解题将会出现漏洞.⾸先,由代数式、⽅程、不等式构造函数时⼀要注意变量(包括⾃变量和因变量)的取值范围。
⼆双向性原则既要进⾏⼏何直观分析,⼜要进⾏相应的代数抽象探求,直观的⼏何说明不能代替严谨的代数推理.另⼀⽅⾯,仅⽤直观分析,有时反倒使问题变得复杂,⽐如在⼆次曲线中的最值问题,有时使⽤三⾓换元,反倒简单轻松.三简单性原则不要为了“数形结合”⽽数形结合.具体运⽤时,⼀要考虑是否可⾏和是否有利;⼆要选择好突破⼝,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运⽤函数图象时应设法选择动直线(直线中含有参数)与定⼆次曲线.⼆数形结合的应⽤⼀利⽤数轴、韦恩图求集合利⽤数形结合的思想解决集合问题,常⽤的⽅法有数轴法、韦恩图法等。
当所给问题的数量关系⽐较复杂,不好找线索时,⽤韦恩图法能达到事半功倍的效果。
⼆数形结合在解析⼏何中的应⽤解析⼏何问题往往综合许多知识点,在知识⽹络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的⾓度把抽象的数学语⾔与直观的⼏何图形结合起来,达到研究、解决问题的⽬的.构建解析⼏何中的斜率、截距、距离等模型研究最值问题;如果等式、代数式的结构蕴含着明显的⼏何特征,就要考虑⽤数形结合的⽅法来解题,即所谓的⼏何法求解,⽐较常见的对应有:(⼀)与斜率有关的问题(⼆)与距离有关的问题三数形结合在函数中的应⽤(⼀)利⽤数形结合解决与⽅程的根有关的问题【点拨】数形结合可⽤于解决⽅程的根的问题,准确合理地作出满⾜题意的图象是解决这类问题的前提.(⼆)利⽤数形结合解决函数的单调性问题(三)利⽤数形结合解决⽐较数值⼤⼩的问题(四)函数的最值问题(五)利⽤数形结合解决抽象函数问题四运⽤数形结合思想解不等式(⼀) 解不等式(⼆)求参数的取值范围五运⽤数形结合思想解决三⾓函数问题纵观近三年的⾼考试题,巧妙地运⽤数形结合的思想⽅法来解决⼀些问题,可以简化计算,节省时间,提⾼考试效率,起到事半功倍的效果.六解决⼏何问题图象解决⼏何问题借助向量的借助向量的图象利⽤向量可以解决线段相等,直线垂直,⽴体⼏何中空间⾓(异⾯直线的⾓、线⾯⾓、⼆⾯⾓)和空间距离(点线距、线线距、线⾯距、⾯⾯距),利⽤空间向量解决⽴体⼏何问题,将抽象的逻辑论证转化为代数计算,以数助形,⼤⼤降低了空间想象能⼒,是数形结合的深化。
数形结合思想在高中数学教学中的应用分析

数形结合思想在高中数学教学中的应用分析
数形结合思想是通过将数学与几何相结合的方式来解决问题,它充分利用了几何图形
的直观性和数学公式的精确性。
在高中数学教学中,数形结合思想可以被广泛应用于各种
数学概念和技巧的讲解,以及问题的解决。
在几何学中,数形结合思想可以用于解决诸如平面面积、体积等问题。
例如,如果我
们将一个三角形分成两个小的三角形,那么它们的面积加起来就等于原来的三角形的面积。
这就是数形结合思想的应用。
在高中数学教学中,这个思想可以用于教学基本几何概念,
例如勾股定理,三角形面积,正方体体积等。
另一方面,数形结合思想在代数学中也有重要的应用。
例如,在解方程的时候,我们
可以通过画出函数图像,通过图像的交点得到解方程的方法。
在高中数学教学中,这个思
想可以用于数学分析和高等代数的教学中。
此外,数形结合思想也可以用于数学模型的建立和实际问题的解决。
例如,当我们需
要解决一个有关面积或体积的实际问题时,我们可以通过用数学公式计算出形状的尺寸,
然后用这些尺寸来计算出我们所需要的面积或体积。
在高中数学教学中,这个思想可以用
于实际应用问题的教学中,例如纯算题,数学建模竞赛等等。
总之,数形结合思想在高中数学教学中的应用非常广泛。
它可以用于解决几何和代数
问题,用于建立数学模型,和解决实际问题。
更重要的是,数形结合思想可以帮助学生更
好地理解和运用数学知识,拓展他们对数学的视野,进而对数学产生了浓厚的兴趣。
高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
数学家和哲学家对数学的确切范围和定义有一系列的看法。
下面是店铺整理的高中四大数学思想方法,希望对你有所帮助!一、数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。
应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。
运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。
应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线。
以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。
二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决。
分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”。
应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏。
如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结。
数形结合思想在高中数学解题中的运用探究

数形结合思想在高中数学解题中的运用探究数形结合思想是指在解决数学问题时,将数学问题通过图形展示出来,从而更加直观地理解和解决问题的思想。
这种思想在高中数学中有着广泛的运用,可以帮助学生更好地理解数学知识,提高解题能力。
本文将探讨数形结合思想在高中数学解题中的运用,分析其作用和方法,希望对广大学生有所帮助。
一、数形结合思想在解决实际问题中的作用1. 提高问题理解能力在高中数学中,有很多实际问题需要转化为数学模型进行计算。
但有些问题本身并不容易理解,因此就需要通过图形来展示这些实际问题,使得问题更加直观化。
通过数形结合,学生能够更好地理解问题,加深对问题本质的认识,从而更好地应用数学知识解决实际问题。
2. 培养抽象思维能力数学是一门抽象的学科,但通过数形结合,可以将抽象的概念通过图形呈现出来,使得学生更容易理解。
在解决实际问题时,通过图形的呈现,可以培养学生的抽象思维能力,帮助他们更好地理解和应用数学概念。
3. 增强解题方法的多样性数形结合思想能够增强解题方法的多样性。
有些问题可能通过代数方法难以解决,但通过数形结合可以找到新的解题思路。
这样一来,学生能够开拓解题思路,提高解题的效率和灵活性。
二、数形结合思想在不同数学领域的具体运用1. 几何问题的解题在解决几何问题时,数形结合思想是非常重要的。
通过绘制图形,例如画出几何图形、坐标系等,能够更清晰地解决问题。
对于平面几何题目,可以通过画图标注给定条件,然后根据图形的性质进行推导。
对于空间几何题目,可以通过绘制三维图形来直观地理解问题,更好地进行分析和解决。
2. 解方程组的问题在解决方程组的问题时,通过数形结合思想也可以得到很好的应用。
通过画图,将方程组转化为图形表示,可以更加清晰地观察方程组的解的情况,进而找到解的规律。
这样一来,学生能够更好地理解和掌握方程组的解题方法。
3. 研究函数图像在研究函数的图像时,数形结合思想也是非常重要的。
通过画出函数的图像,能够更好地观察函数的性质,比如函数的单调性、极值点、零点等。
数形结合思想在高中数学解题中的运用探究

数形结合思想在高中数学解题中的运用探究【摘要】数统计。
数形结合思想是高中数学解题中的重要方法之一,本文探讨了其在高中数学解题中的重要性和如何运用这一思想解决问题。
通过案例分析,我们看到数形结合思想在几何和代数问题中均有广泛应用。
本文还讨论了数形结合思想与其他数学知识的联系。
结论部分总结了数形结合思想在高中数学解题中的实践意义,并展望了未来在高中数学教学中的发展方向。
数形结合思想的应用不仅能够帮助学生更好地理解和解决问题,也有助于提升他们的数学思维能力,培养他们的逻辑推理能力,为他们未来的学习和工作打下扎实的基础。
【关键词】数形结合思想、高中数学、解题、重要性、运用、案例分析、几何问题、代数问题、联系、实践意义、发展、教学、数学知识1. 引言1.1 引言内容数统计等。
数形结合思想是数学中非常重要的一种思维方式,它将抽象的数学概念与具体的几何图形相结合,既能够帮助我们更加直观地理解问题,又能够提高我们解决问题的效率。
在高中数学学习中,数形结合思想的应用广泛而深入,涉及到几何、代数、概率等多个领域。
通过运用数形结合思想,我们不仅可以更好地理解数学知识,还可以更加灵活地运用这些知识解决问题。
本文将深入探讨数形结合思想在高中数学解题中的重要性,介绍如何运用数形结合思想解决高中数学问题,并通过案例分析展示数形结合思想在几何问题和代数问题中的具体应用。
我们还将探讨数形结合思想与其他数学知识的联系,阐述数形结合思想在高中数学解题中的实践意义,以及展望数形结合思想在未来高中数学教学中的发展。
希望通过本文的探讨,读者能够更深入地理解数形结合思想,并在解决数学问题时能够灵活运用这一思维方式。
2. 正文2.1 数形结合思想在高中数学解题中的重要性数形结合思想可以帮助学生更好地理解数学问题。
通过将数学问题与几何图形相结合,可以直观地展示问题的本质,帮助学生建立全面的认识。
在解决几何问题时,通过数形结合思想,可以将抽象的代数问题转化为具体的几何图像,使问题更加直观和易于理解。
高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四讲 数形结合思想基础知识点:1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。
它可以使抽象的问题具体化,复杂的问题简单化。
“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。
2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。
3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。
4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。
5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。
用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。
经典例题剖析1.选择题(1)(2007浙江)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞解析:因为()g x 是二次函数,值域不会是A 、B ,画出函数()y f x =的图像(图1)易知,当()g x 值域是[)0+,∞时,(())f g x 的仁政域是[)0+,∞,答案:C 。
点评:本题考查函数的图像、定义域、值域,是高考的一个重点,考题多以小题形式出现。
(2)(2007黄冈模拟)平面直角坐标系中,若方程222(21)(23)m x y y x y +++=-+表示椭圆,则实数m 的取值范围是 ( )A.(0,5)B.(1,+∞)C.(0,1)D.(5,+∞)解析:分析方程的结构特点,联想椭圆第二定义,可知应把左右两边分别化为两点间的距离和点到直线的距离:=即(0,1)e==时表示椭圆,解得m>5,故选D。
点评:本题考查椭圆的第二定义,考查数形结合和综合运用解析几何知识分析解题的能力。
2.设A={x||x|=kx+1},若A∩R+=φ,A∩R-≠φ,求实数k的取值范围.解法1:方程|x|=kx+1的解是函数y=|x|和y=kx+1交点的横坐标,结合图形知(如图2),当直线y=kx+1在角α范围内时,方程有负根,且没有正根,故k≥1.解法2:由题意须1xx kx<⎧⎨-=+⎩①有解,1xx kx>⎧⎨=+⎩②无解.①中k=-1时无解,11,011k x kk-≠-=<>-+时得;②中k=1时无解,k≠0时,若101,1x kk=><-即则②有解,所以, k≥1.点评:解法1中,把方程解的讨论问题转化为两个函数图像交点的问题,利用k的几何意义易得解,这是最常用的方法,较之法2要简捷得多,体现了数形结合的优越性。
3.设集全{1,2,3,4,5}A B C =,且{1,3}A B =,求有序集合组{A,B,C}的个数(不同的顺序算不同的组)。
解析:借助文氏图(图3)可知,三个集合A、B、C把全集U分成八个部分,需按1、3是否属于C分类,再把2、4、5三个数放到如图中①②③④⑤五个位置即可,每一种放法对应一个有序集合组。
按1、3是否属于C分四类:(1)1、3∉C; (2)1∈C且3∉C;(3)3∈C且1∉C; (4)1、3∈C共有53×4=500种。
点评:画出文氏图,提高了解题的直观性,使解题思路清晰,分类清楚,易于操作。
图21,3 BAC⑤①④③②U图34. 解三角不等式组⎩⎨⎧<-≥-01tan 03cos 42x x分析:利用三角函数的图像或三角函数线(如图4)求解,先求出一个周期上的解再写出全部。
解答:⎪⎩⎪⎨⎧<-≤≥⇒⎩⎨⎧<-≥-1tan 23cos 23cos 01tan 03cos 42x x x x x 或 由图得解集为:{|()}66x k x k k Z ππππ-≤≤+∈点评:三角函数图像和三角函数线,是处理三角函数值大小问题的两个有力武器,用好它会使解题简捷、高效。
5.已知xy <0,并且4x 2-9y 2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.分析: 4x 2-9y 2=36在解析几何中表示双曲线的方程,反映了变量x 、y 之间的对应关系,但还不一定是函数关系,函数中一个x 只能对应唯一确定的y ,即图像上看不能有“上下重叠”的点。
但加上条件xy <0呢?画出图形(如图5)则一目了然。
解:224936x y -=因为,故221049y x =-≥ 解得33x x ≤-≥或,又{{00000或x x xy y y ><<⇔<>(3)()(3)x y f x x >∴==<-因此能确定一个函数关系y=f(x).其定义域为(-∞,-3)∪)3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).点评:本例考查对函数概概念的理解,揭示了函数与解析几何中方程的内在联系——任何一个函数的解析式都可看作一个方程,但方程中x 与y 的对应关系未必是一个函数.要要处理好这个关系,又如:(2006全国I.20)在平面直角坐标系xOy中,有一个以(10,F和(2F为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x y 、轴的交点分别为A 、B ,且向量OM OA OB =+。
求:图4图5(Ⅰ)点M 的轨迹方程; [(Ⅱ)OM 的最小值]。
解:(I )……易得椭圆方程的方程为: 2214y x += (x>0,y>0) 下面想要通过导数确定过第一象限点P(x 0,y 0) (0<x 0<1)切线的斜率,就要建立x 与y 的函数关系,结合图形(如图6)可知:y=21-x 2(0<x<1)(而不能是y =±'y =又0y =004'|x x x y y ==-, 所以切线AB 的方程为:00004()x y x x y y =--+ 从而0014(,0),(0,)A B x y ,又220014y x +=,设M (x,y) 由OM →=OA →+OB →可得M 的轨迹方程为:1x 2 + 4y 2 =1 (x>1,y>2) 6.已知关于x 的实系数二次方程x 2+ax+b=0有两个实数根α,β.证明: (Ⅰ)如果│α│<2,│β│<2,那么2│a│<4+b 且│b│<4; (Ⅱ)如果2│a│<4+b 且│b│<4,那么│α│<2,│β│<2.分析:借助函数图像讨论方程的解是很直观有效的方法,由函数y=x 2+ax+b 的图像(如图7)易知│α│<2,│β│<2,(2)0f ±> 证明:根据韦达定理│b│=│αβ│<4.因为二次函数f(x)=x 2+ax+b 开口向上,│α│<2,│β│<2. 故必有f(±2)>0,即4+2a+b>0, 2a>-(4+b); 4-2a+b>0, 2a<4+b . ∴2│a│<4+b .(Ⅱ)由 2│a│<4+b 得 4+2a+b>0即 22+2a+b>0 f(2)>0. ① 及 4-2a+b>0 即 (-2)2+(-2)a+b>0,f(-2)>0. ②由此可知f(x)=0的每个实根或者在区间(-2,2)之内或者在(-2,2)之外.若两根α,β均落在(-2,2)之外,则与│b│=│αβ│<4矛盾.若α(或β)落在(-2,2)外,则由于│b│=│αβ│<4,另一个根β(或α)必须落在(-2,2)内,则与①、②式矛盾. 综上所述α,β均落在(-2,2)内. ∴│α│<2,│β│<2.点评:这是1993年全国高考题的压轴题,标准答案中给的第一解法是利用求根公式写出两根,再由已的范围,再转化为a 、b 的关系,有一定的难度。
但是利用数形结合,由二次函数的图象讨论实根分布问题,就容易多了,其压轴功能就大打了折扣。
7.求函数2||1y x x a =+-+的值域。
分析:本题需要去绝对值化为分段函数,再按直线x=a 相对于两个抛物线的对称轴的位置分类讨论,借助于图象可有效帮助解题。
解:221()1x x a y f x x x a ⎧+-+⎪==⎨-++⎪⎩2213()()2413()()24x a x a x a x a ⎧++-≥⎪⎪=⎨⎪-++<⎪⎩ (1)当12a ≤-时,如图8知 13()24y f a ≥-=-(2)当1122a -<<时,如图9 知2()1y f a a ≥=+(3)当12a >时,如图10 知,13()24y f a ≥=+综上所述:当12a ≤-时,值域为3[,)4a -+∞当1122a -<<时,值域为2[1,)a ++∞当12a >时,值域为3[,)4a ++∞点评:分段去绝对值,数形结合,分类讨论。
8.(2006福建)已知函数2()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t(II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。
分析:本题是利用导数方法讨论单调性、最值和方程的解的问题,这些都离不开函数的图象,要通过画图或想着图一步步解答。
解:(I )22()8(4)16.f x x x x =-+=--+当4t >时,(如图11)()f x 在[],1t t +上单调递减,2()()8.h t f t t t ==-+当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f == 当14,t +<即3t <时,()f x 在[],1t t +上单调递增,22()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++综上,2267,3,()16,34,8,4t t t h t t t t t ⎧-++<⎪=≤≤⎨⎪-+>⎩ (II )函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点(如图12),即函数()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三个不同的交点。