数形结合思想在高中数学中的应用
数形结合在高中数学中的应用

数形结合在高中数学中的应用数形结合的思想,就是把问题的数量关系和空间形式结合起来考虑的思想,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题去讨论,或者把图形的性质问题转化为数量关系的问题来研究,简言之“数形相互取长补短”。
下面我将结合例题浅析数形结合思想的应用。
一、以图形增强代数概念的直观性已知p点分的比为,则b分的比为多少?此问题若以有向线段数量来分析,至少要注意三个方面:(1)点分有向线段所成比的定义(2)对于数量有:ab=-ba(3)对于数量有:ab=ap+pb,然后进行代数式的恒等变形。
而如果结合具体图形,由题易得如图a、b、p三点的分布,因此。
例2、比较大小arcsin_____arccos代数方法应考虑以函数单调性去解决,这就存在函数名称同化的问题,此正为该题之难点若将两式理解为已知函数值的锐角,则可得a= arcsin和b= arccos为图形中两角,因此易得b>a。
例3、若0x>sinx。
二、利用有关函数草图解决代数问题函数图象与函数解析式是最紧密的数形结合,特别对于较易得到草图的函数参加的代数问题,利用其图象往往可一蹴而就。
例4、不等式≥x的解集是()[-2,2] (b)(-1,2)(c) [0,2] (d)(,2)若用无理不等式的通用解法,此题易考虑不周,从而丢失某一组有理不等式组或丢失某一有理不等式,而画出函数的图象如图,仅分析选择支的区间形态,便可知选(a)例5、已知方程|x2-4x+3|+k=0有四个根,求k的取值范围。
若以代数方法须保证方程x2-4x+3+k=0在区间(-,1)(3,+)内有两根,且方程x2-4x+3-k=0在区间[1,3] 内有两根。
而画出y1=|x2-4x+3|,y2=-k的图象后,只须两图象有四个交点即可。
即-10},若ab=r,求实数a的范围。
解出a并可确认为a={x | a-10和f(a+1)>0即可,这就巧妙回避了分类讨论。
数形结合思想方法在高中数学解题中的应用

数形结合思想方法在高中数学解题中的应用山西省阳泉市第一中学高硕数形结合思想方法是高中数学学习和解题的重要思想方法,它把“数”和“形”有机地结合在一起,可以起到以“数”助形和以“形”解“数”的目的,从而把许多复杂抽象、难以理解的数学问题变成形象、直观的问题,有助于学生更方便快捷地解题。
一、数形结合思想方法的应用原则在高中数学解题中,数形结合思想方法的应用要坚持以下几点原则:一是等价原则。
就是“数”的代数性质和“形”的几何性质两者在转换时要等价,也就运用图形反映的问题和数量表示的问题要有一致性;二是双向原则。
就是要在解题中既要注重对“数”的抽象性进行探索,又要对“形”的直观性进行探索,避免“数”或“形”单独探索给解题造成局限性;三是简洁原则。
在进行数形转换过程中,尽量使图形和代数式保持简洁,以避免繁琐的计算而造成错误,这样才能更好地达到“化繁为简”与“化难为易”的解题目的,使数形结合思想的作用发挥出来;四是直观与创新原则。
就是要充分利用图形和坐标系的直观性,来表示抽象的概念具体化、直观化。
数形结合思想方法在解题中的运用不可照搬,需要活学活用和创新运用,才能更好发挥其功能。
二、数形结合思想方法的应用策略(一)以形助数,使抽象问题变得形象直观在高中数学解题中,特别是对于一些数量关系既复杂又抽象的问题,学生难以理解,不容易找到解题的思路和方法。
如果运用数形结合的思想方法,就可以把复杂抽象“数”的问题用直观的图形问题来解决,这样就可以绕开冗长繁琐的数量计算的过程,利用图形能够帮助学生有效解决复杂的数量问题,使学生对题目中的数量关系能够正确理解, 即能够把题目中抽象的数量问题变成形象直观的图形问题,可以使学生容易理解题意,快速准确地找出已知条件、未知关系,就容易快速形成解题思路,快速正确找出数量关系式,从而有效突破解题难点。
例1:已知一个动圆P 与两个定圆相外切,定圆C 1方程是:(x +4)2+y 2=100, 定圆C 2方程是:(x −4)2+y 2=4,求这个动圆P 的圆心轨迹的方程。
例谈“数形结合”思想在高考数学中的应用

2024年3月上半月㊀学习指导㊀㊀㊀㊀例谈 数形结合 思想在高考数学中的应用∗◉湖北江汉大学数学与大数据系㊀周㊀岭㊀许㊀璐㊀㊀著名数学家华罗庚曾说过: 数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休 .所谓 数形结合 就是把抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系结合起来,通过 以形助数或 以数解形 ,即通过抽象思维与形象思维的结合,将复杂问题简单化,抽象问题具体化,达到实现优化解题路径的目的,起到事半功倍的效果.下面将结合高考数学试题实例,分析说明 数形结合 思想在解决问题中的作用和简捷.1数形结合思想在解析几何中的应用例1㊀(2023年全国新高考Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则s i n α=(㊀㊀).A.1㊀㊀㊀B .154㊀㊀C .104㊀㊀D.64分析:此题可以先将圆的方程化为标准形式,设出切线方程,利用点到直线的距离公式求出两条切线的斜率,最后利用夹角公式求得s i n α的值,但是计算相对复杂.解析:依题意,圆的方程可化为(x -2)2+y 2=5.图1如图1,得到圆心C (2,0),r =5,P (0,-2).所以|P C |=22.设过点P 的两条切线为P A 和P B ,则øA P B =α,可得s i nα2=r |P C |=522=104,c o sα2=1-(s i n α2)2=64.所以s i n α=2s i nα2c o s α2=154.故选:B .例2㊀(2023年新高考I 卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则C 的离心率为.分析:此题常见解法是设出点A ,B 的坐标,利用已知条件列出三个方程,再解出方程求得点A ,B 的坐标,进而得出双曲线C 的离心率.这样计算量会很大,如果利用数形结合的思想结合双曲线的定义求其离心率将会大大简化计算.解析:由F 2A ң=-23F 2B ң,得|F 2A ||F 2B |=23.设|F 2A |=2x ,则|F 2B |=3x ,|A B |=5x ,|F 1B |=|F 2B |=3x .由双曲线的定义,得|A F 1|=|A F 2|+2a =2x +2a .设øF 1A F 2=θ,则s i n θ=3x 5x =35,所以c o s θ=45=2x +2a5x,解得=a ,则|A F 1|=4a ,|A F 2|=2a .图2如图2,在әF 1A F 2中,由余弦定理,可得c o s θ=16a 2+4a 2-4c 216a2=45.整理,得5c 2=9a 2.故e =c a =355.点评:这类题目考查了学生 数学抽象 的核心素养.解决此类题的关键在于将数学符号语言和图形语言相互转化,利用图形的直观性,结合相关定义㊁公式即可快速解题.2数形结合思想在立体几何中的应用例3㊀(2022年新高考I 卷)已知正方体A B C D GA 1B 1C 1D 1,则(㊀㊀).A.直线B C 1与D A 1所成的角为90ʎB .直线B C 1与C A 1所成的角为90ʎC .直线B C 1与平面B B 1D 1D 所成的角为45ʎD.直线B C 1与平面A B C D 所成的角为45ʎ分析:此题可以通过建立空间直角坐标系来判断各选项是否正确,但计算较繁琐.解析:选项A ,B 的判断略.93∗基金项目:江汉大学研究生科研创新基金项目 基于新课标新课改背景下提升中学生数学学科核心素养的探究 ,项目编号为K Y C X J J 202350;教育部产学合作协调育人2022年第一批立项项目 基于P y t h o n 的大数据分析与应用课程混合教学模式探索 ,项目编号为220506627242057.学习指导2024年3月上半月㊀㊀㊀图3如图3所示,连接A1C1,设A1C1ɘB1D1=O,连接B O.由B B1ʅ平面A1B1C1D1,C1O⊂平面A1B1C1D1,得C1OʅB1B.因为C1OʅB1D1,B1D1ɘB1B=B1,所以C1Oʅ平面B B1D1D,所以øC1B O为直线B C1与平面B B1D1D的夹角.设正方体棱长为1,则C1O=22,B C1=2,于是s i nøC1B O=C1O B C1=12.所以直线B C1与平面B B1D1D所成的角为30ʎ,故选项C错误.因为C1Cʅ平面A B C D,所以øC1B C为直线B C1与平面A BC D的夹角,易得øC1B C=45ʎ,故选项D正确.综上所述,此题选:A B D.点评:本题主要考查立体几何中直线与直线的夹角㊁直线与平面的夹角,是对学生 逻辑推理 直观想象核心素养的考查.此题如果通过建系来计算,将比较复杂,耗时较长;若采取 传统 方法,结合图形并运用立体几何㊁三角函数相关知识,即可快速㊁直观作出判断.3数形结合思想在函数中的应用例4㊀(2021年全国乙卷)设aʂ0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则有(㊀㊀).A.a<b B.a>b C.a b<a2D.a b>a2分析:此题如果利用导数知识来求该函数的极大值点,再通过a与b的大小来判断选项将非常复杂.如果通过数形结合先考虑函数的零点情况,注意零点附近左右两侧函数值是否变号,结合极大值点的性质,对a进行分类画出该函数的图象再来判断选项将大大简化了问题,既直观又方便快捷[1].解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故aʂb.所以f(x)有x=a和x=b两个不同零点,且在x=a附近左右两侧不变号,在x=b附近左右两侧变号.因为x=a为函数f(x)=a(x-a)2(x-b)的极大值点,所以f(x)在x=a附近左右都小于0.①当a<0时,由x>b,f(x)ɤ0,画出f(x)的图象如图4所示.由b<a<0,得a b>a2.图4㊀㊀㊀图5②当a>0时,由x>b,f(x)>0,画出f(x)的图象如图5所示.由b>a>0,得a b>a2.综上a b>a2成立.故选:D.例5㊀(2021年新高考I卷)已知O为坐标原点,点A(1,0),P1(c o sα,s i nα),P2(c o sβ,-s i nβ),P3(c o s(α+β),s i n(α+β)),则(㊀㊀).A.|O P1ң|=|O P2ң|B.|A P1ң|=|A P2ң|C.O Aң O P3ң=O P1ң O P2ңD.O Aң O P1ң=O P2ң O P3ң分析:此题如果画出图形,利用数形结合思想解题,既直观又简捷.图6解析:如图6,可得|O P1ң|=|O P2ң|=1,故选项A正确.仅当α=-β时,|A P1ң|=|A P2ң|成立.故选项B错误.由O Aң O P3ң=|O Aң| |O P3ң|c o s(α+β),O P1ң O P2ң=|O P1ң| |O P2ң| c o s(α+β),|O Aң|=|O P3ң|=|O P1ң|=|O P2ң|=1,可知O Aң O P3ң=O P1ң O P2ң.故选项C正确.观察图象,易得‹O Aң,O P1ң›=α,‹O P2ң,O P3ң›=α+2β.故选项D错误.此题应选:A C.例6㊀(2021年新高考I卷)若过点(a,b)可以作曲线y=e x的两条切线,则(㊀㊀).A.e b<a B.e a<bC.0<a<e b D.0<b<e a分析:此题要求作出曲线y=e x的两条切线,通过几何图形进行直观想象,很容易判断各选项是否正确.解析:作出y=e x的图象.易得,若想作出切线,点(a,b)需在曲线y=e x的下方和x轴上方,如图7,即b<e a.图7㊀㊀图8但点(a,b)在x轴及其下方时,仅能作出一条切线,如图8.所以点(a,b)需在y轴上方,即b>0.综上,可得0<b<e a.故选:D.综上所述,在高考数学中利用数形结合思想解题往往可以起到简化计算㊁提高解题效率的作用.因此,平时教学中教师应通过数形结合思想丰富的展现形式不断对其进行渗透,促进学生数与形相互转换的能力,刺激学生学习数学的欲望,引导学生投入到数形结合分析的专题探究中[2],从而达到数学抽象思维具象化㊁发散化的教学目的,最终达到提升学生核心素养和全面发展的教育目的.参考文献:[1]常国良.数学教学中渗透直观想象素养的三重境界[J].教学与管理,2020(31):62G64.[2]李兆芹.探究数形结合思想如何有效运用于高中数学教学[J].数学学习与研究,2018(5):43.Z04。
数形结合思想在高中数学教学中的有效运用

数形结合思想在高中数学教学中的有效运用
数形结合思想是一种重要的思想方法,它将数学和几何相结合,利用图形和形状来推
导出数学规律,是一种将抽象问题转化为具体问题的思考方式。
在高中数学教学中,数形
结合思想具有很好的应用价值,可以更好地帮助学生理解数学知识,提高数学素养和应用
能力。
一、数形结合思想在平面几何中的应用
1.平面图形的解析方法。
平面几何是数形结合思想最常用的领域之一,常常需要利用
图形的形状和大小来分析和解决问题。
例如,在证明平面图形之间面积的关系时,可以通
过分析图形的对称性和相似性来推导出结论。
2. 比例关系的图示方法。
比例是数学中常见的重要概念,可以用图形来表示。
例如,通过图形的大小和比例关系,可以帮助学生更加直观地理解数学中的比例和比例关系,从
而更好地应用到实际问题中。
3. 二次函数图形的解析方法。
二次函数图像是高中数学中较为复杂的内容之一,学
生往往难以理解。
利用数形结合思想,可以将二次函数图形转化为图形的形状和特征,通
过图形的变化来推导出函数的特性和性质,从而更好地理解二次函数的概念和应用。
2. 函数求极值和最值的图示方法。
在函数求极值和最值时,可以利用图形的形状和
大小来分析和解决问题。
例如,在求函数的最大值和最小值时,可以通过图形的上下凸性
和变化趋势来推导出最值的位置和数值,从而更好地掌握函数求极值和最值的方法。
数形结合思想在高中数学教学中的运用研究

数形结合思想在高中数学教学中的运用研究摘要:数形结合思想是数学教学中的重要理念,通过将数学和几何形式结合,可以更加直观地理解数学知识,提高学生的学习兴趣和学习效果。
本文将从数形结合思想在高中数学教学中的意义和重要性、数形结合思想在解决实际问题中的应用以及数形结合思想在高中数学教学中的实际操作等方面展开研究,希望能够为高中数学教学提供一定的参考和借鉴。
关键词:数形结合思想;高中数学教学;实际问题;应用研究;教学操作一、引言二、数形结合思想在高中数学教学中的意义和重要性1. 提高学习兴趣数学教学中,通过数形结合思想,可以使抽象的数学知识更加具体和直观,从而提高学生的学习兴趣。
通过图形展示不同的数学定理和问题,可以使学生更容易理解和记忆,从而激发学习兴趣,增加学习动力。
2. 加深理解数形结合思想可以帮助学生更深入地理解数学概念和原理。
通过观察图形、几何形状和数学关系,学生可以更加直观地理解数学知识,从而更容易掌握和运用。
3. 培养思维能力数形结合思想可以培养学生的空间想象力和逻辑推理能力,提高学生的数学思维水平。
通过观察、研究和推理,学生可以更好地理解和运用数学知识,提高解决问题的能力。
三、数形结合思想在解决实际问题中的应用数形结合思想在解决实际问题中有着广泛的应用,特别是在几何问题和应用题中往往能够发挥出更大的作用。
1. 几何问题2. 应用题在应用题中,数形结合思想可以帮助学生更加直观地理解和解决各种实际问题。
通过图形展示一个实际问题的几何形式,可以更容易地建立数学模型,从而更容易地解决应用题。
1. 利用图形展示数学知识2. 引导学生观察、分析和推理。
数形结合思想在高中数学教学中的应用分析

数形结合思想在高中数学教学中的应用分析
数形结合思想是通过将数学与几何相结合的方式来解决问题,它充分利用了几何图形
的直观性和数学公式的精确性。
在高中数学教学中,数形结合思想可以被广泛应用于各种
数学概念和技巧的讲解,以及问题的解决。
在几何学中,数形结合思想可以用于解决诸如平面面积、体积等问题。
例如,如果我
们将一个三角形分成两个小的三角形,那么它们的面积加起来就等于原来的三角形的面积。
这就是数形结合思想的应用。
在高中数学教学中,这个思想可以用于教学基本几何概念,
例如勾股定理,三角形面积,正方体体积等。
另一方面,数形结合思想在代数学中也有重要的应用。
例如,在解方程的时候,我们
可以通过画出函数图像,通过图像的交点得到解方程的方法。
在高中数学教学中,这个思
想可以用于数学分析和高等代数的教学中。
此外,数形结合思想也可以用于数学模型的建立和实际问题的解决。
例如,当我们需
要解决一个有关面积或体积的实际问题时,我们可以通过用数学公式计算出形状的尺寸,
然后用这些尺寸来计算出我们所需要的面积或体积。
在高中数学教学中,这个思想可以用
于实际应用问题的教学中,例如纯算题,数学建模竞赛等等。
总之,数形结合思想在高中数学教学中的应用非常广泛。
它可以用于解决几何和代数
问题,用于建立数学模型,和解决实际问题。
更重要的是,数形结合思想可以帮助学生更
好地理解和运用数学知识,拓展他们对数学的视野,进而对数学产生了浓厚的兴趣。
数形结合在高中数学教学中的巧妙应用

数形结合在高中数学教学中的巧妙应用1. 引言1.1 数形结合在高中数学教学中的重要性数目。
感谢理解!数形结合在高中数学教学中的重要性体现在多个方面。
数形结合可以帮助学生更深入地理解数学概念,将抽象的数学知识具体化,让学生更直观地感受到数学的美妙之处。
数形结合可以促进学生的逻辑思维能力和空间想象能力的发展,培养学生解决问题的能力。
数形结合还能够激发学生学习数学的兴趣,提高他们学习数学的积极性与主动性。
通过数形结合的教学方法,学生可以更全面地理解数学知识,将数学与实际生活中的问题联系起来,提高数学学习的效果和质量。
数形结合在高中数学教学中扮演着重要的角色,为学生提供了更丰富多彩的学习体验,有助于他们全面提升数学素养。
2. 正文2.1 数形结合的教学方法数、格式等。
数形结合在高中数学教学中的巧妙应用是一种非常重要的教学方法,它通过结合数学中的符号和几何中的图形,使学生更直观地理解抽象的数学概念。
在进行数形结合的教学时,教师需要运用多样化的教学方法,以激发学生的学习兴趣和提高他们的学习效果。
教师可以通过举例说明的方式引入数形结合的概念,让学生从具体的实例中感受数学与几何之间的联系。
在解决几何问题时,可以让学生通过画图的方式将问题可视化,再通过数学方法解决问题,从而深刻理解数学与几何之间的联系。
教师可以组织学生进行小组讨论或合作学习,让他们互相交流思想,共同探讨解决问题的方法。
通过互动交流,学生可以更好地理解数形结合的概念,并且在实践中加深对知识的理解。
教师还可以借助现代化的技术手段,如数学软件或在线资源,来辅助数形结合的教学。
通过多媒体教学,学生可以更直观地感受到数学与几何之间的联系,提高学习效果。
2.2 数形结合在几何学习中的应用数目、格式要求等。
数形结合在几何学习中起着至关重要的作用,通过将数学知识与几何图形相结合,可以帮助学生更好地理解几何概念,提高他们的几何思维能力。
在高中数学教学中,数形结合可以应用于各种几何问题的解决中,如计算三角形的面积、判断平行四边形的性质等。
数形结合的思想在高中数学解题中的应用

龙源期刊网
数形结合的思想在高中数学解题中的应用
作者:刘锋
来源:《理科考试研究·高中》2013年第09期
数形结合就是把抽象的数学语言与直观的图形结合起来,通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化、抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法.
一、利用数形结合思想解决集合的问题
1.利用韦恩图法解决集合之间的关系问题
二、运用数形结合思想解三角函数题
纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.
三、利用单位圆中的有向线段解决三角不等式问题
在教材中利用单位圆的有向线段表示角的正弦线,余弦线,正切线,并利用三角函数线可作出对应三角函数的图象.如果能利用单位圆中的有向线段表示三角函数线,应用它解决三角
不等式问题,简便易行.
总之,由于数形结合的思想在高考中考查的比重很大,因而要花大力气,循序渐进地使学生建立数形结合的对应转化和应用,既要借助形的直观性来阐明数之间的关系,也要借助于数的精确性来阐明形的某些属性,使学生抓住数形结合本质,在解题中自觉地运用数形结合的思想,以提高解题的能力和速度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想在高中数学中的应用
数学是研究现实世界的空间形式和数量关系的科学,数学中的两大研究对象“数”与“形”的矛盾统一是数学发展的内在因素。
数形结合思想,就是把问题的数量关系和空间形式结合起来考察的思想,其实质就是把抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,实现抽象概念与具体形象、表象的联系和转化。
数形结合思想是贯穿高中数学的主线,是贯穿高中课程的主要脉络,纵观历年高考试题,用数形结合的思想方法巧妙解决的问题比比皆是,本文从以下七个方面介绍运用数形结合思想解决高中数学问题。
1 函数中的数形结合思想
如果说坐标系是数与形结合的纽带,那么函数图象则是数的直观形象的反映。
新课标中有这样的话:“遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有没有特殊点,并借助图象研究一下它的性质,在数学教学中要注意培养学生看见函数式立即想到它的图象,结合实际图象记性质、用性质的好习惯。
数形要结合,关键在于能根据函数式(或方程)画出图形和根据代数式分析其表示的几何意义。
例1使log2(-x)0
-x0或x.>0
f(x)<0再结合单调性也可解决问题。
显然麻烦得多。
2 运用数形结合思想解决与圆有关的问题
例3: 求函数f(x)=2xx+1+x+2x+1的值域.
分析注意到f(x)≥0,因而可以先求[f (x)]2的值域,再求f(x)的值域,平方后解析式变得十分复杂,是否还有其他方法呢?
我们不妨用换元法试一试,如令u=xx+1,v =x+2x+1,则u2+v2=2(u≥0,v≥0),由此可联想到其几何图形.
解: 令u=xx+1,v =x+2x+1,则u2+v2=2(u≥0,v≥0),
它表示以原点为圆心,2为半径的一段圆弧(在第一象限内),又2u+v=y,即
v=-2u + y,故点P(u, v)又在直线v=-2u +y上,那么y的几何意义即为直线在y轴上的截距,因而原问题转化为”当直线与这段圆弧有交点时,求直线的纵截距的取值范围“.由图易知此范围为[2,6],故所求的值域为[2,6].
例4:已知集合M={(x,y)|y=x=a|},N={(x,y)|y=1-x2|},若集合交集合有两个不同的公共元素,求的取值范围.
分析:由于集合不是整个圆,而仅是圆的一部分,应用数形结合思想处理.
解:如图2所示,集合M是斜率为1的平行直线系,集合N表示单位圆位于x 轴及其上方的半圆,当l通过A(-1,0)、B(0,1)时,l与半圆有两个交点,此时a=1,l记
为l1;当l与半圆相切时,切线l记为l2;当l夹在l1与l2之间时, 与半圆有两个不同的公共元素,因此1a<2.
3 数形结合思想在对数中的应用
例5:已知函数f(x)=1gx,x≥32
1g(3-x),x<32,若方程无实数根,则实数k的取值范围是()
A.(-∞,0)
B.(-∞,1)
C.(-∞,1g32)
D.(1g32,+∞)
解析:所给的函数f(x)是分段函数,而方程f(x)=k无实数根,可利用数形结合法转化为两函数图象无交点.
解:在同一坐标系内作出函数y=f(x)与y=k的图象,如图1,∴若两函数图象无交点,则k<1g32,故选C.
例6:已知x1是方程x+1gx=3的根,x2是方程x+10x=3的根,那么x1+x2的值为()
A.6
B.3
C.2
D.1
解:∵1gx=3-x,10x=3-x,令y1=1gx,y2=3-x,y3=10x,在同一坐标系中作出它们的简图,如图2.∵x1是方程x+1gx=3的解,x2是方程x+10x=3的解,∴x1,x2分别对应图中A,B两点的横坐标.
∵函数y=1gx与y=10x的图象关于y=x对称,
∴线段AB的中点C在直线上y=x.
∴由y=x,
y=3-x解得x=32.
∴x1+x2=3,故选B.
4 数形结合思想解决复数模长最值问题
例7:设复数z满足|z+i|+|z-i| = 2,求|z+ +1|的最小值.
解:由题设知,复数z在复平面内对应的点集是线段AB,如图所示,线段AB上B点到C点距离最短.
∵|BC |=1,∴|z+i+1|的最小值为1.
点评:在分析问题和解决问题时,要注意解析语言的意义及运用,要掌握图形语言、符号语言及文字语言的互化,自觉地由“形”到“数”与由“形”变“数”.
例8:已知复数z = 2+ai(a∈R),求|z+1-i|+|z-1+i|的最小值.
解:∵|z+1-i|+|z-1+i| = |z-(-1+i)|+|z-(1-i)|,
设z1=-1+i,z2=1-i在复平面上对应的点分别为A(-1,1),B(1,-1).z = 2+ai在
直线:x = 2上,B点关于直线l的对称点为C(3,-1),连AC,交于D,则|z+1-i|+|z-1+i|的最小值为:|BD|+|AD| = |AC| =25.
5 数形结合思想解决数列问题
数列可看成以n为自变量的函数,等差数列可看成自然数n的“一次函数”,前n项和可看成自然数n的缺常数项的“二次函数”,等比数列可看成自然数n的“指数函数”,在解决数列问题时可借助相应的函数图象来解决。
例9:若数列{a n}为等差数列,a p=q,a q=p,求a p+q
解析:不妨设p<q,由于等差数列中,a n关于n的图象是一条直线上均匀排
开的一群孤立的点,故三点(p,q),(q,p),(p+q,m)共线,设a p+q=m,由已知,得三点(p,a q),(q,a p),(p+q,a p+q)共线。
则k AB=k BC,即p-qq-p=m-pp+q-q
得m=0,即a p+q=0。
6 数形结合思想解决求极值问题
许多代数极值问题,存在着图形背景,借助形的直观性解题是寻求解题思路的一种重要方法,通过图形给问题以几何直观描述,从数形结合中找出问题的逻辑关系,启发思维,难题巧解。
例10:直线y=a与函数f(x)=x3-3x的图象有相异的三个公共点,则a的取值范围为()。
A.(-2,1)
B.(-1,2)
C.(-2,2)
D.[-2,2]
分析:函数f(x)=x3-3x的导数为f ‘(x)=3x2-3。
令f ‘(x)≥0,解得x≥1或x≤-1;
令f ‘(x)≤0,解得-1≤x≤1;则函数f (x)在(1,+∞)上单调递增,在(-∞,-1)上单调递增。
在(-1,1)上单调递减。
由此画出f (x)的草图
由图形看出-2<a<2答案:C
7 三角中的数形结合思想
在三角函数这一章中数形结合更是贯穿始终:①特别强调了单位圆的直观作用,借助单位圆直观地认识任意角、任意角的三角函数,②利用单位圆给出三角函数的定义,并推导出了同角三角函数间的基本关系;③借助三角函数的图象理解三角函数在一个周期上的单调性、最大和最小值、图象与x轴的交点等性质;④利用三角函数线画正(余)弦及正切和三角函数的图象;并利用图象进一步分析函数的有关性质。
例11: 已知a,β,γ为锐角,且cos2a+cos2β+cos2γ=1,
求证:tana·tanβ·tanγ≥22
解析:题目中出现了三个角,看似复杂,但如果有数形转换意识,由已知三个角a,β,γ的余弦的平方和等于1,就会与原有经验中的知识类比联系,这种数式的特点
与长方体ABCD-A1B1C1D1的对角线与从出发的相邻三条棱的交角相类比,于是设长方体三条棱为a,b,c,便有以下证明:
tanα·tanβ·tanγ=b2+c2a·c2+a2b·a2+b2c≥2bca·2cab·2abc=22
数形结合思想是中学数学中重要基本思想方法之一,是数学的本质特征,数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.在解决数学问题时,将抽象的数学语言同直观的图形相结合,实现抽象的概念与具体形象的联系和转化,使数与形的信息相互渗透,可以开拓我们的解题思路,使许多数学问题简单化.。