高中数学 数形结合思想

合集下载

数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用

数形结合思想在高中数学解题中的应用数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,割裂分家万事休。

”数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果。

数形结合的重点是研究“以形助数”。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓思维视野。

数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。

另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

运用数形结合思想解题的三种类型及思维方法:一、“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

例如:已知二次函数y=ax2+bx+c(a≠0)的图像如图,在下列代数式中(1)a+b+c>0,(2)-4a<b<-2a,(3)abc>0,(4)5a-b+2c<0,其中正确的个数为(A)。

A.1个B.2个C.3个D.4个由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误。

又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误。

∵对称轴在1和2之间,∴1<-<2,又a>0,∴在不等式左右两边都乘以-2a得:-2a>b>-4a,故(2)正确。

又x=-1时,对应的函数值大于0,故将x=1代入得:a-b+c>0,又a>0,即4a>0,c>0,∴5a-b+2c=(a-b+c)+4a+c>0,故(4)错误。

数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用

数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。

这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。

二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。

教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。

对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。

2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。

通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。

教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。

3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。

教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。

教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。

2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。

数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。

3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。

通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。

2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用

数形结合思想方法在高中数学教学与解题中的应用1. 引言1.1 概述数形结合思想方法是一种通过将数学与几何图形相结合的方式来解决数学问题的方法。

在高中数学教学与解题中,数形结合思想方法被广泛运用,对学生的数学思维能力和解题能力有着显著的提升作用。

本文将从理论基础、教学应用、解题实际操作、优势局限性和案例分析等方面对数形结合思想方法进行详细介绍和分析,旨在探讨这种方法在高中数学教学和解题中的实际应用效果及其潜在局限性。

通过对数形结合思想方法的深入研究,可以为未来数学教学和研究提供新的思路和方法,促进学生对数学的深入理解和应用能力的提高。

【概述】1.2 研究背景随着科技的不断发展和社会的快速进步,教育也在不断改革和创新。

高中数学作为学生必修科目之一,承担着培养学生逻辑思维能力和数学素养的重要使命。

在传统的数学教学中,很多学生常常感到枯燥和无趣,难以理解和掌握抽象的概念和定理。

有必要寻找一种更加生动、直观且实用的教学方法来激发学生学习数学的兴趣和动力。

1.3 研究意义数范围等。

【研究意义】内容如下:研究数形结合思想方法在高中数学教学与解题中的应用具有重要的实际意义。

数学教学是培养学生逻辑思维能力和问题解决能力的重要途径,而数形结合思想方法能够帮助学生更好地理解数学知识,提高他们的数学学习兴趣和学习效果。

数形结合思想方法在解题中的应用能够帮助学生更加深入地理解问题的本质,提高他们的问题解决能力和创新思维水平。

研究数形结合思想方法的优势和局限性,有助于教师更好地指导学生应用该方法解决问题,并且能够帮助教育部门和相关机构调整和改进数学教学计划,推动数学教育的发展和进步。

深入研究数形结合思想方法在高中数学教学与解题中的应用,对于提高我国数学教育质量,培养优秀数学人才,具有重要的现实意义和战略意义。

2. 正文2.1 数形结合思想方法的理论基础数,具体格式等。

数形结合思想方法的理论基础主要包括几何与代数的融合和数学建模的理论支持。

高中数学高考二轮复习数形结合思想教案

高中数学高考二轮复习数形结合思想教案

第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。

高中数学教学中数形结合思想的运用和实施

高中数学教学中数形结合思想的运用和实施

浅析高中数学教学中数形结合思想的运用和实施恩格斯曾经说过:“数学就是研究现实生活中数量与空间图形之间的科学关系。

”“数”与“形”在数学学习中是两大矛盾的统一体。

从外表来看,二者似乎是对立的,但是我们在深入地了解和学习之后就会发现他们之间又有非常紧密的联系。

在数学发展的历史之中,数形结合的思想一直作为数学研究的主线,并且数形结合的应用和实施让数学知识能够在实际生活中得到更广泛的应用。

数形结合的思想既能够借助于图形的直观与形象性将抽象的数学概念和数量之间的密切关系比较易懂地展现在学生眼前,能够让学生通过观察来帮助自己理解数学知识,从而更好地探索和掌握数学知识;也能够把图形问题转化为数量问题来进行研究和探索,从而通过图形分析和计算得到更加准确的结论。

这样就完成了数与形之间的相互转化与相互渗透。

这不仅能够提高学生的理解程度和解题的速度与效率,而且还能够拓宽学生的解题思路,为学生进行正确的研究提供一条快速有效的途径。

正因为数形结合方式的运用能够具有如此之多的益处,我们在高中数学课堂教学中才应该高度重视对学生数形结合思想的培养,采取一系列有效的教学手段让数形结合思想得以顺利地运用和实施。

学生在经过教师的特意培养和引导后不仅能够把数形结合的思想作为一种正确解决问题的方法,还能够把它当做是十分重要的一种数学思想,进而运用数形结合的方式将数学知识的学习转化为数学能力的培养和提高。

接下来笔者就来分析一下高中数学教育中数形结合思想的运用和实施。

一、数形结合能够更好地推动数学知识的发展在数学知识发展的长河中,“数”的应运而生是由于现实生活中需要对各种“形”进行相关的计算。

在解决实际生活中的各种形的问题时,我们可以将其转化为数量之间的关系,这样就能够利用“数”这种数学工具使问题迎刃而解。

如在数学中分数的产生,就是由于古代人用绳子打结计数时无法用整段来表示具体的数据了,就产生了一半来表示的现象,然后就针对这种形的表现形式产生了分数,也就相应地有了分数之间的运算。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

高中数学数形结合思想必考题型全梳理(附例题)

高中数学数形结合思想必考题型全梳理(附例题)

⾼中数学数形结合思想必考题型全梳理(附例题)数学好教师2020-07-17⼀数形结合的三个原则⼀等价性原则在数形结合时,代数性质和⼏何性质的转换必须是等价的,否则解题将会出现漏洞.⾸先,由代数式、⽅程、不等式构造函数时⼀要注意变量(包括⾃变量和因变量)的取值范围。

⼆双向性原则既要进⾏⼏何直观分析,⼜要进⾏相应的代数抽象探求,直观的⼏何说明不能代替严谨的代数推理.另⼀⽅⾯,仅⽤直观分析,有时反倒使问题变得复杂,⽐如在⼆次曲线中的最值问题,有时使⽤三⾓换元,反倒简单轻松.三简单性原则不要为了“数形结合”⽽数形结合.具体运⽤时,⼀要考虑是否可⾏和是否有利;⼆要选择好突破⼝,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运⽤函数图象时应设法选择动直线(直线中含有参数)与定⼆次曲线.⼆数形结合的应⽤⼀利⽤数轴、韦恩图求集合利⽤数形结合的思想解决集合问题,常⽤的⽅法有数轴法、韦恩图法等。

当所给问题的数量关系⽐较复杂,不好找线索时,⽤韦恩图法能达到事半功倍的效果。

⼆数形结合在解析⼏何中的应⽤解析⼏何问题往往综合许多知识点,在知识⽹络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的⾓度把抽象的数学语⾔与直观的⼏何图形结合起来,达到研究、解决问题的⽬的.构建解析⼏何中的斜率、截距、距离等模型研究最值问题;如果等式、代数式的结构蕴含着明显的⼏何特征,就要考虑⽤数形结合的⽅法来解题,即所谓的⼏何法求解,⽐较常见的对应有:(⼀)与斜率有关的问题(⼆)与距离有关的问题三数形结合在函数中的应⽤(⼀)利⽤数形结合解决与⽅程的根有关的问题【点拨】数形结合可⽤于解决⽅程的根的问题,准确合理地作出满⾜题意的图象是解决这类问题的前提.(⼆)利⽤数形结合解决函数的单调性问题(三)利⽤数形结合解决⽐较数值⼤⼩的问题(四)函数的最值问题(五)利⽤数形结合解决抽象函数问题四运⽤数形结合思想解不等式(⼀) 解不等式(⼆)求参数的取值范围五运⽤数形结合思想解决三⾓函数问题纵观近三年的⾼考试题,巧妙地运⽤数形结合的思想⽅法来解决⼀些问题,可以简化计算,节省时间,提⾼考试效率,起到事半功倍的效果.六解决⼏何问题图象解决⼏何问题借助向量的借助向量的图象利⽤向量可以解决线段相等,直线垂直,⽴体⼏何中空间⾓(异⾯直线的⾓、线⾯⾓、⼆⾯⾓)和空间距离(点线距、线线距、线⾯距、⾯⾯距),利⽤空间向量解决⽴体⼏何问题,将抽象的逻辑论证转化为代数计算,以数助形,⼤⼤降低了空间想象能⼒,是数形结合的深化。

数形结合思想在高中数学教学中的应用分析

数形结合思想在高中数学教学中的应用分析

数形结合思想在高中数学教学中的应用分析
数形结合思想是通过将数学与几何相结合的方式来解决问题,它充分利用了几何图形
的直观性和数学公式的精确性。

在高中数学教学中,数形结合思想可以被广泛应用于各种
数学概念和技巧的讲解,以及问题的解决。

在几何学中,数形结合思想可以用于解决诸如平面面积、体积等问题。

例如,如果我
们将一个三角形分成两个小的三角形,那么它们的面积加起来就等于原来的三角形的面积。

这就是数形结合思想的应用。

在高中数学教学中,这个思想可以用于教学基本几何概念,
例如勾股定理,三角形面积,正方体体积等。

另一方面,数形结合思想在代数学中也有重要的应用。

例如,在解方程的时候,我们
可以通过画出函数图像,通过图像的交点得到解方程的方法。

在高中数学教学中,这个思
想可以用于数学分析和高等代数的教学中。

此外,数形结合思想也可以用于数学模型的建立和实际问题的解决。

例如,当我们需
要解决一个有关面积或体积的实际问题时,我们可以通过用数学公式计算出形状的尺寸,
然后用这些尺寸来计算出我们所需要的面积或体积。

在高中数学教学中,这个思想可以用
于实际应用问题的教学中,例如纯算题,数学建模竞赛等等。

总之,数形结合思想在高中数学教学中的应用非常广泛。

它可以用于解决几何和代数
问题,用于建立数学模型,和解决实际问题。

更重要的是,数形结合思想可以帮助学生更
好地理解和运用数学知识,拓展他们对数学的视野,进而对数学产生了浓厚的兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲 数形结合思想知识整合数形结合思想的实质是把抽象的数学语言与直观的图形语言有机结合,达到抽象思维和形象思维的和谐统一.通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到解决.数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.1.数形结合思想在方程的根或函数零点中的应用典题例析例1 若f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内,g (x )=f (x )-mx-m 有两个零点,则实数m 的取值范围是( D )A .[0,12)B .[12,+∞)C .[0,13)D .(0,12][解析] 当x ∈(-1,0]时,x +1∈(0,1], ∵当x ∈(0,1]时,f (x )=x ,∴f (x +1)=x +1.而由f (x )+1=1f (x +1),可得f (x )=1f (x +1)-1=1x +1-1(x ∈(-1,0]).如图所示,作出函数f (x )在区间(-1,1]内的图象,而函数g (x )零点的个数即为函数f (x )与y =mx +m 图象交点的个数,显然函数y =mx +m 的图象为经过点P (-1,0),斜率为m 的直线.如图所示,f (1)=1,故B (1,1).直线PB 的斜率k 1=1-01-(-1)=12,直线PO 的斜率为k 2=0.由图可知,函数f (x )与y =mx +m 的图象有两个交点,则直线y =mx +m 的斜率k 2<m ≤k 1,即m ∈(0,12].规律总结利用数形结合求方程解应注意两点1.讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性、否则会得到错解.2.正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.1.已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为__1__.[解析] 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.2.(2019·辽宁模拟)f (x )=2sinπx -x +1的零点个数为( B ) A .4 B .5 C .6D .7[解析] 令2sinπx -x +1=0,则2sinπx =x -1,令h (x )=2sinπx ,g (x )=x -1,则f (x )=2sinπx -x +1的零点个数问题就转化为两个函数h (x )与g (x )图象的交点个数问题.h (x )=2sinπx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h (52)>g (52),g (4)=3>2,g (-1)=-2,所以两个函数图象的交点一共有5个,所以f (x )=2sinπx -x +1的零点个数为5.故选B.2.数形结合化解不等式问题典题例析例2 (1)(2019·四川模拟)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( D ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞)D .(-1,+∞)[解析] 方法一:不等式2x (x -a )<1可变形为x -a <(12)x .在同一平面直角坐标系内作出直线y =x -a 与y =(12)x 的图象,如图,由题意,知在(0,+∞)上,直线y =x -a 有一部分在曲线y =(12)x 的下方.观察可知,有-a <1,所以a >-1,故选D.方法二:不等式2x (x -a )<1可变形为a >x -(12)x .记g (x )=x -(12)x (x >0),易知g (x )为增函数,又g (0)=-1,所以g (x )∈(-1,+∞).故a >-1.故选D.(2)已知关于x 的不等式x >ax +32的解集为{x |4<x <b },则ab = 92 .[解析] 设f (x )=x ,g (x )=ax +32(x ≥0).因为x >ax +32的解集为{x |4<x <b },所以两函数图象在4<x <b 上有f (x )>g (x ),如图所示.当x =4,x =b 时,由f (x )=g (x ),可得⎩⎨⎧4=4a +32,b =ab +32,解得⎩⎪⎨⎪⎧a =18,b =36,所以ab =18×36=92. 规律总结1.数形结合思想解决参数问题的思路(1)分析条件所给曲线.(2)画出图象.(3)根据图象求解. 2.常见的数与形的转化(1)集合的运算及韦恩图.(2)函数及其图象.(3)数列通项及求和公式的函数特征及函数图象.(4)方程(多指二元方程)及方程的曲线.1.(2019·太原模拟)不等式2x -x 2≤x +b 恒成立,则实数b 的取值范围是( C ) A .(-∞,-2-1] B .(-∞,2-1] C .[2-1,+∞)D .[-2-1,2-1][解析] 设y =2x -x 2=1-(x -1)2,整理得(x -1)2+y 2=1(y ≥0),表示以A (1,0)为圆心,半径为1的上半圆;而y =x +b 表示斜率为1,在y 轴上的截距为b 的直线.如图所示,要使不等式恒成立,则直线y =x +b 在半圆的上方,即圆心到直线的距离不小于圆的半径,故|1+b |2≥1,解得b ≥2-1或b ≤-2-1.而当b ≤-2-1时,直线y=x +b 在半圆的下方,所以不满足条件.所以实数b 的取值范围是[2-1,+∞).故选C.2.对∀x ∈(0,13),8x <log a x +1恒成立,则实数a 的取值范围是 13≤a <1 .[解析] 当0<x <13时,函数y =8x -1的图象如图中实线所示.∵对∀x ∈(0,13),8x <log a x +1恒成立,∴当x ∈(0,13)时,y =log a x 的图象恒在y =8x -1的图象的上方(如图中虚线所示).∵y =log a x 的图象与y =8x -1的图象交于点(13,1)时,a =13,∴13≤a <1.3.利用数形结合思想解决不等式、参数问题 典题例析例3 (1)(2017·全国卷Ⅰ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( B )A .-2B .-32C .-43D .-1[解析] 方法1:(解析法)建立坐标系如图所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).设P 点的坐标为(x ,y ),则P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ), ∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2(x 2+y 2-3y )=2[x 2+(y -32)2-34]≥2×(-34)=-32. 当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B. 方法2:(几何法)如图所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →||PD →|的最大值.又|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤(|P A →|+|PD →|2)2=(32)2=34,∴[P A →·(PB →+PC →)]min =2(P A →·PD →)min =-2×34=-32.故选B.(2)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB ︵ 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值为__2__.[解析] 如题图所示,则A (1,0),B (-12,32).设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α).由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,解得⎩⎨⎧x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6).又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.规律总结建坐标系可以实现平面向量问题的全面运算,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,化繁为简,轻松破解.1.(2019·福建模拟)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t .若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( A )A .13B .15C .19D .21[解析] 以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B (1t ,0)(t >0),C (0,t ),P (1,4),PB →·PC →=(1t -1,-4)(-1,t -4)=17-(4t +1t )≤17-2×2=13.当且仅当t =12时,PB →·PC →最大为13,故选A .2.(2019·西安高新模拟)如图,在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC→=2AB →·AD →,则AD →·AC →=__12__.[解析] 方法一:因为AB →·AC →=2AB →·AD →, 所以AB →·AC →-AB →·AD →=AB →·AD →, 所以AB →·DC →=AB →·AD →.因为AB ∥CD ,CD =2,∠BAD =π4,所以2|AB →|=|AB →||AD →|cos π4,化简得|AD →|=2 2.故AD →·AC →=AD →·(AD →+DC →)=|AD →|2+AD →·DC →=(22)2+22×2cos π4=12.方法二:如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n,0),其中m >0,n >0,则由AB →·AC →=2AB →·AD →,得(n,0)·(m +2,m )=2(n,0)·(m ,m ), 所以n (m +2)=2nm ,化简得m =2.故AD →·AC →=(m ,m )·(m +2,m )=2m 2+2m =12.4.数形结合化解圆锥曲线问题典题例析例4 (1)(2019·武汉模拟)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点的距离之和取得最小值时,点P 的坐标为( A )A .(14,-1)B .(14,1)C .(1,2)D .(1,-2)[解析] 点P 到抛物线焦点的距离等于点P 到抛物线准线的距离,如图所示,设焦点为F ,过点P 作准线的垂线,垂足为S ,则|PF |+|PQ |=|PS |+|PQ |,故当S ,P ,Q 三点共线时取得最小值,此时P ,Q 的纵坐标都是-1,设点P 的横坐标为x 0,代入y 2=4x ,得x 0=14,故点P 的坐标为(14,-1),故选A .(2)已知A (1,1)为椭圆x 29+y 25=1内一点,F 1为椭圆的左焦点,P 为椭圆上一动点,求|PF 1|+|P A |的最大值和最小值.[解析] 由x 29+y 25=1可知a =3,b =5,c =2,左焦点F 1(-2,0),右焦点F 2(2,0).由椭圆定义,知|PF 1|=2a -|PF 2|=6-|PF 2|, ∴|PF 1|+|P A |=6-|PF 2|+|P A |=6+|P A |-|PF 2|.如图,由||P A |-|PF 2||≤|AF 2|=(2-1)2+(0-1)2=2,知-2≤|P A |-|PF 2|≤ 2.当点P 在AF 2的延长线上的点P 2处时,取右“=”, 当点P 在AF 2的反向延长线上的点P 1处时,取左“=”, 即|P A |-|PF 2|的最大、最小值分别为2,- 2. 于是|PF 1|+|P A |的最大值是6+2,最小值是6- 2. 规律总结(1)在解析几何的解题过程中,通常要数形结合,这样使数更形象,更直白,充分利用图象的特征,挖掘题中所给的代数关系式和几何关系式,避免一些复杂的计算,给解题提供方便.(2)应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.1.(2019·南宁模拟)椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( C )A .55B .655C .855D .455[解析]如图,设椭圆的右焦点为F′,连接MF′,NF′.因为|MF|+|NF|+|MF′|+|NF′|≥|MF|+|NF|+|MN|,所以当直线x=m过椭圆的右焦点时,△FMN的周长最大.此时|MN|=2b2a=855,又c=a2-b2=5-4=1,所以此时△FMN的面积S=12×2×855=855.故选C.2.(2019·广西模拟)设P为双曲线x2-y215=1右支上一点,M,N分别是圆C1:(x+4)2+y2=4和圆C2:(x-4)2+y2=1上的点,设|PM|-|PN|的最大值和最小值分别为m,n,则|m -n|=(C)A.4 B.5C.6 D.7[解析]由题意得,圆C1:(x+4)2+y2=4的圆心为(-4,0),半径为r1=2;圆C2:(x -4)2+y2=1的圆心为(4,0),半径为r2=1.设双曲线x2-y215=1的左、右焦点分别为F1(-4,0),F2(4,0).如图所示,连接PF1,PF2,F1M,F2N,则|PF1|-|PF2|=2.又|PM|max=|PF1|+r1,|PN|min=|PF2|-r2,所以|PM|-|PN|的最大值m=|PF1|-|PF2|+r1+r2=5.又|PM|min=|PF1|-r1,|PN|max=|PF2|+r2,所以|PM|-|PN|的最小值n=|PF1|-|PF2|-r1-r2=-1,所以|m-n|=6.故选C.。

相关文档
最新文档