反比例函数测试题--九年级数学试题(北师大版)

合集下载

北师大版九年级数学第六单元《反比例函数》单元练习题(含答案)

北师大版九年级数学第六单元《反比例函数》单元练习题(含答案)

北师大版九年级数学第六单元《反比例函数》单元练习题(含答案)一、单选题1.一个矩形的面积为20cm ,相邻两边长分别为xcm 和ycm ,那么y 与x 的关系式是( )A .y=20xB .20y x=C .y=20﹣xD .20xy =2.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线y=3x(x>0)上的一个动点,当点B 的横坐标系逐渐增大时,△OAB 的面积将会( )A .逐渐变小B .逐渐增大C .不变D .先增大后减小3.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-4.如图,点A 是反比例函数y=kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为6,则k 的值为( )A .6B .3C .﹣6D .﹣35.如图,直线y=﹣12x+m (m >0)与x 轴交于点C ,与y 轴交于点D ,以CD 为边作矩形ABCD ,点A 在x 轴上.双曲线y=6x-经过点B ,与直线CD 交于点E ,则点E 的坐标为( )A .(154,85-) B .(4,32-) C .(92,﹣43)D .(6,﹣1)6.点1(1,)A y ,2(3,)B y 是反比例函数6y x=-图象上的两点,那么1y ,2y 的大小关系是( ). A .12y y >B .12y y =C .12y y <D .不能确定7.下列函数中,属于反比例函数的是( ) A .y =-3x B .y =131x + C .y =-2xD .2112y x =-8.如图,已知双曲线()0ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(8,6)-,则AOC ∆的面积为( )A .24B .12C .18D .489.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .110.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在x 轴上,坐标原点O 是AB 的中点,AC 交y 轴于点D ,30CAB ∠=︒,AOD ∆的面积是1.若直角顶点C 在反比例函数()0ky x x=>的图象上,则k 的值是( )A .32B .3C .3D .211.如图,已知一次函数y=ax+b 和反比例函数y=kx的图象相交于A (﹣2,y 1)、B (1,y 2)两点,则不等式ax+b <kx的解集为( )A .x <﹣2或0<x <1B .x <﹣2C .0<x <1D .﹣2<x <0或x >112.若ab<0,则一次函数y=ax+b 与反比例函数在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.如图,点A在反比例函数kyx=的图像上,AB⊥x轴,垂足为B,且4∆=AOBS,则k=_____ .14.如图,双曲线y=kx(x>0)经过A、B两点,若点A的横坐标为1,∠OAB=90°,且OA=AB,则k的值为_______.15.如图,菱形ABCD的顶点A在x轴正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于点M,双曲线ykx=过点B且与AC交于点N,如果AN=3CN,S△NBC34=,那么k的值为____.16.已知反比例函数的图像经过点,A B,点A的坐标为(1,3),点B的纵坐标为1,则点B 的横坐标为__________.17.如图,OA=AB,∠OAB=90°,双曲线y=kx经过点A,双曲线y=﹣kx经过点B,已知点A的纵坐标为﹣2,则点B的坐标为_____.18.如图,在平面直角坐标系中,等边三角形OAB 的顶点A 的坐标为(5,0),顶点B 在第一象限,函数y=kx(x >0)的图象分别交边OA 、AB 于点C 、D .若OC=2AD ,则k=_____19.若点(2,1)是反比例函数221m m y x+-=的图象上一点,当y =6时,则x =________.20.两个反比例函数36,y y x x==在第一象限内的图象如图所示,点123,,P P P ,...,2020P 在反比例函数6y x=图象上,它们的横坐标分别是1232020,,,,x x x x ⋅⋅⋅,纵坐标分别是1,3,5,···,共2020个连续奇数,过点123,,P P P ,···,2020P 分别作y 轴的平行线,与3y x=的图象交点依次是111(,)Q x y ,()222,,Q x y ()333,Q x y ,....,()202020202020,Q x y ,则2020y =_______.三、解答题21.已知一次函数与反比例函数的图象交于A(2,3), B (-6,n)两点.(1)求一次函数和反比例函数的解析式;(2)P是y轴上一点,且,直接写出P点坐标.22.如图,在平面直角坐标系中,O 为坐标原点,P、Q 是反比例函数21ayx+=(x>0)图象上的两点,过点 P、Q 分别作直线且与 x、y 轴分别交于点 A、B和点 M、N.已知点 P 为线段 AB 的中点.(1)求△AOB 的面积(结果用含 a 的代数式表示);(2)当点 Q 为线段 MN 的中点时,小菲同学连结 AN,MB 后发现此时直线 AN 与直线MB 平行,问小菲同学发现的结论正确吗?为什么?23.反比例函数kyx=在第二象限的图象与矩形OABC的边交于D,E,BE=2CE,点B的坐标是(﹣6,3).(1)求k 的值;(2)求线段DE 的解析式.24.如图,已知A (4,a )B (-2,-4)是一次函数y=kx+b 的图像和反比例函数xmy =的图像的交点.(1)求反比例函数和一次函数的解析式;(2)根据图象直接写出:当x 取何值时,反比例函数的值大于一次函数的值. (3)求ΔAOB 的面积.25.若直线()0y kx k =>与双曲线2y x=的交点为()()1122,,x y x y 、,求122123x y x y -的值.26.如图,平行于y 轴的直尺(一部分)与双曲线ky x=(x >0)交于点A 、C ,与x 轴交于点B 、D .点A 、B 的刻度分别为5、2(cm ),直尺的宽度为2cm ,OB =2cm .(注:平面直角坐标系内一个单位长度为1厘米) (1)A 点坐标为 ; (2)求k 的值;(3)若经过A 、C 两点的直线关系式为y ax b =+,当x >0时,请直接写出不等式kax b x+>的解集.27.如图,将一块直角三角形纸板的直角顶点放在处,两直角边分别与轴平行,纸板的另两个顶点恰好是直线与双曲线的交点.(1)求和的值;(2)设双曲线在之间的部分为,让一把三角尺的直角顶点在上滑动,两直角边始终与坐标轴平行,且与线段交于两点,请探究是否存在点使得,写出你的探究过程和结论.28.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=12x的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B 的坐标.29.如图是药品研究所测得的某种新药在成人用药后,血液中的药物浓度y (微克/毫升)随用药后的时间x (小时)变化的图象(图象由线段OA 与部分双曲线AB 组成).并测得当y =a 时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓度至少需要多长时间达到最大?参考答案1.B2.A3.A4.C5.D6.C7.C8.C9.B10.A11.D12.C 13.8 141+515.9. 16.317.()35,51+- 18.319.13. 20.4039221.(1)反比例函数解析式为.所求一次函数为(2)P (0,5)或P (0,-1).22.(1)SAOB=2a 2+2;(2)正确,23.(1)k =﹣6;(2)142y x =+. 24.(1)反比例函数解析式为y=8x,一次函数的解祈式为y=x-2;(2)x <-2或0<x <2;(3)6. 25.226.(1)()2,3;(2)6;(3)02x <<或4x > 27.(1)且(2)不存在,28.(1)20;(2) B (8,4).29.成人用药后,血液中药物浓度至少需要6小时达到最大。

北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)

北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)

北师版九上 6.1 反比例函数一、选择题(共9小题)1. 下列关系式中,y是x的反比例函数的是( )A. y=5xB. yx =3 C. y=−1xD. y=x2−32. 下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,其中,y是x的反比例函数的个数是( )A. 0B. 1C. 2D. 33. 下列函数是y关于x的反比例函数的是( )A. y=1x+1B. y=1x2C. y=−12xD. y=−x24. 下列关系中,两个量之间为反比例函数关系的是( )A. 正方形的面积S与边长a的关系B. 正方形的周长C与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,其长a与宽b之间的关系5. 下列关系式中,不是y关于x的反比例函数的是( )A. xy=2B. y=5x8C. x=57yD. x=5y−36. 下列函数中,y是x的反比例函数的是( )A. y=34x B. y=12x2 C. y=13x D. y=1x27. 函数y=(k2−▫)x k2+k−1是反比例函数,“▫”处在印刷时被油墨盖住了,若要保证k的值有两个,则“▫”处的数字不能是( )A. 1,0B. −1,0C. 2,1D. 2,08. 当k=−1时,下列函数是反比例函数的是( )A. y=k+1xB. y=(k2+k)x−∣k∣C. y=−kx−1D. y=(k−1)x9. 在函数y=−2(m+1)x−m中,y是x的反比例函数,则比例系数为( )A. −2B. 2C. −4D. 0二、填空题(共5小题)的比例系数为.10. 反比例函数y=18x11. 下列函数中,如果是反比例函数,就在括号里打“√”,并写出比例系数k的值;否则打“×”..()(1)y=1x.()(2)y=−2x+1.()(3)y=1xx.()(4)y=32.()(5)y=2x−1.()(6)y=35x12. 若函数y=x m−2是y关于x的反比例函数,则m的值为.+(k2−2k)是反比函数,则k=.13. 如果y=k−2x14. 如果函数y=(m−1)x m2−2是反比例函数,那么m的值是.三、解答题(共4小题)15. 在下列函数关系式中,x均表示自变量,那么哪些是关于x的反比例函数?若是反比例函数,相应的比例系数k是多少?(1)y=5;2x;(2)y=x2(3)xy=2;(4)y=7x−1;.(5)y=0.4x−116. 写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.(1)底边为3cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)一艘轮船从相距200km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;(3)在检修100m长的管道时,每天能完成10m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.17. 在下列关系式中,x均为自变量,哪些是反比例函数?每一个反比例函数相应的k值是多少?(1)y=5;x(2)y=0.4x−1;;(3)y=x2(4)xy=2;(5)y=6x+3;(6)xy=−7;;(7)y=5x2x.(8)y=15,求a的值,并确定函数解析式.18. 已知y关于x的反比例函数的解析式为y=a+3x∣a∣−2答案1. C【解析】y=5x是一次函数;yx=3可化为y=3x(x≠0),是一次函数;y=−1x是反比例函数;y=x2−3是二次函数.2. C【解析】②③是反比例函数.3. C【解析】A.y=1x+1,是y与x+1成反比例函数,故此选项不合题意;B.y=1x2,是y与x2成反比例,故此选项不合题意;C.y=−12x,符合反比例函数的定义,故此选项符合题意;D.y=−x2是正比例函数,故此选项不合题意.故选C.4. D【解析】A.S=a2,S是a的二次函数;B.C=4a,C是a的正比例函数;C.S=20a,S是a的正比例函数;D.a=40b,故a与b是反比例函数关系.5. B【解析】A选项、C选项、D选项:反比例函数的形式有:y=kx(k≠0,x≠0),变形:xy=k(k≠0),y=kx−1(k≠0,x≠0),故ACD正确;B选项:y=5x8是一次函数,故B错误.6. A【解析】y=34x 可化为y=34x,是反比例函数,符合题意;y=12x2,y=13x,y=1x2都不是反比例函数.故选A.7. A【解析】由题意得k2+k−1=−1,解得k1=0,k2=−1,又∵系数不为0,∴k2−▫≠0,∴k 2≠▫,∵k 的值有两个,∴▫≠0,▫≠1.8. C【解析】A 中,当 k =−1 时,k +1=0,此时 y =k+1x 不是反比例函数;B 中,当 k =−1 时,−∣k ∣=−1,k 2+k =0,此时 y =(k 2+k )x −∣k∣ 不是反比例函数;C 中,当 k =−1 时,函数 y =−kx −1 为 y =1x ,是反比例函数;D 中,当 k =−1 时,函数 y =(k −1)x 为 y =−2x ,不是反比例函数.9. C【解析】由题意得 m =1,则比例系数为 −2×(1+1)=−4.故选C .10. 18【解析】∵y =18x =18x ,∴ 反比例函数 y =18x 的比例系数是 18. 11. √,1,√,−2,×,×,×,√,3512. 1【解析】∵ 函数 y =x m−2 是 y 关于 x 的反比例函数,∴m −2=−1,解得:m =1.13. 0【解析】由题意得:{k −2≠0,k 2−2k =0,解得 k =0,故答案为:0.14. −1【解析】根据题意 m 2−2=−1,m =±1,又 m −1≠0,m ≠1,所以 m =−1.15. (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)xy=2是反比例函数,k=2.(4)y=7x−1是反比例函数,k=7.(5)y=0.4x−1不是反比例函数.16. (1)根据三角形的面积公式可得y=32x,所以不是反比例函数.(2)因为vt=200,所以两个变量之间的函数表达式为v=200t,是反比例函数.(3)因为y+10x=100,所以两个变量之间的函数表达式为y=100−10x,不是反比例函数.17. (1)(2)(4)(6)是反比例函数,相应的k值分别是5,0.4,2,−7.18. 由反比例函数的解析式y=a+3x∣a∣−2得{∣a∣−2=1,a+3≠0,解得a=3.故函数解析式为y=6x.。

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)(满分 120 分)一、选择题(每题3分,共30分) 1.下列函数中,是反比例函数的是( )A. y = -2xB. y =-12xC. y =11x- D. y =21x 2.已知点 P (-1,4)在反比例函数y = kx(k =0)的图象上,则K 值是( ) A. -14B.14 C. 4 D. -4 3.下列各点中,在函数y = -6x图象上的是( )A. (-2,-4)B.(2,3)C.(-1,6)D.(-12,3)4.反比例函数y =5m x-的图象在第二、四象限内,那么m 的取值范围是( ) A. m <0B. m >0C.m >5D. m <55. 函数4y=-x,当x >0时的图象为下图中的( )6.已知点(1,y 1),B (2,y 2),C (-3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2 ,y 3;的大小关系是( ) A. y 3<y 1 <y 2; B. y 1<y 2<y 3; C. y 2,y 1,y 3; D. y 3<y 2<y 1;7.关于反比例函数y = 4x的图象,下列说法正确的是( ) A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称8.三角形的面积为4 c m²,底边上的高y(c m)与底边x(c m)之间的函数关系图象大致应为()9. 函数y= ax与y=αx-a(a≠0)在同一坐标系中的大致图象是()10.如图,函数y1=x-1和函数y2=-2x的图象相交于点M(2,m),N(-1,n),若y1<y2,则x的取值范围是()A.x<-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>2二、填空题(每题4分,共28分)11.反比例函数y=- 1x的图象在第__________象限,在每个象限内,y随x的增大而________ .12. 反比例函数y= kx过A(-1,4)和B(2,m)两点,则m= ___________________.13.对于函数y= 3x,当x>0时y__________0,这部分图象在第_____________象限.14.完成某项任务可获得500 元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式_________________________________.15.若点P(1,m),P,(2,n)在反比例函数y=kx(k<0)的图象上,则m_____n(填">""<"或"=").16.如图,已知点A在反比例函数图象上,A M⊥x轴于点M,且⊥AO M的面积为1,则反比例函数的解析式为______________________.17.如图,一次函数y= kx+b与反比例函数y=mx的图象交于A(2,1),B(-1,n)两点.连接OA,OB,则三角形OAB 的面积为____________.三、解答题(一)(每题6分,共18 分)18.某打印店要完成一批电脑打字任务,如果每天完成100 页,需8天完成任务.(1)每天完成的页数y与所需天数x之间是什么函数关系?(2)要求4天完成,每天应完成几页?19.已知反比例函数y =kx(k为常数,k≠0)的图象经过A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6)是否在这个函数的图象上,并说明理由.20.如图,反比例函数y =kx(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若⊥AOB 的面积为6,求直线AB的解析式.四、解答题(二)(每题8 分,共24 分)21.码头工人以每天30 吨的速度往一艘轮船上装载货物,装载完毕恰好用了8 天时间.(1)轮船到达目的地后开始卸货,卸货速度ν(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?22.如图,已知A (-4,2),B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.23.如图,已知在平面直角坐标系x O y 中,0是坐标原点,点A (2,5)在反比例函数y =kx的图象上,过点A 的直线y =x +b 交x 轴于点 B. (1)求k 和b 的值; (2)求⊥OAB 的面积;(3)当-3≤x ≤-1时,反比例函数值的范围为_________________.五、解答题(三)(每题10 分,共 20 分) 24.一次函数y =k 1x +b 与反比例函数y =2k x(x <0)的图象相交于A ,B 两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4. (1)试确定反比例函数的解析式;(2)求⊥AOB 的面积; (3)直接写出不等式后k 1x +b>2k x的解.25.对教室进行"薰药消毒".已知药物在燃烧释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围; (2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?参考答案一、1.B 2.D 3.C 4.D 5.B 6.D 7.D 8.B 9.A 10. A 二、11.二、四 增大 12. -2 13. > 一 14.500y x= 15. <16. y =-2x 17. 32三、18.解:(1)800y x=,反比例函数 (2)当x =4,800y x== 200(页) 19.解:(1) 6y x= (2)不在,理由如下: 当x = -1,61y =-= -6≠6 ⊥点B(-1,6)不在y =6x 的图象上。

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案

北师大版九年级数学上册《6.1反比例函数》同步测试题及答案一、单选题1.下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,⑤xy=11,⑥y=kx,⑦y=5x2,⑧yx=1.其中y是x的反比例函数的有()A.1个B.2个C.3个D.4个2.下列问题中,两个变量成反比例的是()A.商一定时(不为零),被除数与除数;B.等腰三角形周长一定时,它的腰长与它底边的长;C.一个因数(不为零)不变时,另一个因数与它们的积;D.货物的总价A一定时,货物的单价a与货物的数量x.3.当x=−3时,反比例函数y=−12x的函数值为()A.−14B.4C.−4D.144.下列各点在反比例函数y=−8x的图象上的是()A.(−2,−4)B.(2,4)C.(13,24)D.(−12,16)5.若一个反比例函数的图象经过A(2,−4)、B(m,−2)两点,则m的值为()A.−4B.4C.8D.−86.如果点A(a,−b)在反比例函数y=2x的图象上,则代数式ab−4的值为()A.0B.−2C.2D.−67.已知点A(3,m)和点B(n,2)关于x轴对称,则下列各点不在反比例函数y=mnx的图象上的点是()A.(3,−2)B.(−3,2)C.(−1,−6)D.(−1,6)8.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么他们各掷一次所确定的点P落在双曲线y=6x上的概率为()A.19B.23C.118D.16二、填空题9.已知反比例函数y=−8x的图像经过(−2,m),则m=10.已知反比例函数y=8x的图象经过点A(m,−2),则A关于原点对称点A′坐标为.11.已知y与x-2成反比例,且比例系数为k≠0,若x=3时,y=4,则k=.12.已知y−3与x+2成反比例,且x=2时y=7,则当y=1时,x的值为13.已知点A(x1,y1),B(x2,y2)都在反比例函数y=4x的图象上.若x1⋅x2=−2,则y1⋅y2的值为.14.点A(x1,y1),B(x2,y2)在反比例函数y=kx(k≠0)的图象上,若x1+x2=0,则y1+y2=.15.已知点P(a,b)是反比例函数y=1x 图像上异于点(-1,-1)的一个动点,则21+a+21+b=.16.如图,平面直角坐标系中,若反比例函数y=kx(k≠0)的图象过点A和点B,则a的值为.三、解答题17.已知y=(a−2)x a2−a−1,当a为何值时,y为x的正比例函数?当a为何值时,y为x的反比例函数?18.写出下列问题中的函数关系式,并指出其比例系数.(1)当圆锥的体积是150cm³时,它的高ℎ(cm)与底面积S(cm²)的函数关系式;(2)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系式;(3)某实验中学八(2)班同学为校运动会制作小红花1000朵,完成的天数y与该班同学每天制作的数量x 之间的函数关系式;(4)某商场推出分期付款购买电脑的活动,一台电脑售价1.2万元,首期付款4千元后,分x次付清,每次付款相同. 每次的付款数y(元)与付款次数x的函数关系式.19.已知反比例函数y=−12x.(1)说出这个函数的比例系数和自变量的取值范围.(2)求当x=−3时函数的值.(3)求当y=−√3时自变量x的值.20.已知函数y=y1+y2,其中y1与x成正比例,y2与x−3成反比例,当x=2时y=16;当x=4时,y=20.求:(1)y关于x的函数解析式及定义域;(2)当x=5时的函数值.21.已知y−3与x+1成反比例关系,且当x=2时y=1.(1)求y与x的函数表达式.)是否在该函数图象上,并说明理由.(2)试判断点B(3,−1222.在面积为定值的一组矩形中,当矩形的一边长为7.5cm时,它的另一边长为8cm.(1)设矩形相邻的两边长分别为x(cm),y(cm),求y关于x的函数表达式.这个函数是反比例函数吗?如果是,指出比例系数.(2)若其中一个矩形的一条边长为5cm,求这个矩形与之相邻的另一边长.23.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案:题号 1 2 3 4 5 6 7 8答案 C D B D B D C A(k≠0),xy=k(k≠0),y=kx−1(k≠0).1.解:反比例的三种形式分别为:y=kx①中x的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是x+1,故不是反比例函数;⑤是反比例函数;⑥中没有k≠0,故不是反比例函数;⑦分母是x2,故不是反比例函数;⑧中x的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C.2.解:A、商一定时(不为零),被除数和除数成正比例关系,故A错误;B、等腰三角形周长一定时,它的腰长与它底边的长成一次函数关系;故B错误;C 、一个因数(不为零)不变时,另一个因数与它们的积成正比例关系;故C 错误;D 、货物的总价A 一定时,货物的单价a 与货物的数量x 成反比例关系;故D 正确. 故选D3.解:当x =−3时 故选:B .4.解:A.当x =−2时y =−8−2=4,故该点不在反比例函数y =−8x图象上;B. 当x =2时y =−82=−4,故该点不在反比例函数y =−8x 图象上; C. 当x =13时y =−813=−24,故该点不在反比例函数y =−8x 图象上;D. 当x =−12时y =−8−12=16,故该点在反比例函数y =−8x 图象上;故选:D .5.解:设反比例函数的表达式为y =kx(k ≠0)∵反比例函数的图象经过A(2,−4)、B(m ,−2)两点 ∵k =2×(−4)=−2m 解得:m =4 故选:B .6.解:∵点A(a ,−b)在反比例函数y =2x 的图象上 ∵−b =2a ∵ab =−2∵ab −4=−2−4=−6 故选D .7.解:∵点A (3,m )和点B (n,2)关于x 轴对称 ∵{m =−2n =3∵反比例函数解析式为y =mn x=−6x∵在反比例函数图象上的点一定满足横纵坐标的乘积为−6 ∵四个选项中只有C 选项符合题意 故选C .8.解:表格列示所有投掷情况如下小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P若落在y=6x上,则xy=6.如上表,两人掷的组合情况共有6×6=36种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为436=19;故选:A9.解:把(−2,m)代入y=−8x即m=−8−2=4故答案为:4.10.解:∵反比例函数y=8x的图象经过点A(m,−2)∵−2m=8解得m=−4∴A(−4,−2)则A关于原点对称点A′(4,2)故答案为:(4,2).11.解:由题意知k=y(x-2)∵x=3时,y=4∵k=4×(3-2)=4.故答案为:412.解:∵y −3与x +2成反比例 ∵可设:y −3=k x+2(k ≠0)又∵x =2,y =7 ∵7−3=k 2+2解之得:k =16 ∵得:y −3=16x+2,即:y =16x+2+3∵当y =1时得:1=16x+2+3 解之得:x =−10 故答案为:−10.13.解:∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =4x 的图象上∴x 1y 1=4,x 2y 2=4 ∴x 1y 1x 2y 2=16且x 1⋅x 2=−2 ∴y 1⋅y 2=−8. 故答案为:−8.14.解:∵点A(x 1,y 1),B(x 2,y 2)在反比例函数y =k x (k ≠0)的图象上 ∵y 1=k x 1,y 2=k x 2∵y 1+y 2=kx 1+kx 2=k(x 1+x 2)x 1x 2.∵x 1+x 2=0 ∵k(x 1+x 2)x 1x 2=0,即y 1+y 2=0.故答案为:0.15.解:∵点P(a,b)是反比例函数y =1x 图象上异于点(−1,−1)的一个动点∴ab =1∴ 21+a +21+b =2(1+b)(1+a)(1+b)+2(1+a)(1+a)(1+b)=2(1+b+1+a)1+b+a+ab=2(2+a+b)2+a+b=2.故答案为2.16.解:依题意,将点A (1,−3)代入y =kx ,得出k =−3∵反比例数解析式为y =−3x当x =−2时y =32即a =32 故答案为:32.17.解:当y 为x 的正比例函数时{a −2≠0a 2−a −1=1解得:a =−1.所以:当a =−1时,y 为x 的正比例函数. 当y 为x 的反比例函数时{a −2≠0a 2−a −1=−1解得:a =0或a =1.所以:当a =0或a =1时,y 为x 的反比例函数. 18.解:(1)∵hS=450,∵ℎ=450S,∵比例系数为450.(2)∵Fs=W ,∵F =W s,∵比例系数为W . (3)∵xy=1000,∵y =1000x,∵比例系数为1000.(4)∵xy=12000-4000,∵y =8000x,∵比例系数为8000.19.(1)解:∵y =−12x∵k =−12,x ≠0;(2)解:把x =−3,代入y =−12x 得:y =−12−3=4; ∵当x =−3时函数的值为:4;(3)解:把y =−√3,代入y =−12x 得:−√3=−12x ,解得:x =4√3;∵当y =−√3时x 的值为:4√3.20.(1)解:∵ y 1与x 成正比例,y 2与x −3成反比例 ∴设y 1=ax(a ≠0)∴y =y 1+y 2=ax +bx −3∵当x =2时y =16;当x =4时∴{2a +b2−3=164a +b4−3=20解得:a =6∴y =6x −4x −3∵x −3≠0 ∴x ≠3∴y =6x −4x −3(x ≠3) (2)解:由(1)可知y =6x −4x−3,则当x =5时y =6×5−45−3=28. 21.(1)解:设y −3=k x+1∵当x =2时y =1 ∵1−3=k2+1 ∵k =−6 ∵y =−6x+1+3; (2)不在;理由如下: 当x =3时y =−63+1+3=32∵B (3,−12)不在该函数图象上.22.(1)解:设矩形的面积为Scm 2,则S =7.5×8=60 即xy =60,y =60x即y 关于x 的函数解析式是y =60x,这个函数是反比例函数,系数为60;(2)解:当x =5时y =60x=12故这个矩形与之相邻的另一边长为12cm . 23.解:(1)根据题意,得wt =1600 所以w =1600t(t >4);(2)当w=100时1600t=100,解得t=16.即服装厂需要16天能够完成任务.(3)当t=16−6=10时w=1600t =160010=160(件).160−100=60(件)即服装厂每天要多做60件夏凉小衫才能完成任务.。

九年级上册数学单元测试卷-第六章 反比例函数-北师大版(含答案)

九年级上册数学单元测试卷-第六章 反比例函数-北师大版(含答案)

九年级上册数学单元测试卷-第六章反比例函数-北师大版(含答案)一、单选题(共15题,共计45分)1、若函数y=(m+2)x|m|-3是反比例函数,则m的值为()A.-2B.4C.2D.-12、若反比例函数图象经过点(3,﹣1),该函数图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3、某反比例函数象经过点(-1,6),则下列各点中此函数图象也经过的是()A.(-3,2)B.(3,2)C.(2,3)D.(6,1)4、有以下判断:①圆面积公式S=πr2中,面积S与半径r成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式V=πr2h 中,当体积V不变时,圆柱的高h与底面半径r的平方成反比例,其中错误的有()A.1个B.2个C.3个D.4个5、下列函数中,当x>0时,y随x的增大而增大的是()A.y=-3xB.y=-x+4C.y=-D.y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A.-B.-C.-3D.-67、反比例函数的图象过点,则k的值为()A.15B.C.-15D.8、若A(x1, y1),B(x2, y2),C(x3, y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2B.y1>y2>y3C.y2>y1>y3D.y3>y2>y19、关于反比例函数,下列说法错误的是()A.点在它的图像上B.它的图像在第一、三象限C.它的图像关于原点中心对称D. 的值随着的值的增大而增大10、如图,点 P 是反比例函数 y =6/x的图象上的任意一点,过点 P分别作两坐标轴的垂线,与坐标轴构成矩形 OAPB,点 D 是矩形OAPB 内任意一点,连接 DA、DB、DP、DO,则图中阴影部分的面积A.1B.2C.3D.411、如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y 轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积()A.减小B.增大C.先减小后增大D.先增大后减小12、从-1,2,3,-6 这四个数中随机取两个数,分别记作 m,n,点(m,n)在函数 y= 图象上的概率是().A. B. C. D.13、已知点P(-1,a)在反比例函数y=的图象上,则a的值为()A.-1B.1C.-2D.214、若,则正比例函数与反比例函数在同一平面直角坐标系中的大致图象可能是()A. B. C. D.15、对于反比例函数(),下列说法正确的是()A.当时,y随x增大而增大B.当时,y随x增大而增大 C.当时,该函数图像在二、四象限 D.若点(1,2)在该函数图像上,则点(2,1)也必在该函数图像上二、填空题(共10题,共计30分)16、如图,已知点A,B分别在反比例函数y1= 和y2= 的图象上,若点A是线段OB 的中点,则k的值为________.17、如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为________.18、已知反比例函数,当 m________时,其图象的两个分支在第一、三象限内;当 m________ 时,其图象在每个象限内随的增大而增大.19、如图,过点A(1,0)的直线与轴平行,且分别与正比例函数, 和反比例函数但在第一象限相交,则的大小关系是________.20、如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=kx(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),则点B的坐标为________21、已知反比例函数,当时,y的取值范围是________.22、设反比例函数y= 的图象与一次函数y=-x+3的图象交于点(a,b),则=________.23、如图,在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴、y轴建立平面直角坐标系,F是BC边上的点,过F点的反比例函数y= (k>0)的图象与AC边交于点E.若将△CEF沿EF翻折后,点C恰好落在OB上的点D处,则点F的坐标为________.24、如图,y1= x+1与双曲线y2= 的两个交点A,B的纵坐标分别为﹣1,2,则使得y2<y1<0成立的自变量x的取值范围是________.25、反比例函数y=的图象在第一、三象限,则m的取值范围是________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时, ;时, .试求当时, 的值.27、已知函数y=(m﹣1)x|m|﹣2是反比例函数.(1)求m的值;(2)求当x=3时,y的值.28、如图,直线y=-2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.29、如图,P1.P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.30、已知一次函数与反比例函数的图像都经过和两点.求这两个函数的关系式.参考答案一、单选题(共15题,共计45分)1、C2、D3、A4、B5、C6、C7、C8、A9、D10、C11、B12、D13、C14、B15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

北师大版九年级上数学第五章反比例函数单元测试题

北师大版九年级上数学第五章反比例函数单元测试题

九年级上数学第五章《反比例函数》测试题(一)一、精心选一选,相信自己的判断!(每题2分共20分)1、下列函数中,反比例函数是( )A 、1)1(=-y xB 、11+=x y C 、21xy = D 、x y 31= 2、函数x k y =的图象经过点(-4,6),则下列各点中在xky =图象上的是( )A 、(3,8)B 、(3,-8)C 、(-8,-3)D 、(-4,-6) 3、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定 4、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、第一、三象限 B 、第一、二象限 C 、第二、四象限 D 、第三、四象限5、在同一坐标系中,函数ky =和3+=kxy 的图像大致是 ()6、正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2B .2-C .4D .4-7、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A 、 (-a ,-b ) B 、 (a ,-b ) C 、 (-a ,b ) D 、 (0,0) 8、如上图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6B 、3C 、23D 、不能确定9、若反比例函数22)12(--=m xm y 的图像在第二、四象限,则m 的值是( A 、-1或1 B 、小于21的任意实数 C 、-1 D、不能确定10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xky 2=没有交点,那么1k 和2k 的关系一定是( )A 、1k <0,2k >0B 、1k >0,2k <0C 、1k 、2k 同号D 、1k 、2k 异号二、耐心填一填:(30分) 1、函数1y x a=-,当2x =时没有意义,则a 的值为 2、某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (㎡)之间的函数关系如图所示.这一函数表达式为p=________3、反比例函数xky =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;4、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ;5、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果 △MOP 的面积为1,那么k 的值是 ;6.在下列函数表达式中,表示y 是x 的反比例函数的有 。

北师版九年级数学反比例函数测试卷带答案

北师版九年级数学反比例函数测试卷带答案

第六章 反比例函数测试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题给出的四个选项中,只有一项符合题目要求)1. 下列函数中,y 是x 的反比例函数是( )A y= 11-x B x y 21= C 22x y = D 2=x y2.关于反比例函数的图象,下列说法正确的是( )A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 3.函数与函数在同一坐标系中的大致图像是( )4.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A. (-3,2) B. (3,2) C. (2,3) D. (6,1)5.若双曲线y=的图象经过第二、四象限,则k 的取值范围是( )> B. k < C. k = D. 不存在6.反比例函数的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )>1 <y <1 C.y >2 < y <27. 矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )8. 已知点(-1,),(2,),(3,)在反比例函数xk y 12--=的图像上. 下列结论中正确的( )A .B .C .D .9. 如图,正比例函数y 1=kx 和反比例函数y 2=2k x的图像交于A (-1,2)、(1,-2)两点,若y 1 <y 2,则x 的取值范围是( )<-1或x >1 B. x <-1或0<x <1 C. -1<x <0或 0<x <1 D. -1<x <0或x >110. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反比例函数k y x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( ) A .2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤8二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上) 11. 若反比例函数的图像过点P (-1,4),则它的函数关系是 . 12.若函数图象在其象限内的值随值的增大而增大,则的取值范围是 . 13.如图:点A 在双曲线上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.14. 如图,点A 在双曲线上,点B 在双曲线上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 的面积为矩形,则它的面积为 .5. 如图,已知第一象限内的图象是反比例函数y=图象的一个分支,第二象限内的图象是反比例函数y=﹣图象的一个分支,在x 轴的上方有一条平行于x 轴的直线l 与它们分别交于点A 、B ,过点A 、B 作x 轴的垂线,垂足分别为C 、D .若四边形ABCD 的周长为8且AB <AC ,则点A 的坐标为 .13题 14题 15题三、解答题(本大题共 4 个小题.共55分.解答应写出文字说明、证明过程或演算步骤) 16. (10分)如图9,已知双曲线ky x和直线y=mx+n 交于点A 和B ,B 点的坐标是(2,-3),AC 垂直y 轴于点C ,AC=32; (1)求双曲线和直线的解析式;(2)求△AOB 的面积。

(常考题)北师大版初中数学九年级数学上册第六单元《反比例函数》检测题(含答案解析)

(常考题)北师大版初中数学九年级数学上册第六单元《反比例函数》检测题(含答案解析)

一、选择题1.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=( )A .4B .3C .2D .1【答案】A 【分析】先根据反比例函数系数k 的几何意义得S 1+S 阴影及S 2+S 阴影的值,进而可得出S 1+S 2的值. 【详解】解:∵点A 、B 是双曲线3y x=上的点, ∴S 1+S 阴影=S 2+S 阴影=3, ∵S 阴影=1∴S 1=S 2=3-S 阴影=3-1=2, ∴12224S S +=+=. 故选A . 【点睛】本题考查反比例函数系数k 的几何意义,是常考点,需要学生熟练掌握.2.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)ky k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y ==【答案】B 【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可. 【详解】 ∵k <0,∴反比例函(0)ky k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0, ∴312y y y <<, 故选B . 【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.3.已知反比例函数y =6x-,下列说法中正确的是( ) A .图象分布在第一、三象限 B .点(﹣4,﹣3)在函数图象上 C .y 随x 的增大而增大 D .图象关于原点对称【答案】D 【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x 的增大而增大,再逐个判断即可. 【详解】解:A .∵反比例函数y =6x-中﹣6<0, ∴该函数的图象在第二、四象限,故本选项不符合题意;B .把(﹣4,﹣3)代入y =6x -得:左边=﹣3,右边=32,左边≠右边, 所以点(﹣4,﹣3)不在该函数的图象上,故本选项不符合题意;C .∵反比例函数y =6x-中﹣6<0, ∴函数的图象在每个象限内,y 随x 的增大而增大,故本选项不符合题意; D .反比例函数y =6x-的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意; 故选:D . 【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.4.为预防新冠病毒,某学校每周末用药熏消毒法对教室进行消毒,已知药物释放过程中,教室内每立方米空气中含药量()mg y 与时间()h t 成正比例;药物释放完毕后,y 与t 成反比例,如图所示.根据图象信息,下列选项错误的是( )A .药物释放过程需要32小时 B .药物释放过程中,y 与t 的函数表达式是23y t =C .空气中含药量大于等于30.5mg/m 的时间为9h 4D .若当空气中含药量降低到30.25mg/m 以下时对身体无害,那么从消毒开始,至少需要经过4.5小时学生才能进入教室 【答案】D 【分析】先求出反比例函数的解析式,再求出一次函数的解析式,结合图像,逐项判断即可 【详解】根据题意:设药物释放完毕后y 与t 的函数关系式为k y t=, 结合图像可知k y t=经过点(3,12)12332kk ∴=∴=∴y 与t 的函数关系式为32y t=设药物释放过程中y 与t 的函数关系式为k y t= 结合图像当1y =时药物释放完毕代入到32y t=中,则32t =,故选项A 正确,设正比例函数为1y k t =,将(32,1)代入得:1312k =,解得123k ,则正比例函数解析式为23y t =,故选项B 正确, 当空气中含药量大于等于30.5/mg m 时,有2132t ≥,解得34t ≥,结合图像3t ≤,即334t ≤≤,故选项C 正确, 当空气中含药量降低到30.25/mg m 时,即3124t =,解得6t =,故选项D 错误, 故选:D . 【点睛】本题考查了函数,不等式的实际应用,以及识图和理解能力,解题关键是利用图像的信息求出函数解析式.5.已知()11,A x y ,()22,B x y ,()33,C x y 是反比例函数4y x=-图象上的三个点,且1230x x x <<<,那么1y ,2y ,3y 的大小关系是( )A .321y y y >>B .123y y y >>C .132y y y >>D .231y y y >>【答案】C 【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据1230x x x <<<,则可以判断出1y ,2y ,3y 的大小关系; 【详解】∵ 反比例函数4y x=-中k=-4<0, ∴ 此函数的图象在二、四象限,且在每一象限内y 随x 的增大而增大, ∴ (1x ,1y )在第二象限,(2x ,2y ),(3x ,3y )在第四象限, ∴ 10y > ,2y <3y <0,即 1y >3y >2y , 故选:C . 【点睛】本题考查了反比例函数图象上点的特征特点,熟知反比例函数图象上各点的特征一定适合此函数解析式是解题的关键;6.某班“数学兴趣小组”探究出了有关函数1223y x =-+(图象如图)的三个结论:①方程12203x -=+有1个实数根,该方程的根是3x =;②如果方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =;③如果方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >.你认为正确的结论个数有( )A .3B .2C .1D .0【答案】A 【分析】利用函数图像结合图像性质分析求解. 【详解】解:结合函数图像可以看出当y=12203x -=+时,函数图像与x 轴有1个交点,(3,0), ∴方程12203x -=+有1个实数根,该方程的根是3x =,故①正确; 如果方程1223a x -=+只有一个实数根,由①可得a=0, 若a=2,则12223x -=+,此时只有12=43x +,解得x=0(经检验,是原方程的解) ∴方程1223a x -=+只有一个实数根,则a 的取值范围是2a =或0a =,故②正确; 由②可得当2a =或0a =时,y=1223a x -=+有一个实数根 又∵a≥0 ∴方程1223a x -=+有2个实数根,则a 的取值范围是02a <<或2a >,故③正确 正确的共3个, 故选:A . 【点睛】本题考查了函数的性质,函数与方程等知识,学会利用图象,数形结合思想解题是关键.7.如图,点A 在反比例函数()0ky k x=≠的图象上,过点A 作AB x ⊥轴于点B ,若OAB ∆的面积为3,则k 的值为( )A .-6B . 6C .-3D .3【答案】A 【分析】设出点A 的坐标,用坐标表示面积列方程即可. 【详解】解:设A 点坐标为(a ,k a ),则AB=ka,OB=-a , 12OAB S AB OB ∆=⨯, 13()2ka a =⨯⨯-,解得,k=-6, 故选:A . 【点睛】 本题考查了反比例函数比例系数k 的几何意义,解题关键是设反比例函数图象上点的坐标,用坐标表示面积.8.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AD ,若AD 平分OAE ∠,反比例函数(0,0)ky k x x=>>的图象经过AE 上的两点,A F ,且AF EF =,若ABE △的面积为24,则k 的值为( )A .8B .16C .18D .24【答案】B 【分析】如图,连接BD ,OF ,过点A 作AN ⊥OE 于N ,过点F 作FM ⊥OE 于M .证明BD ∥AE ,推出S △ABE =S △AOE =24,推出12∆=EOF S S △AOE =12,可得143∆∆==FME EOF S S ,由此即可解决问题. 【详解】解:如图,连接BD ,OF ,过点A 作AN ⊥OE 于N ,过点F 作FM ⊥OE 于M .∵AN ∥FM ,AF=FE , ∴MN=ME ,1,2=FM AN ∵A ,F 在反比例函数的图象上, ∴S 2∆∆==AON FOM k S 1122∴⋅⋅=⋅⋅ON AN OM FM ∴ON 12=OM ∴ON=MN=EM ,∴ME 13=OE ∴13S ∆∆=FME FOE S ∵AD 平分∠OAE , ∴∠OAD=∠EAD ,∵四边形ABCD 是矩形, ∴OA=OD ,∴∠OAD=∠ODA=∠DAE , ∴AE ∥BD , ∴S △ABE =S △AOE , ∴S △AOE =24, ∵AF=EF , ∴1122S ∆∆==EOF AOE S∴143S ∆∆==FME EOF S ∴S 12482∆∆∆=-=-==FOM FOE FME k S S ∴k=16. 故选:B . 【点睛】本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD ∥AE ,利用等高模型解决问题,属于中考选择题中的压轴题.9.如图,在x 轴正半轴上依次截取1122320202021OA A A A A A A ====,过点1A .2A ,3A 、、2020A 、2021A 分别作x 轴的垂线,与反比例函数2y x=的图象依次相交于1P ,2P 、3P 、、2021P ,得到11OP A ∆、122O P A ∆、、202020212021A P A ∆,并设其面积分别为1S 、2S 、、2021S ,则2021S 的值为( )A .12021 B .12020C .22021D .11010【答案】A 【分析】设OA 1=A 1A 2=A 2A 3=…=A 2020A 2021=t ,利用反比例函数图象上点的坐标特征得到P 1(t ,2t),P 2(2t ,22t ),P 3(3t ,23t),…,P 2021(2021t ,22021t ),然后根据三角形面积公式可计算出S 2021. 【详解】解:设OA 1=A 1A 2=A 2A 3=…=A 2010A 2021=t ,则P 1(t ,2t ),P 2(2t ,22t),P 3(3t ,23t),…,P 2021(2021t ,22021t ),所以S 2021=121=220212021t t ⨯⨯. 故选:A . 【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=kx的图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.10.下列说法正确的是( ) A .对角线垂直的平行四边形是矩形 B .方程x 2+4x+16=0有两个相等的实数根 C .抛物线y =﹣x 2+2x+3的顶点为(1,4) D .函数2y x=-,y 随x 的增大而增大 【答案】C 【分析】根据矩形的判定方法、一元二次方程的解、二次函数的性质及反比例函数的性质分别判断后即可确定正确的选项. 【详解】解:A 、对角线垂直的平行四边形是菱形,故原命题错误,不符合题意; B 、方程x 2+4x+16=0没有实数根,故说法错误,不符合题意; C 、抛物线y =﹣x 2+2x+3的顶点为(1,4),正确,符合题意; D 、函数y =﹣2x,在每一象限内y 随x 的增大而增大,错误,不符合题意, 故选:C . 【点睛】本题考查了矩形的判定方法、一元二次方程的解、二次函数的性质及反比例函数的性质,属于基础题,解题的关键是了解有关的定义及性质,难度不大.11.如图,在平面直角坐标系内,正方形OABC 的顶点A ,B 在第一象限内,且点A ,B 在反比例函数()ky k 0x=≠的图象上,点C 在第四象限内.其中,点A 的纵坐标为4,则k 的值为( )A .434B .454C .838D .858【答案】D 【分析】作AE ⊥x 轴于E ,BF ∥x 轴,交AE 于F ,根据图象上点的坐标特征得出A (4k,4),证得△AOE ≌△BAF (AAS ),得出OE=AF ,AE=BF ,即可得到B(44k +,44k-),根据系数k 的几何意义得到k=4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭解得即可. 【详解】解:作AE ⊥x 轴于E ,BF//x 轴,交AE 于F , ∵∠OAE+∠BAF =90°=∠OAE+∠AOE , ∴∠BAF =∠AOE , 在△AOE 和△BAF 中,AOE BAFAEO BFA 90OA AB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△AOE ≌△BAF (AAS ), ∴OE =AF ,AE =BF , ∵点A ,B 在反比例函数y =kx(k≠0)的图象上,点A 的纵坐标为4, ∴A (4k,4), ∴ B(44k +,44k -), ∴k =4444k k ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭, 解得k =﹣5 ∴k =58, 故选择:D ..【点睛】本题考查了正方形的性质,全等三角形的性质与判定,反比例函数的图象与性质,关键是构造全等三角形.12.如图所示,反比例函数ky x=(0k ≠,0x ≥)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为等于8,则k 的值等于( )A .1B .2C .3D .4【答案】B 【分析】过D 作DE ⊥OA 于E ,设,k D a a ⎛⎫ ⎪⎝⎭,于是得到OA=2a ,2kOC a=,根据矩形的面积列方程即可得到结论. 【详解】解:过D 作DE OA ⊥于点E ,如图,设,k D a a ⎛⎫ ⎪⎝⎭,∴OE a =,k DE a=, ∵点D 是矩形OABC 的对角线AC 的中点,∴2OA a =,2k OC a=, ∵矩形OABC 的面积为8, ∴228kOA OC a a⋅=⨯=,解得2k =, 故选:B . 【点睛】本题考查了反比例函数系数k 的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.二、填空题13.已知点A (﹣2,y 1),B (3,y 2),C (5,y 3)是反比例函数y =﹣1x图像上的三个点,请你把y 1,y 2,y 3按从小到大的顺序排列为_____. 14.如图,在反比例函数()20=>y x x的图象上,有点1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴2y x=的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,则123S S S ++=______.15.如图,在ABC 中,AB AC =,点A 在反比例函数(0,0)ky k x x=>>的图象上,点,B C 在x 轴上,且15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD △的面积等于2,则k 的值为______.16.如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数ky x=的图象在第一象限内交于点C ,CD x ⊥轴,CE y ⊥轴.垂足分别为点D ,E .当矩形ODCE 的面积是OAB 的面积2倍时,k 的值为______________.17.如图所示,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴于点A ,点C 在函数()0k y x x=>的图象上,若1OA =,则k 的值为___.18.如图,在以O 为原点的平面直角坐标系中,矩形OABC 的两边OC .OA 分别在x 轴、y 轴的正半轴上,反比例函数(0)ky x x=>的图象与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE 的面积是6,则k 的值为________.19.如图,一次函数22y x =+与x 轴、y 轴分别交于A B 、两点,以AB 为一边在第二象限作正方形ABCD ,反比例函数()0ky k x=≠经过点D .将正方形沿x 轴正方向平移a 个单位后,点C 恰好落在反比例函数上,则a 的值是_______.20.反比例函数()0ky k x=>在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果MOP ∆的面积为4,那么k 的值是__________.三、解答题21.某地建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式;(2)当运输公司平均每天的工作量是15万米3时,完成任务所需的时间是多少? 22.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数2y x=的图象与性质,其探究过程如下: (1)绘制函数图象,如图.列表:下表是x 与y 的几组对应值,其中m =______.x⋅⋅⋅ 3-2- 1-12- 121 2 3⋅⋅⋅ y⋅⋅⋅231 2442m23⋅⋅⋅描点:根据表中各组对应值,x y ,在平面直角坐标系中描出了各点; 连线:用平滑的曲线顺次连接各点,画出了部分图象请你把图象补充完整; (2)通过观察图,写出该函数的两条性质;①_______________________________________________________; ②_______________________________________________________; (3)①观察发现:如图.若直线2y =交函数2y x=的图象于A ,B 两点,连接OA ,过点B 作//BC OA 交x 轴于C .则OABC S =四边形______;②探究思考:将①中“直线2y =”改为“直线()0y a a =>”,其他条件不变,则OABC S =四边形______;③类比猜想:若直线()0y a a =>交函数ky x=的图象于A ,B 两点,连接OA ,过点B 作//BC OA 交x 轴于C ,则OABC S =四边形______.23.如图,一次函数()0y mx nm =+≠的图象与反比例函数()0k y k x=≠的图象交于第一、三象限内的A B 、两点,与y 轴交于点C ,过点B 作BM x ⊥轴,垂足为M ,BM OM =,22OB =,点A 的纵坐标为4 (1)求反比例函数和一次函数的表达式; (2)求BOC ∆的面积.24.已知反比例函数12my x-=(m 为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过ABCO的顶点B,点,A C的坐标分别为()2,0,()1,2-,求出m的值;(3)将ABCO沿x轴翻折,点C落在C'处,判断点C'是否落在该反比例函数的图象上?25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数myx=(m≠0)的图象交于点A(3,1),且过点B(0,-2).(1)求反比例函数和一次函数的表达式.(2)如果点P是x轴上位于直线AB右侧的一点,且ΔABP的面积是3,求点P的坐标.26.如图,点A在反比例函数kyx=的图象位于第一象限的分支上,过点A作AB⊥y轴于点B,S△AOB=2.(1)求该反比例函数的表达式,(2)若P(x1,y1)、Q(x2,y2)是反比例函数kyx=图象上的两点,且x1<x2,y1<y2,指出点P、Q各位于哪个象限,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.y2<y3<y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二四其中在第四象限的点的纵坐标总小于在第二象限的纵坐标进而判断在同一象限内的点B 和点C 的纵坐标的大小即可【详解】解:∵反解析:y 2<y 3<y 1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点B 和点C 的纵坐标的大小即可. 【详解】解:∵反比例函数的比例系数为﹣1, ∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A 在第二象限,点B 、C 在第四象限, ∴y 1最大,∵3<5,y 随x 的增大而增大, ∴y 2<y 3, ∴y 2<y 3<y 1. 故y 2<y 3<y 1. 【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y 随x 的增大而增大.14.【分析】阴影矩形的水平边的长都是1宽是相邻两个点的纵坐标的差借助反比例函数的解析式计算即可【详解】∵反比例函数的图象上点它们的横坐标依次为1234∴阴影矩形的水平边的长都是1设其纵坐标依次为∴==2解析:32. 【分析】阴影矩形的水平边的长都是1,宽是相邻两个点的纵坐标的差,借助反比例函数的解析式计算即可. 【详解】 ∵反比例函数()20=>y x x的图象上点1P ,2P ,3P ,4P 它们的横坐标依次为1,2,3,4,∴阴影矩形的水平边的长都是1, 设其纵坐标依次为1y ,2y ,3y ,4y ,∴1y =21=2,2y =22=1,3y =23,4y =24=12, ∴1S =1y -2y ,2S =2y -3y ,3S =3y -4y , ∴123S S S ++=1y -2y +2y -3y +3y -4y =1y -4y =2-12=32. 故答案为:32. 【点睛】本题考查了反比例函数图像中的阴影面积,熟练借助解析式表示点的纵坐标是解题的关键.15.6【分析】作AE ⊥BC 于E 连接OA 根据等腰三角形的性质得出OC=CE 根据相似三角形的性质求得S △CEA 进而根据题意求得S △AOE 根据反比例函数系数k 的几何意义即可求得k 的值【详解】解:作AE ⊥BC 于解析:6 【分析】作AE ⊥BC 于E ,连接OA ,根据等腰三角形的性质得出OC=12CE ,根据相似三角形的性质求得S △CEA ,进而根据题意求得S △AOE ,根据反比例函数系数k 的几何意义即可求得k 的值. 【详解】解:作AE ⊥BC 于E ,连接OA ,∵AB=AC , ∴CE=BE , ∵OC=15OB , ∴OC=12CE , ∵AE ∥OD , ∴△COD ∽△CEA ,∴2CEA COD4S CE SOC ⎛⎫== ⎪⎝⎭,∵2BCDS =,OC=15OB ,∴COD1142BCDS S ==, ∴CEA1422S=⨯=, ∵OC=12CE , ∴AOC112CEAS S ==,∴AOE213S =+=,∵AOE12Sk =(0k >), ∴6k =,故答案为:6. 【点睛】本题考查了反比例函数系数k 的几何意义,三角形的面积,等腰三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.1【分析】根据题意由反比例函数的几何意义得:再求解AB 的坐标及建立方程求解即可【详解】解:如图矩形在上把代入:∴B(0k)把代入:∴A(-k0)由题意得:2×解得:k=1k=0(舍去)故答案为:1【解析:1 【分析】根据题意由反比例函数k 的几何意义得:ODCE S k =矩形再求解A ,B 的坐标及212ABOS k =建立方程求解即可. 【详解】 解:如图矩形ODCE ,C 在ky x=上, S k ∴=矩形ODCE把0x =代入:y x k =+y k ∴=∴B(0,k)把0y =代入:y x k =+x k ∴=-∴A(-k ,0)212ABO S k ∴= 由题意得:2×212k k = 解得:k=1,k=0(舍去)1k ∴=故答案为:1【点睛】本题考查的是一次函数与反比例函数的性质,掌握反比例函数中k 的几何意义,一次函数与坐标轴围成的三角形面积的计算是解题的关键.17.【分析】作BD ⊥AC 于D 如图先利用等腰直角三角形的性质得到AC =2BD 再证得四边形OADB 是矩形利用AC ⊥x 轴得到C (12)然后根据反比例函数图象上点的坐标特征计算k 的值【详解】解:作BD ⊥AC 于D解析:2【分析】作BD ⊥AC 于D ,如图,先利用等腰直角三角形的性质得到AC =2BD ,再证得四边形OADB 是矩形,利用AC ⊥x 轴得到C (1,2),然后根据反比例函数图象上点的坐标特征计算k 的值.【详解】解:作BD ⊥AC 于D ,如图,∵ABC 为等腰直角三角形,∴BD 是AC 的中线,∴AC =2BD ,∵AC ⊥x 轴,BD ⊥AC ,∠AOB =90°,∴四边形OADB 是矩形,∴BD =OA =1,∴AC =2,∴C (1,2),把C (1,2)代入y =k x 得k =1×2=2. 故答案为:2【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y = k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .也考查了等腰直角三角形的性质.18.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积然后即可求出B 的横纵坐标的积即是反比例函数的比例系数【详解】解:∵四边形OCBA 是矩形∴AB=OCOA=BC 设B 点的坐标为(ab )∵ 解析:165【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【详解】解:∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (14a ,b ) ∵D 、E 在反比例函数的图象上, ∴4ab =k , 设E 的坐标为(a ,y ),∴ay=k∴E (a ,k a), ∵1113()62224ODE AOD OCE BDE OCBA a k S S S S S ab k k b a ∆∆∆∆=--=---⋅-=-⋅矩形, ∴334688ab k k k --+=, 解得:165k =. 故答案为:165【点睛】本题考查反比例函数系数k的几何意义,矩形在平面直角坐标系中的坐标,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式.19.1【分析】过点C作CE⊥y轴于点E交双曲线于点G过点D作DF⊥x轴于点F如图先求出点AB的坐标然后利用正方形的性质余角的性质可证△OAB≌△FDA≌△EBC进而可利用全等三角形的性质求出点DC的坐标解析:1【分析】过点C作CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,如图,先求出点A、B的坐标,然后利用正方形的性质、余角的性质可证△OAB≌△FDA≌△EBC,进而可利用全等三角形的性质求出点D、C的坐标,进一步即可求出反比例函数的解析式,于是可得点G坐标,再根据平移的性质即可求出答案.【详解】解:过点C作CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,如图,在y=2x+2中,令x=0,解得:y=2,即B的坐标是(0,2),令y=0,解得:x=﹣1,即A的坐标是(﹣1,0).则OB=2,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,∵∠OBA=∠DAF,∠BOA=∠AFD,AB=AD,∴△OAB≌△FDA(AAS),同理可证:△OAB≌△EBC,∴AF=OB=EC=2,DF=OA=BE=1,∴D的坐标是(﹣3,1),C的坐标是(﹣2,3).将点D代入kyx得:k=﹣3,则函数的解析式是:y=﹣3x.∴G的坐标是(﹣1,3),∴当点C与G重合时,正方形沿x轴正方向平移了1个单位,即a=1.故答案为1.【点睛】本题考查了正方形的性质、平移的性质、全等三角形的判定和性质以及反比例函数图象上点的坐标特征,求出点C、D的坐标是解题的关键.20.8【分析】利用反比例函数k的几何意义得到|k|=4然后利用反比例函数的性质确定k的值【详解】解:∵△MOP的面积为4∴|k|=4∴|k|=8∵反比例函数图象的一支在第一象限∴k>0∴k=8故答案为:解析:8【分析】利用反比例函数k的几何意义得到12|k|=4,然后利用反比例函数的性质确定k的值.【详解】解:∵△MOP的面积为4,∴12|k|=4,∴|k|=8,∵反比例函数图象的一支在第一象限,∴k>0,∴k=8,故答案为:8.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.也考查了反比例函数的性质.三、解答题21.(1)360yx;(2)24天【分析】(1)根据题意直接写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式;(2)根据题意把x=15代入求出答案;【详解】解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式为:360xy =, 故360y x =; (2)当运输公司平均每天的工作量是15万米3时, 完成任务所需的时间是:360=2415y =(天), 答:完成任务所需的时间是24天.【点睛】本题考查了反比例函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的相关知识解答.22.(1)1;图见解析 (2)①函数的图象关于y 轴对称 ②当0x <时,y 随x 的增大而增大,当0x >时,y 随x 的增大而减小 (3)①4 ②4 ③2k【分析】(1)根据表格中的数据的变化规律得出当x <0时,xy =−2,而当x >0时,xy =2,求出m 的值;补全图象;(2)根据(1)中的图象,从函数的对称性,增减性方面得出函数图象的两条性质即可; (3)由图象的对称性,和四边形的面积与k 的关系,得出答案.【详解】解:(1)将2x =,y m =,代入2y x=解得1m =; 补全图象如图所示:(2)由函数图象的对称性可知,函数的图象关于y 轴对称,从函数的增减性可知,在y 轴的左侧(x <0),y 随x 的增大而增大;在y 轴的右侧(x >0),y 随x 的增大而减小;故答案为:①函数的图象关于y 轴对称,②当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小;(3)如图,①由A ,B 两点关于y 轴对称,由题意可得四边形OABC 是平行四边形,且OABC S 四边形=4OAM S =4×12|k|=2|k|=4, ②同①可知:OABC S 四边形=2|k|=4,③OABC S 四边形=2|k|=2k ,故答案为:4,4,2k .【点睛】本题考查反比例的图象和性质,列表、描点、连线是作函数图象的基本方法,利用图象得出性质和结论是解决问题的根本目的.23.(1)4y x =,22y x =+;(2)2 【分析】(1)根据题意可以求得点B 的坐标,从而可以求得反比例函数的解析式,进而求得点A 的坐标,从而可以求得一次函数的解析式;(2)过点B 作BE ⊥y 轴,垂足为E ,得出BE =2,由直线的解析式求得C 的坐标,然后根据三角形面积公式求得即可.【详解】解:(1)由题意可得,BM =OM ,OB =22∴BM =OM =2,∴点B 的坐标为(﹣2,﹣2), 代入k y x=得, 22-=-k , 解得k =4, ∴反比例函数的解析式为4y x =, ∵点A 的纵坐标是4, ∴44x=,解得x =1,∴点A 的坐标为(1,4),∵一次函数y =mx +n (m ≠0)的图象过点A (1,4)、点B (﹣2,﹣2),∴422m n m n +=⎧⎨-+=-⎩, 解得22m n =⎧⎨=⎩, ∴一次函数的解析式为y =2x +2;(2)过点B 作BE ⊥y 轴,垂足为E ,∵y =2x +2与y 轴交于点C ,∴点C 的坐标为(0,2),∴OC =2,∵点B 的坐标为(﹣2,﹣2),∴BE =2,∴△COB 的面积=1122222OC BE ⨯⨯=⨯⨯=.【点睛】本题考查了用待定系数法求一次函数和反比例函数解析式和求三角形面积,解题关键是熟练运用待定系数法求解析式.24.(1)12m <;(2)12m =-;(3)点()1,2C '--在反比例2y x =图象上 【分析】(1)根据反比例函数图象在第一、三象限,列不等式即可;(2)根据平行四边形的性质求出BC 长,再求出点B 坐标代入解析式即可;(3)根据翻折求出C '坐标,代入解析式即可.【详解】解:(1)反比例函数12m y x -=(m 为常数)的图象在第一、三象限, ∴120m ->, 解得12m <; (2)∵ABCO 是平行四边形,∴2CB OA ==,∴点B 坐标为()1,2. 把点()1,2代入12m y x -=得, 1221m -=, 解得12m =-. (3)点C 关于x 轴的对称点为()1,2C '--.由(2)知反比例函数的解析式2y x =, 把1x =-代入2221y x ===--, 故点()1,2C '--也在反比例2y x=图象上. 【点睛】本题考查了反比例函数的综合问题,和平行四边形 性质,解题关键是熟知反比例函数的性质和平行四边形的性质,树立数形结合思想,利用点的坐标解决问题.25.(1)3y x =,y=x-2;(2)点P 的坐标为(4,0). 【分析】(1)利用待定系数法,确定二函数的解析式即可;(2)运用图形分割法,利用点P 的坐标表示三角形的面积,求解即可.【详解】(1)∵反比例函数m y x =(m≠0)的图象过点A(3,1), ∴13m =, ∴ m=3, ∴反比例函数的表达式为3y x =.∵一次函数y=kx+b 的图象过点A(3,1)和B(0,-2),∴312k b b +=⎧⎨=-⎩解得 12k b =⎧⎨=-⎩∴一次函数的表达式y=x-2.(2)如图,设一次函数y=x-2的图象与x 轴的交点为C ,令y=0,则x-2=0,x=2,∴点C 的坐标为(2,0).∵3ABP ACP BCP S S S ∆∆∆=+= ∴1112322PC PC ⨯+⨯= ∴PC=2 ∵点P 是x 轴上位于直线AB 右侧的一点,∴点P 的坐标为(4,0).【点睛】本题考查了待定系数法确定函数的解析式,交点的意义,用点的坐标表示三角形的面积,熟练使用待定系数法,灵活运用图形的分割法表示三角形的面积是解题的关键. 26.(1)4y x =;(2)P 点在第三象限,Q 在第一象限,理由见解析 【分析】(1)利用反比例函数k 的几何意义即可求解;(2)根据反比例函数的增减性解答即可.【详解】解:(1)设点A 的坐标为(x ,y ),由图可知x 、y 均为正数,即OB=x ,AB=y ,∵△AOB 的面积为2,∴AB•OB=4,即x•y=4,可得k=4,∴该反比例函数的表达式为4y x =; (2)∵反比例函数4y x=位于一、三象限, ∴在每个象限内,y 随x 的增大而减小,若两点位于同一象限,则当x 1>x 2,y 1<y 2, 所以P 、Q 两点一定位于不同的象限,因x1<x2,y1<y2,所以点Q在第一象限,P在第三象限.【点睛】本题考查了反比例函数k的几何意义、反比例函数的性质,解答本题关键是求出k的值,得出反比例函数解析式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上数学第五章测试题
姓名 班级 分数
一、填空题:(分数4分×10=40分)
1、u 与t 成反比,且当u =6时,8
1
=t ,这个函数解析式为 ;
2、反比例函数x k y =的图像经过(-2
3
,5)点、(a ,-3)及(10,b )点,
则k = ,a = ,b = ;
3、若函数()()414-+-=m x m y 是正比例函数,那么=m
,图象经过 象限;
4、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;
5、已知正比例函数kx y =与反比例函数3
y x
=
的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 6、 设有反比例函数


为其图象上的两点,若
时,

则的取值范围是___________
7、右图3是反比例函数x
k y =的图象,则k 与0的大小关系是k 0.
8、函数x
y 2
-=的图像,在每一个象限内,y 随x 的增大而 ;
9、反比例函数()0>=k x
k y 在第一象限内的图象如图,点M
垂直
x 轴于点P ,如果△MOP 的面积为1
,那么k 的值是

10、()
7
2
2
5---=m m
x m y
是y 关于x 的反比例函数,且图象在
第二、四象限,则m 的值为

二、选择题: (分数4分×14=56分,并把答案填在第12题后的方框内) 1、下列函数中,反比例函数是( ) A 、 1)1(=-y x B 、 11+=
x y C 、 21x
y = D 、 x y 31
=
2、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( )
A 、 (-a ,-b )
B 、 (a ,-b )
C 、 (-a ,b )
D 、 (0,0) 3、如果反比例函数x
k
y =
的图像经过点(-3,-4),那么函数的图像应在( ) A. 第一、三象限 B 、 第一、二象限 C.第二、四象限 D 、第三、四象限 4、若y 与-3x 成反比例,x 与
z
4
成正比例,则y 是z 的( ) A 、 正比例函数 B 、 反比例函数 C 。

一次函数 D 、 不能确定 5、若反比例函数2
2
)12(--=m x m y 的图像在第二、四象限,则m 的值是( )
A 、 -1或1
B 、小于
2
1
的任意实数 C 、-1 D、 不能确定 6、函数x k y =的图象经过点(-4,6),则下列各点中不在x
k
y =图象上的是( )
A 、(3,8)
B 、(3,-8)
C 、(-8,-3)
D 、(-4,-6) 7、正比例函数kx y =和反比例函数k
y =
在同一坐标系内的图象为( ) 8、如上右图,A 为反比例函数x
k
y =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( )
A 、6
B 、3
C 、
2
3 D 、不能确定
9、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )
A
B C 10、在同一直角坐标平面内,如果直线x k y 1=与双曲线x
k y 2
=没有交点,那么1k 和2k 的关系一定是( )A 1k <0,2k >0
B 1k >0,2k <0
C 1k 、2k 同号
D
1k 、2k 异号
11、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是( ) A 6 B ―6 C 9 D ―9 12、当路程s 一定时,速度v 与时间t 之间的函数关系是( )
A 正比例函数
B 反比例函数
C 一次函数
D 二次函数 13、(2001北京西城)在同一坐标系中,函数
x k
y =和3+=kx y 的图像大致是 ( )
A B C D
14、已知反比例函数)0(<=k x
k y 的图像上有两点
A(1x ,1y ),B(2
x ,2y ),且21x x <,则2
1y y -的值是( )A 、正数 B 、 负数 C 、 非正数 D 、 不能确定 三、解答题:(第1、2. 3小题各12分、第4小题18分,共54分)
1、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

(1)求I 与R 之间的函数关系式
(2)当电流I=0.5安培时,求电阻R 的值;
2、如图,Rt △ABO 的顶点A 是双曲线x
k
y =与直线)1(+--=k x y 在第二象限的交点, AB ⊥x 轴于B 且S △ABO =
2
3
(1)求这两个函数的解析式
(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC
3、如图,一次函数b kx y +=的图像与反比例函数x
m
y =
的图像相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式
(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围(2001江苏苏州)
4.某蓄水池排水管的排水速度是8立方米每小时。

,6小时将满池水全部排空 (1)蓄水池的容积是多少?
(2)如果增加排水管,使排水速度达到Q 立方米每小时,那么将满池水排空所需时间t 小时将如何变化?
(3)写出Q 与t 之间的关系式?
(4)如果准备在5小时内将满池水排空,那么排水速度至少为多少?
(5)已知排水管的最大排水速度为12立方米每小时,吗么最长多少时间可将水池水全部排空?。

相关文档
最新文档