2015届四川省成都七中高三数学文上学期期中考试(2014.11)word版

合集下载

四川成都七中高2014届高三(上)入学考试 数学文

四川成都七中高2014届高三(上)入学考试 数学文

图 2俯视图侧视图正视图四川成都七中高2014届高三(上)入学考试数学(文)试题第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合2{|450}A x x x =--=,集合2{|10}B x x =-=,则A B =( )(A ){1} (B ){1}- (C ){1,1,5}- (D )∅2、设复数z 满足 (1-i )z=2 i ,则z = ( ) (A )-1+i (B )-1-i(C )1+i (D )1-i3、某三棱锥的三视图如图所示,则该三棱锥的体积是 ( ) (A )16 (B )13 (C )23(D )14、设x Z ∈,集合A 是奇数集,集合B 是偶数集。

若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∈ (B ):,2p x A x B ⌝∃∉∈ (C ):,2p x A x B ⌝∀∉∉ (D ):,2p x A x B ⌝∃∈∉5、函数sin()(0,0,)22y A x A ππωϕωϕ=+>>-<<的部分图象如图所示,则此函数的解析式可为( ) (A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(4)6y x π=-(D )2sin(4)3y x π=+6、若双曲线22221x y a b-=,则其渐近线方程为( )(A )y = 错误!未找到引用源。

(B )y = 错误!未找到引用源。

(C )12y x =±错误!未找到引用源。

(D )2y x =± 7、设函数f (x )在R 上可导,其导函数为f'(x ),且函数f (x )在x =-2处取得极小值,则函数y=xf'(x )的图象可能是( )8、阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10(∈S ,那么n 的值为( )(A )3 (B )4 (C )5 (D )69、已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2]10、若存在正数x 使2()1xx a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞第二部分 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015届高三上学期期中质量评估数学(文)试题 扫描版含答案

2015届高三上学期期中质量评估数学(文)试题 扫描版含答案

2014年秋期高三年级文科期中考试答案一.选择题: 题目 1 2 3 4 5 6 7 8 9 10 11 12 答案 ADBADCDAACAB二.填空题:13.1 14.重心 15.4116.①②③④ 三.解答题:17.解:(I )∵f x ()为偶函数()()∴s i n s i n -+=+ωϕωϕx x 即20s i n c o s ωϕx =恒成立∴cos ϕ=0 ∵,∴02≤≤=ϕπϕπ……………………………………………………………3分 又其图象上相邻对称轴之间的距离为π ∴T =2π ∴ω=1∴f x x ()c o s = ……………………………………………………………………5分 (II )∵原式=-++=s i n c o s t a n s i n c o s22112αααα ……………………………7分 又∵,∴s i n c o s s i n c o s αααα+=+=231249 …… ………………………9分 即259s i n c o s αα=-, 故原式=-59………………………………………10分18.解:由⎩⎨⎧+=+=xx y x y 321,得0123=-+-x x x , 即0)1)(1(2=+-x x ,1=∴x ,∴交点为)2,1(.…………………………………2分 又x x f 2)('=,2)1('=∴f ,∴曲线)(x f y =在交点处的切线1l 的方程为)1(22-=-x y , 即x y 2=, ……………………5分又13)('2+=x x g . ∴4)1('=g .∴曲线)(x g y =在交点处的切线2l 的方程为)1(42-=-x y ,即24-=x y . ………………………………………………………………8分 取切线1l 的方向向量为)2,1(=a ,切线2l 的方向向量为)4,1(=b ,…………10分 则858591759||||cos =⨯=⋅=b a b a θ. ……………………………………12分19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由ac b =2及正弦定理得 .s i n s i ns i n 2C A B = 则CA AC A C C C A A C A sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+22sin()sin 147.sin sin sin 7A CB B B B +==== …………………………6分(Ⅱ)由32BA BC ⋅=,得23cos =B ac ,由43cos =B ,可得ac =2,即b 2=2.…………………………………………………………8分由余弦定理B ac c a b cos 2222-+=,得5cos 2222=+=+B ac b c a , 3,9452)(222=+=+=++=+c a ac c a c a ……………………12分20.解:(Ⅰ)∵*n N ∈时,n n n a S a -=22,当2≥n 时,21112n n n a S a ---=-,…………………………………………………2分由①-②得,22111(2)(2)n n n n n n a a S a S a ----=---即2211n n n n a a a a ---=+,∵01>+-n n a a ∴)2(11≥=--n a a n n ,………………4分 由已知得,当1=n 时,21112a S a =-,∴11=a .………………………………5分故数列}{n a 是首项为1,公差为1的等差数列.∴*()N n a n n =∈. …………6分 (Ⅱ)∵*()N n a n n =∈,∴n n n n b 2)1(31⋅-+=-λ,…………7分∴111133(1)2(1)2n n n n n n n n b b λλ++-+-=-+-⋅--⋅1233(1)2n n n λ-=⨯-⋅-⋅.要使得1n n b b +>恒成立,只须113(1)()2n n λ---⋅<. …………8分(1)当n 为奇数时,即13()2n λ-<恒成立.又13()2n -的最小值为1,∴1λ<. ……9分(2)当n 为偶数时,即13()2n λ->-恒成立.又13()2n --的最大值为32-,∴32λ>- ……………………………………10分∴由(1),(2)得312λ-<<,又0λ≠且λ为整数,……………………11分∴1λ=-对所有的*N n ∈,都有1n n b b +>成立. ………………12分21.解:[)(] 1.-2f(-x),0,1x -,1,0-x )1(-x =∴∈∈则令又,)(是奇函数x f ∴f(-x)=-f(x),∴,12)()(-=-=--x x f x f ∴[).0,1,1)21()(-∈+-=x x f x.................................6分(2) f(x+4)=f(x),∴f(x)是以4为周期的周期函数, ),4,5(24log 24log 221--∈-=∴),0,1(424log 21-∈+∴211161241)21()424(log )24(log 424log 212121-=+⨯-=+-=+=∴+f f .......12分22.解:(I )ax x x x f 22131)(23++-= ,a x x x f 2)('2++-=∴ …………………2分 函数)(x f 在),32(+∞上存在单调递增区间,即导函数在),32(+∞上存在函数值大于零的部分, 0232)32()32('2>++-=∴a f 91->∴a ……………………………………6分(II))(x f 取到最小值316-,而a x x x f 2)('2++-=的图像开口向下,且对称轴方程为21=x ,02)1('>=a f ,0122)4('<-=a f则必有一点使得0'()0=f x……………………………………8分此时函数)(x f 在0[1,]x 上单调递增,在0[,4]x 单调递减.612)1(+=a f ,a f 8340)4(+-=,)1()4(f f <∴3168340)4()(min -=+-==∴a f x f , 1=∴a , …………………10分 此时,由200000'()202,1()=-++=∴==-舍去f x x x x x ,所以函数max 10()(2)3==f x f ………………………………………………………12分[],4,10∈x。

2015-2016学年四川省成都七中高三(上)入学数学试卷(文科)(解析版)

2015-2016学年四川省成都七中高三(上)入学数学试卷(文科)(解析版)

2015-2016学年四川省成都七中高三(上)入学数学试卷(文科)一.选择题.(本大题共12小题,每题5分,共60分,每小题的四个选项中仅有一项符合题目要求)1.(5分)复数=()A.﹣i B.i C.﹣1﹣i D.﹣1+i2.(5分)sin210°的值为()A.B.﹣C.D.﹣3.(5分)数列{a n}满足a n+1=,a1=,则a3=()A.1B.2C.﹣1D.4.(5分)已知集合A={x||x|<1},B={x|2x>1},则A∩B=()A.(﹣1,0)B.(﹣1,1)C.(0,)D.(0,1)5.(5分)从区间[0,]内随机取一个实数x,则sin x<的概率为()A.B.C.D.6.(5分)已知p:函数f(x)=|x+a|在(﹣∞,﹣1)上是单调函数;q:函数g(x)=log a (x+1)(a>0且a≠1)在(﹣1,+∞)上是增函数,则¬p成立是q成立的()A.充分不必要B.必要不充分C.充要条件D.既不充分也不必要7.(5分)按右图所示的程序框图运算,若输入x=200,则输出k的值是()A.3B.4C.5D.68.(5分)已知不等式组所表示的平面区域为D,若直线y=kx﹣3与平面区域D有公共点,则k的取值范围是()A.[﹣3,3]B.(﹣∞,]∪[,+∞)C.(﹣∞,﹣3]∪[3,+∞)D.[]9.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.10.(5分)若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)若0<<a<b,当a﹣取最小值时,a+b=()A.4B.5C.6D.7二.填空题.(本大题共4小题,每题5分,共20分)13.(5分)设函数f(x)=x4+ax,若曲线y=f(x)在x=1处的切线斜率为1,那么a=.14.(5分)已知△ABC中,A、B、C的对边分别为a、b、c,且a2=b2+c2+bc,则A=.15.(5分)设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:①若α∥β,α⊥γ,则β⊥γ,②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ③若直线l与平面α内的无数条直线垂直则直线l与平面α垂直,④若α内存在不共线的三点到β的距离相等.则平面α平行于平面β上面命题中,真命题的序号为.(写出所有真命题的序号)16.(5分)已知函数f(x)为偶函数,又在区间[0,2]上有f(x)=,若F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是.三.解答题.(解答应写出文字说明,证明过程或演算步骤)17.(12分)为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示(1)估计这60名乘客中候车时间少于10分钟的人数;(2)若从上表的第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.18.(12分)已知=(2cos x,sin x),=(cos x,sin x﹣cos x),设函数f(x)=•.(1)求f(x)图象的对称轴方程;(2)求f(x)在[,π]上的值域.19.(12分)如图,五面体A﹣BCC1B1中,AB1=4.底面ABC是正三角形,AB=2.四边形BCC1B1是矩形,二面角A﹣BC﹣C1为直二面角.(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;(Ⅱ)当AB1∥平面BDC1时,求二面角C﹣BC1﹣D余弦值.20.(12分)已知函数f(x)=lnx﹣ax2+(a﹣2)x.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求函数y=f(x)在[a2,a]上的最大值.21.(12分)如图,O为坐标原点,A和B分别是椭圆C1:+=1(a>b>0)和C2:+=1(m>n>0)上的动点,满足•=0,且椭圆C2的离心率为.当动点A在x轴上的投影恰为C的右焦点F时,有S△AOF=(1)求椭圆C的标准方程;(2)若C1与C2共焦点,且C1的长轴与C2的短轴等长,求||2的取值范围.选修4-4:坐标系与参数方程22.(10分)已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=2cos(θ+).(1)求圆心C的直角坐标;(2)由直线l上的点向圆C引切线,求切线长的最小值.(选修4-5;不等式选讲)23.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.2015-2016学年四川省成都七中高三(上)入学数学试卷(文科)参考答案与试题解析一.选择题.(本大题共12小题,每题5分,共60分,每小题的四个选项中仅有一项符合题目要求)1.【解答】解:复数=故选:C.2.【解答】解:sin210°=sin(180°+30°)=﹣sin30°=﹣.故选:B.3.【解答】解:∵a n+1=,a1=,∴a2===2,∴a3===﹣1,故选:C.4.【解答】解:∵集合A={x||x|<1}={x|﹣1<x<1},B={x|2x>1}={x|x>0},∴A∩B={x|0<x<1}=(0,1).故选:D.5.【解答】解:在区间[0,]上,当x∈[0,]时,sin x,由几何概型知,符合条件的概率为.故选:B.6.【解答】解:由p成立,则a≤1,由q成立,则a>1,所以¬p成立时a>1是q的充要条件.故选:C.7.【解答】解:模拟执行程序框图,可得x=200,k=0x=401,k=1不满足条件x≥2015,x=803,k=2不满足条件x≥2015,x=1607,k=3不满足条件x≥2015,x=3215,k=4满足条件x≥2015,退出循环,输出x的值为3215,k的值为4,故选:B.8.【解答】解:作出不等式组对应的平面区域,y=kx﹣3过定点D(0,﹣3),则k AD=,k BD==﹣3,要使直线y=kx﹣3与平面区域M有公共点,由图象可知k≥3或k≤﹣3,故选:C故选:C.9.【解答】解:该几何体可视为正方体截去两个三棱锥,如图所示,所以其体积为.故选:D.10.【解答】解:依题意,∵|+|=|﹣|=2||∴=∴⊥,=3,∴cos<,>==﹣,∵与的夹角的取值范围是[0,π],∴向量与的夹角是,故选:C.11.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.12.【解答】解:∵0<<a<b,∴b﹣a>0,2a﹣b>0;∴a﹣=(2a﹣b)+(b﹣a)+≥2+=++≥3;(当且仅当2a﹣b=b﹣a=1时,等号同时成立);解得,a=2,b=3;故a+b=5;故选:B.二.填空题.(本大题共4小题,每题5分,共20分)13.【解答】解:函数f(x)=x4+ax的导数为f′(x)=4x3+a,即有在x=1处的切线斜率为4+a=1,解得a=﹣3.故答案为:﹣3.14.【解答】解:由a2=b2+c2+bc,得:b2+c2﹣a2=﹣bc,由余弦定理得:b2+c2﹣a2=2bc cos A,∴cos A=﹣,又A为三角形ABC的内角,∴A=.故答案为:.15.【解答】解:因为如2个平行平面中有一个和第三个平面垂直,则另一个也和第三个平面垂直,故①正确.若2个平面都和第三个平面垂直,则他们的交线也和第三个平面垂直,故②正确.直线l与平面α内的无数条直线垂直,也不能保证直线l与平面α内的2条相交直线垂直,故③不正确.α内存在不共线的三点到β的距离相等,这3个点可能在2个相交平面的交线的两侧,故④不正确.综上,正确答案为①②.16.【解答】解:作出函数y=f(x)在[﹣2,2]的图象,根据图象,F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是(4,5).故答案为:(4,5).三.解答题.(解答应写出文字说明,证明过程或演算步骤)17.【解答】解:(1)由频率分布表可知:这15名乘客中候车时间少于10分钟的人数为8,所以,这60名乘客中候车时间少于10分钟的人数大约等于60×=32人.…(4分)(2)设第三组的乘客为a,b,c,d,第四组的乘客为1,2;“抽到的两个人恰好来自不同的组”为事件A.…(5分)所得基本事件共有15种,即:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12…(8分)其中事件A包含基本事件a1,a2,b1,b2,c1,c2,d1,d2,共8种,…(10分)由古典概型可得P(A)=…(12分)18.【解答】解:(1)已知=(2cos x,sin x),=(cos x,sin x﹣cos x),则函数f(x)=•=2cos2x+==cos(2x++(1)由:(k∈Z)解得:x=(k∈Z)所以:函数f(x)的对称轴方程为:x=(k∈Z).(2)由(1)得:f(x)=所以:当x时,解得:当时,有=.当时,有.∴f(x)的最大值和最小值故x∈[,π],f(x)的f(x)的值域是19.【解答】解:(Ⅰ)当D为AC中点时,有AB1∥平面BDC1,证明:连接B1C交BC1于O,连接DO∵四边形BCC1B1是矩形∴O为B1C中点又D为AC中点,从而DO∥AB1,∵AB1⊄平面BDC1,DO⊂平面BDC1∴AB1∥平面BDC1(Ⅱ)建立空间直角坐标系B﹣xyz如图所示,则B(0,0,0),A(,1,0),C(0,2,0),D(,,0),C1(0,2,2),所以=(,,0),=(0,2,2).设=(x,y,z)为平面BDC1的法向量,则有,即令Z=1,可得平面BDC1的一个法向量为=(3,﹣,1),而平面BCC1的一个法向量为=(1,0,0),所以cos<,>===,故二面角C﹣BC1﹣D的余弦值为.20.【解答】解:(Ⅰ)∵f(x)=lnx﹣ax2+(a﹣2)x,∴函数的定义域为(0,+∞).…(1分)∴.…(3分)∵f(x)在x=1处取得极值,即f'(1)=﹣(2﹣1)(a+1)=0,∴a=﹣1.…(5分)当a=﹣1时,在内f'(x)<0,在(1,+∞)内f'(x)>0,∴x=1是函数y=f(x)的极小值点.∴a=﹣1.…(6分)(Ⅱ)∵a2<a,∴0<a<1.…(7分)∵x∈(0,+∞),∴ax+1>0,∴f(x)在上单调递增;在上单调递减,…(9分)①当时,f(x)在[a2,a]单调递增,∴f max(x)=f(a)=lna﹣a3+a2﹣2a;…(10分)②当,即时,f(x)在单调递增,在单调递减,∴;…(11分)③当,即时,f(x)在[a2,a]单调递减,∴f max(x)=f(a2)=2lna﹣a5+a3﹣2a2.…(12分)综上所述,当时,函数y=f(x)在[a2,a]上的最大值是lna﹣a3+a2﹣2a;当时,函数y=f(x)在[a2,a]上的最大值是;当1>时,函数y=f(x)在[a2,a]上的最大值是2lna﹣a5+a3﹣2a2.…(13分)21.【解答】解:(1)设椭圆C1的半焦距为c,由题意可知,,又椭圆C1的离心率=,且a2=b2+c2,联立以上三式可得:,∴椭圆C1的标准方程为;(2)由C1的长轴与C2的短轴等长,知n=a=,又C1与C2共焦点,可知,∴椭圆C2的标准方程为.当线段OA的斜率存在且不为0时,设OA:y=kx,联立,解得,∴.由•=0,得OB:y=﹣,联立,解得,∴|OB|2=,∴|AB|2=|OA|2+|OB|2==.又(当时取等号),∴.当线段OA的斜率不存在和斜率k=0时,|AB|2=4,综上,.选修4-4:坐标系与参数方程22.【解答】解:(1)由圆C的极坐标方程ρ=2cos(θ+),化为,展开为ρ2=,化为x2+y2=.平方为=1,∴圆心为.(2)由直线l上的点向圆C引切线长==≥2,∴由直线l上的点向圆C引切线长的最小值为2.(选修4-5;不等式选讲)23.【解答】证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.。

四川成都七中高届高三上入学考试 数学文

四川成都七中高届高三上入学考试 数学文


侧2
1 侧侧侧
错误!未找到引用源。
能是( )
8、阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数 n 后,
输出的 S (10,20) ,那么 n 的值为( )
(A)3
(B)4
(C)5 (D)6
9、已知函数 f (x) 是定义在 R 上的偶函数, 且在区间[0, ) 单调递增. 若实数
(D) p : x A, 2x B
2
1 侧侧侧
侧侧侧
) 的部分图象如图所示,则此函数的解析式可
2
y
2
π -3
O 5π x
12
-2
(B) y 2x
(D) y 2x
7、设函数 f(x)在 R 上可导,其导函数为 f'(x),且函数 f(x)在 x=-2 处取得极小值,则函数 y=xf'(x)的图象可
·1·
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求写5卷技、重保术电要护交气设装底设备置。备高4动管调、中作线试电资,敷高气料并设中课试3且技资件、卷拒术料中管试绝中试调路验动包卷试敷方作含技设案,线术技以来槽术及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

四川省成都市第七中学2015届高三2月阶段性考试数学试题Word版含解析

四川省成都市第七中学2015届高三2月阶段性考试数学试题Word版含解析

成都七中2015届高三2月阶段性测试 数 学 试 题本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A=2{|320}x x x -+>, B={|2,N*}x x x <∈, 则()R C A B =A .φB .{1} C.{2} D.{1,2} 【解析】集合A={|12}x x x <>或,{|12}R C A x x ∴=≤≤,B={|2,*}x x x N <∈,(){1}R C A B ∴=,故选B .2.已知i 是虚数单位, 若22()01i mi +<+(m R ∈),则m 的值为A .12 B .2- C .2 D .12-【解析】 由22()01i mi +<+,知21i mi ++为纯虚数,222(12)11i m m imi m +++-∴=++为纯虚数,2m ∴=-,故选B.3.已知命题p:1x ≠或2y ≠,命题q:3x y +≠,则p 是q 的 充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】 因为命题p:1x ≠或2y ≠,命题q:3x y +≠,所以¬p :12x y ==且,¬q: 3x y +=,所以¬p ⇒¬q ,但¬q ⇒¬p ,等价于q ⇒p ,但p ⇒q ,所以p 是q 的必要不充分条件. 4. 在如图所示的程序框图中,若0()xf x xe =,则输出的结果是A.2016x x e xe +B.2015x xe xe + C.2014x xe xe + D.2013x e x +【解析】 由0()x f x xe = 得当1i =时,10()()()x x x f x f x xe e xe ''===+,当2i =时,2015i =1()()i i f x f x -'=21()()()2x x x xf x f x e xe e xe ''==+=+,……,当2015i =时,20152014()()(2014)2015x x x x f x f x e xe e xe ''==+=+,故选B.5.一个边长为2m ,宽1m 的长方形内画有一个中学生运动会的会标,在长方形内随机撒入100粒豆子,恰有60粒落在会标区域内,则该会标的面积约为A .352m B .652m C .1252m D .1852m【解析】 由几何概型的概率计算公式可知, =会标的面积落在会标区域内豆粒长方形的面积数总豆粒数,所以会标的面积约为60621005⨯=,故选B. 6.三角函数()sin cos f x a x b x =-,若()()44f x f x ππ-=+,则直线0ax by c -+=的倾斜角为A . 4πB .3πC .23πD . 34π【解析】 由()()44f x f x ππ-=+知三角函数()f x 的图像关于4x π=对称,所以02()()f f π=所以=-a b ,直线0ax by c -+=的斜率1a k b ==-,其倾斜角为倾斜角为34π.故选D.7.已知数列{}n a 满足*1112,(N )1nn na a a n a ++==∈-,则1232014a a a a ⋅⋅⋅⋅=-6 B.6 C.-1 D.1【解析】 由111n n na a a ++=-可得21n na a +=-,从而可得4n na a +=,所以数列{}n a 是一个周期为4的数列.又12a =,所以2345113,,,2,23a a a a =-=-==,所以12341a a a a ⋅⋅⋅=,又201450342=⨯+,所以1232014126a a a a a a ⋅⋅⋅⋅=⋅=-.8. 已知向量(4,0)OA =, B 是圆C:22((1x y -+-=上的一个动点,则两向量OA OB 与所成角的最大值为A . 12πB . 6πC .3πD . 512π【解析】 如图,过点O向圆C 作切线OB ,连结CB ,AOB ∠为OA OB 与成的最大角,因点C ,所以4AOC π∠=,||2OC =,||1BC =,又OC CB ⊥,6COB π∴∠=,56412AOB πππ∴∠=+=,故选D.9.已知抛物线21:2(0)C x py p =>的焦点与双曲线222:13x C y -=的左焦点的连线交1C 于第二象限内的点M ,若抛物线1C 在点M 处的切线平行于双曲线2C 的一条渐近线,则p=B.C.8D.16【解析】 由题意可知,抛物线21:2(0)C x p y p =>的焦点坐标为(0,)2p ,双曲线222:13x C y -=的左焦点坐标为(2,0)-,则过抛物线的焦点与双曲线的左焦点的直线方程为122x yp +=-,即202p x y p -+=.设该直线与抛物线1C 的交点M 的坐标为200(,)2x x p ,则抛物线1C 在点M 的切线斜率为x p ,又抛物线1C在点M 处的切线与双曲线2C 的一条渐近线平行,点M在第二象限,所以03x b p a =-=-,解得03x p =-.即(,)36p M p-,又点M 在直线202px y p -+=上,所以()2026p p p p ⋅-⋅+=,解得p =,故选A. 10.定义区间12[,]x x 长度为21x x -,(21x x >),已知函数22()1()a a x f x a x +-=(,0a R a ∈≠)的定义域与值域都是[,]m n ,则区间[,]m n 取最大长度时a 的值为A .3 B . 13a a ><-或 C .1a > D . 3【解析】 设[,]m n 是已知函数定义域的子集.0,x ≠[,](,0)m n ∴⊆-∞或[,](0,)m n ⊆+∞,故函数222()111()a a x a f x a x a a x +-+==-在[,]m n 上单调递增,则()()f m m f n n =⎧⎨=⎩,故,m n 是方程211a x a a x +-=的同号的相异实数根,即222()10a x a a x -++=的同号的相异实数根.211mn a =>,,m n ∴同号,只需2(3)(1)0a a a ∆=+->,13a a ∴><-或,n m -== nm -取最大值为.此时3a =.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为 .【解析】 由分层抽样的定义可知,总人数129680812212543N =÷=+++.12.已知2tan ),,2(-=∈αππα,则)232cos(απ-=_______.【解析】 由2tan ),,2(-=∈αππα,得552sin =α,55cos -=α, 则==αααcos sin 22sin 54-,53sin cos 2cos 22-=-=ααα,所以103432sin 32sin 2cos 32cos )232cos(-=+=-απαπαπ.13.设x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--02022022y x y x y x ,若z mx y =+取得最大值时的最优解有无穷多个,则实数m 的值是 .【解析】 作出不等式组表示的平面区域如图中阴影部分所示,由于目标函数取最大值时的最优解有无穷多个,所以目标函数z mx y =+的几何意义是直线0mx y z +-=与直线220x y -+=重合,比较得12m =-.14. 设1,1a b >>,若2e ab =,则ln 2e as b=-的最大值为 .【解析】1,1a b >>,∴ln 0,ln 0a b >>,由2e ab =得ln ln 2a b +=为定值,令ln a t b =,ln 2ln ln ln ln ln ln ()12a a b t b a b +∴==⋅≤=,当且仅当e a b ==时等号成立,ln 1t ∴≤,e t ∴≤,ln 2e e a s b ∴=-≤-.15.在平面直角坐标系中,定义:一条直线经过一个点(,)x y ,若,x y 都是整数,就称该直线为完美直线,这个点叫直线的完美点,若一条直线上没有完美点,则就称它为遗憾直线.现有如下几个命题:①如果k 与b 都是无理数,则直线y=kx+b 一定是遗憾直线; ②“直线y=kx+b 是完美直线”的充要条件是“k 与b 都是有理数”; ③存在恰有一个完美点的完美直线;④完美直线l 经过无穷多个完美点,当且仅当直线l 经过两个不同的完美点. 其中正确的命题是______.(写出所有正确命题的编号)【解析】 对于①,如果取,-1,0),是完美直线,所以①错误;对于②,由①知当k 与b 均为无理数,但是直线是完美直线,所以②错误;对于③,设直线方程为y=,只经过了一个完美点(0,0),所以③正确;对于④,设y=kx 为过原点的完美直线,若此直线l 过不同的完美点(x1,y1)和(x2,y2),把两点代入完美直线l 的方程得y1=kx1,y2=kx2,两式相减得y1-y2=k (x1-x2),则(x1-x2,y1-y2)也在完美直线y=kx 上,且(x1-x2,y1-y2)也为完美点,通过这种方法得到直线l 经过无穷多个完美点,所以④正确.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,且2,13A C b π+==.yC(1)记角,()A x f x a c ==+,若△ABC 是锐角三角形,求f (x)的取值范围;(2)求△ABC 的面积的最大值.【解析】 (1)在△ABC 中, A+B+C=π,32π=+C A ,解得3π=B . (1分) ∵ 在△ABC 中,C cB b A a sin sin sin ==,b=1,∴CA c a sin 3sin1sin 3sin1ππ+⋅=+)]32sin([sin 332A A -+=π]sin 32cos cos 32sin [sin 332A A A ππ-+=A A cos sin 3+= )6sin(2π+=A ,即)6sin(2)(π+=x x f . (4分)△ABC 是锐角三角形,62A ππ∴<<,得3π<x+6π<23π,于是3<)(x f ≤2,即f (x)的取值范围为(3,2]. (6分) (2)由(1)知3π=B ,1b =,由余弦定理得2222cos b a c ac B =+-,即22212cos3a c ac π=+-.2212a c ac ac ac ac ∴=+-≥-=,当且仅当a c =时,等号成立. (10分)此时11sin sin 223ABC S ac B ac π∆===≤,故当a c =时,△ABC的面积的最大值为4. (12分)17.(本小题满分12分)2015年元月成都市跳伞塔社区要派人参加成都市财政局、水务局、物价局联合举行的“成都中心城区居民生活用水及特种用水价格调整方案听证会”,为了解居民家庭月均用水量(单位:吨),从社区5000住户中随机抽查100户,获得每户2014年12月的用水量,并制作了频率分布表和频率分布直方图(如图).(1)分别求出频率分布表中a、b的值,并估计社区内家庭月用水量不超过3吨的频率;(2)设A1,A2,A3是月用水量为[0,2)的家庭代表.B1,B2是月用水量为[2,4]的家庭代表.若从这五位代表中任选两人参加水价听证会,请列举出所有不同的选法,并求家庭代表B1,B2至少有一人被选中的概率.【解析】(1)由频率分布直方图可得a=0.5×0.5=0.25,∴月用水量为[1.5,2)的频数为25.故2b=100﹣92=8,得b=4.由频率分布表可知,月用水量不超过3吨的频率为0.92,所以家庭月用水量不超过3吨的频率约为0.92.(6分)(2)由A1、A2、A3、B1、B2五代表中任选2人共有如下10种不同选法,分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).记“B1、B2至少有一人被选中”的事件为A,事件A 包含的基本事件为:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共包含7个基本事件数.又基本事件的总数为10,所以.即家庭代表B1、B2至少有一人被选中的概率为.(12分)18.(本小题满分12分)已知几何体A-BCPM的三视图如图所示,侧视图是直角三角形,正视图是一个梯形,点E、F分别是AB、AP的中点.(1)求证:PC AB;(2)求证:EF∥平面BMC(3)求三棱锥M-ABC的体积.【解析】(1)由三视图可知, 平面PCBM ⊥平面ABC , 平面PCBM平面ABC BC =,且PC BC ⊥,∴PC ⊥平面ABC , (3分) 又AB ⊂平面ABC ,∴PC AB ⊥. (5分) (2)连接PB .∵点E 、F 分别是AB 、AP 的中点, ∴EF 是ABP ∆的中位线, ∴EF ∥PB ,又PB ⊂平面BMC ,EF ⊄平面BMC ,∴EF ∥平面BMC . (8分)(3)由(1)知PC ⊥平面ABC ,由三视图可知PM ∥BC , PC= 1,CB=2,AC=1,点A 到直线BC 的距离为AG=,∴PM ∥平面ABC ,∴点M 到平面ABC 的距离为PC=1,∴1122222ABC S BC AG ∆=⨯=⨯⨯=,∴三棱锥M-ABC的体积为11133M ABC ABC V S PC -∆=∙==. (12分)19.(本小题满分12分)已知数列{}n a 的前n 项和n S满足)N ()2)(1(2243*∈++-+=+n n n n n a S n n ,且)2)(1(1+++=n n n a b n n . 求证:数列{}n b 是等比数列,并通项公式nb ;(2)设nn na c =,nT 为数列{}n c 的前n 项和,求nT .【解析】(1)由)2)(1(2243++-+=+n n n n a S n n 可得,)3)(2)(1(214311+++-+=+++n n n n a S n n ,两式作差得=++++--+++-=-+)3)(2)(1(2)3)(2()3)(2)(1(2)1(21n n n n n n n n n n n n a a n n)(3)2)(1(3)3)(2)(1(262+++--=++++-n n n n n n n n n n , (3分)又)2)(1(1+++=n n n a b n n ,则)3)(2)(1(111++++=++n n n a b n n ,所以)2)(1(1)3)(2)(1(22211++-++++-=-++n n n n n n a a b b n n n n ,整理得112n nb b +=,又2161316111=+=+=a b ,故数列{}n b 是首项为21,公比为21的等比数列,所以12n n b =. (6分)由(1)可得)(2n )1(121)2)(1(1++-=++-=n n n n n b a n n n ,所以)(2n )1(12++-==n n na c n n n , (7分)故]2)1(1431321[)2834221(321)(++++⨯+⨯-++++=++++=n n n c c c c T n n n ,设nnF 2834221n ++++=,则1n 2163824121+++++=n n F ,作差得1n 22116181412121+-+++++=n n n F , 所以n n F 222n +-=. (9分)设)(2)1(1431321n ++++⨯+⨯=n n G ,则2121211141313121n +-=+-+++-+-=n n n G , (11分)故2122232121222+++-=+--+-=n n n n T n n n )(.(12分)20.(本小题满分13分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆上的点到焦点的距离的最小值为e 是方程2230x -+=的根. (1)求椭圆C 的标准方程;(2)若椭圆C 长轴的左右端点分别为A1,A2,设直线x=4与x 轴交 于点D ,动点M 是直线x=4上异于点D 的任意一点,直线A1M , A2M 与椭圆C 交于P ,Q 两点,问直线PQ 是否恒过定点?若是,求出定点;若不是,请说明理由.【解析】 (1)设椭圆C 的方程为22221(0)x y a b a b+=>>,则依题意得2a c -=,又离心率e 是方程的2230x -+=的根,所以c e a ==,2,a c ==21b ∴=.∴椭圆C 的标准方程为2214x y +=. (4分) (2)由(1)知椭圆C 的标准方程为2214x y +=,12(20)(20)A A ∴-,,,,设动点(4,)(R 0)M m m m ∈≠且,1122(,),(,)P x y Q x y ,则12,62A M A M m mk k ==,∴直线1A M 的方程为(2)6m y x =+,直线2A M 的方程为(2)2my x =-,由22)1(642x y m y x ⎧⎪⎪⎨⎪+=+⎩=⎪ 消去y 得2222(9)44360m x m x m +++-=, 2124362,9m x m -∴-=+2121829m x m -∴=+,1269m y m =+,2221826(,99m mP m m -∴++. (6分)由22)1(242x y m y x ⎧⎪⎪⎨⎪+=-⎩=⎪ 消去y 得2222(1)4440m x m x m +-+-=, 22222244222,11m m x x m m --∴=∴=++,2221m y m -=+,222222(,)11m m Q m m --∴++. (8分)222222262291(18222391PQ m m m m m k m m m m m m --++∴==≠----++,∴直线PQ 的方程为22222222()131m m m y x m m m ---=-+-+, 22222222()311m m m y x m m m --∴=-+-++22222222223311m m m m x m m m m -=-⨯---++222233m m x m m =--- 22(1)3m x m =--,∴直线PQ 过定点(10),. (12分)当m =时,(1,2P,(1,2Q -;当m =(1,2P -,(1,2Q . 此时直线PQ 也恒过定点(1,0).综上可知,直线PQ 恒过定点,且定点坐标为(1,0). (13分)21.(本小题满分14分)已知函数()ln xf x a x bx =+((0,)x ∈+∞的图象过点11(,)e e -,且在点(1,(1)f )处的切线与直线0x y e +-=垂直.(1)求,a b 的值.(2)若存在01[,e]e x ∈(e 为自然对数的底数,且e=2.71828…),使得不等式2000113()222f x x tx +-≥-成立,求实数t 的取值范围.【解析】 (1)()ln ln x f x a x bx ax x bx =+=+,()ln ,f x a x a b '∴=++又在点(1,(1)f )处的切线与直线0x y e +-=垂直.(1)1f a b '∴=+=. (3分)又函数()ln x f x a x bx =+的图象过点11(,)e e -, ∴11111()ln a b f a b ee e e e e e =⨯⨯+⨯=-+=-, 1a b ∴-=,1,0a b ∴==. (5分)(2)由(1)知,()ln f x x x =,由题意2113()222f x x tx +-≥-得, 2113ln 222x x x tx +-≥-,则32ln t x x x ≤++, 若存在1[,]x e e ∈,使不等式2113()222f x x tx +-≥-成立, 只需t 小于或等于32ln x x x ++的最大值, 设3()2ln (0)h x x x x x =++>,则2(3)(1)()x x h x x +-'=, (8分) 当1[,1]x e ∈时,()0h x '<,故()h x 单调递减;当[1,]x e ∈时,()0h x '>,故()h x 单调递增. 33()2ln 2,h e e e e e e =++=++1111()2ln 323h e e e e e e =++=-++,12()()240h h e e e e ∴-=-->,∴1()() h h ee>,故当1[,]x ee∈时,h(x)的最大值为11()23h ee e=-++,故123t ee≤-++,即实数t的取值范围是1(,2+3e]e-∞-+. (14分)。

四川省成都七中2014届高三上学期期中考试数学文试题 Word版含答案

四川省成都七中2014届高三上学期期中考试数学文试题 Word版含答案

成都七中2013-2014学年上期 2014级半期考试数学试卷(文科)考试时间:120分钟 总分:150分 命题人:张世永 审题人:杜利超一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.)1.已知全集U=R ,集合A={}13>x x ,B={}0log 2>x x ,则A ∪B=( ) A .{}0>x xB .{}1>x xC .{}10<<x xD .{}0<x x2.“函数2)(-=kx x f 在区间[]1,1-上存在零点”是“3≥k ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知1tan()2πα+=,则sin cos 2sin cos αααα-+=( ) A .41B .21C .41-D .21-4.定义运算bc ad d c b a -=,则函数32cos 12sin )(x xx f =的最小正周期为( ) A .4πB .2πC .πD .2π 5.函数3)1()(2---=x a ax x f 在区间[)∞+-,1上是增函数,则实数a 的取值范围是( )A .⎥⎦⎤ ⎝⎛∞-31,B .(]0,∞-C .⎥⎦⎤⎝⎛31,0D .⎥⎦⎤⎢⎣⎡31,06.已知函数m x x x f +-=3)(3只有两个零点,则实数m 的取值范围是( ) A .[]2,2- B .{}2,2-C .()2,2-D .(]2,-∞-∪[)∞+,27.ΔABC 中,已知a 、b 、c 分别是角A 、B 、C 的对边,且AB b a cos cos =,A 、B 、C 成等差数列,则角C=( ) A .3π B .6π C .6π或2π D .3π或2π8.已知定义在R 上的函数)(x f 满足)()(x f x f -=-,)()4(x f x f -=-,且在区间[]2,0上是减函数.若方程k x f =)(在区间[]8,8-上有四个不同的根,则这四根之和为( ) A .±4B. ±8C .±6D .±29.若函数1)(2++=mx x x f 的值域为[)∞+,0,则m 的取值范围是( ) A .}{2,2- B .{}22≤≤-m m C .{}2,2≥-≤m m m 或 D .{}22<<-m m10.已知函数⎪⎩⎪⎨⎧<-+-+≥-+=)0()3()4()0()1()(2222x a x a a x x a k kx x f ,其中R a ∈,若对任意的非零的实数1x ,存在唯一的非零的实数)(122x x x ≠,使得)()(12x f x f =成立,则k 的最小值为( ) A .151-B .5C .6D .8二、填空题(每小题5分,共25分,把答案填在题中的横线上。

四川省成都市高三数学上学期期中试题 文

四川省成都市高三数学上学期期中试题 文

2 成都七中 2015-2016 学年度上期半期考试高三年级数学试卷(文科)考试时间:120 分钟 总分:150 分一、选择题(本大题共 12 小题,每小题 5 分,在每小题给的四个选项中,只有一项是符合题目要求的)1.已知集合 A{ x | x 1 0}, B { x | x 2 x 2 0} ,则 A B ( )(A ){ x | 0 x 2}(B ){ x | 1 x 2}(C ){1,2 }(D )2.式子 2 lg 5 lg 12 lg 3 ( )(A ) 0 (B )1 (C ) 2 (D ) 23.已知向量 a (1, ) , b ( ,4 ) ,若a //b ,则实数 ( )(A ) 0 (B ) 2(C ) 2(D ) 24.函数 f ( x )e x e x ( x R ) 的奇偶性是( ) (A )奇函数(B )偶函数 (C )非奇非偶函数 (D )既是奇函数也是偶函数 5.函数 f ( x )sin 2 x 1 的周期为( )(A ) 4(B ) 2 x(C ) (D ) 26.函数 f ( x ) log x 3 的零点所在区间为( ) 3(A ) ( 0 ,1)(B ) (1, 2 )C . ( 2 ,3 )(D ) ( 3,4 )7.已知 a , b , c , d R ,“ a c b d ”是“ a c , b d ”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件8.已知 t an(1) 2 ,则s in 241()3 3(A)(B)3 3C)(D)5 59.下列命题成立的是()1(A)xx x( 0 ,) ,使得s in 40 0 cos 2(B)x [ 0 ,] ,都有s in 40 xcos x 2 (C ) x( 2, ) ,使得s inx0 xcos 13(D)x [4, 5] ,都有s in2 x cos 2 x410.在ABC中,c os2 5A , cos53 10B10,最长的边长为 5 ,则最短的边长为()5(A)2(B)23(C)1 (D)211.已知公差不为零的等差数列{n} 的前n项和为S, S4n 8 1 ,函数 f ( x ) c os x ( 2 s in x 1) ,则f ()f ()f () 的值为()2 8 (A)0(B)4n(C)8(D )与有关12.已知数列{ an} 的前n项和为S,满足atan , ( 0 ,11 ) ,aa+n n 1=n3 * ( n N3 ) .关于下列命题:①若 ,则 a30 ;2 6 13 a②对任意满足条件的角,均有a* n 3a ( n N ) ;③存在( 0 ,6n) (63 n, ) ,使得 S 20 ;④当63 n时, S 30 .其中正确的命题有()(A)1 个(B)2 个(C)3 个(D)4 个二、填空题(本大题共4小题,每小题5分)13.已知a( 2 ,1), b (1,3) ,则( 2 a b ) a .14.已知角,,构成公差为32的等差数列.若c o s ,则c o s c o s.315.已知公比q 1 的正项等比数列{ an3} ,a1 ,函数f ( x ) 1 lnx ,则f ( a )1f ( a)f ( a) .2 516.函数f ( x ) 在[a , b ] 上有定义,若对任意x, x a , b ,有1 2。

四川省成都七中2014届高三上学期入学考试 数学文 Word版含答案[ 高考]

四川省成都七中2014届高三上学期入学考试 数学文 Word版含答案[ 高考]

图 2俯视图侧视图正视图四川成都七中高2014届高三(上)入学考试数学(文)试题第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合2{|450}A x x x=--=,集合2{|10}B x x=-=,则A B=()(A){1}(B){1}-(C){1,1,5}-(D)∅2、设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i(C)1+i(D)1-i3、某三棱锥的三视图如图所示,则该三棱锥的体积是( )(A)16(B)13(C)23(D)14、设x Z∈,集合A是奇数集,集合B是偶数集。

若命题:,2p x A x B∀∈∈,则()(A):,2p x A x B⌝∃∈∈(B):,2p x A x B⌝∃∉∈(C):,2p x A x B⌝∀∉∉(D):,2p x A x B⌝∃∈∉5、函数sin()(0,0,)22y A x Aππωϕωϕ=+>>-<<的部分图象如图所示,则此函数的解析式可为()(A)2sin(2)6y xπ=-(B)2sin(2)3y xπ=-(C)2sin(4)6y xπ=-(D)2sin(4)3y xπ=+6、若双曲线22221x ya b-=)(A)y x=±错误!未找到引用源。

(B)y=错误!未找到引用源。

(C)12y x=±错误!未找到引用源。

(D)2y x=±7、设函数f(x)在R上可导,其导函数为f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是()8、阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10(∈S ,那么n 的值为( )(A )3 (B )4 (C )5 (D )69、已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦(C) 1,22⎡⎤⎢⎥⎣⎦(D) (0,2]10、若存在正数x 使2()1xx a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞第二部分 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中高2015届高三上学期期中数学考试题答案(文科)一、选择题,10个小题,每小题5分,共50分,每小题有一个正确选项,请将正确选项涂在答题卷上. 1.ABC ∆中,角,,A B C 的对边分别为,,a b c ,若13, 2.cos()3a b A B ==+=,则c =( ).4..3.A B C D答案:D解析:22211cos ,2cos 94232()1733C c a b ab C =-=+-=+-⋅⋅-=2.《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布。

(不作近似计算)( )答案:C解析:由题可知,是等差数列,首项是5,公差为d ,前30项和为390.根据等差数列前n 项和公式,有3在),1(+∞-上是减函数,则b 的取值范围是( ) .[1,)A -+∞ .(1,)B -+∞ .(,1)C -∞- .(,1]D -∞-答案:D解析:由题意可知()02bf x x x '=-+≤+,在(1,)x ∈-+∞上恒成立, 即(2)b x x ≤+在(1,)x ∈-+∞上恒成立,2()(2)2f x x x x x =+=+ 且(1,)x ∈-+∞()1f x ∴>-∴要使(2)b x x ≤+,需1b ≤- 故答案为1b ≤-,选D4.已知c >1,( )A .a <bB .a >bC .a =bD .a 、b 大小不定 答案:A,易看出分母的大小,所以a <b5.已知数列{}n a满足*110,n a a n N +==∈,则2015a 等于( ).0...A B C D -答案:B解析:根据题意,由于数列{a n }满足a 1=0,a n +1,那么可知∴a 1=0,a 2=-,a 3=,a 4=0,a 5=-a 6=…,故可知数列的周期为3,那么可知20152a a ==,选B.6.在ABC ∆中,若a 、b 、c 分别为角A 、B 、C 的对边,且cos2cos cos()1B B A C ++-=,则有( )A .,,a c b 成等比数列B .,,a c b 成等差数列C .,,a b c 成等差数列D .,,a b c 成等比数列答案:D解析:由cos 2cos cos()1B B A C ++-=变形得:cos cos()1cos 2B A C B +-=-,[]2cos cos ()cos(),cos 212sin B A C A C B B π=-+=-+=- ,∴上式化简得:2cos()cos()2sin A C A C B --+=,22sin sin()2sin A C B ∴--=,即2sin sin sin A C B =,由正弦定理:sin :sin :sin a A b B c C ==得:2ac b =,则,,a b c 成等比数列.故选D7.设M 是ABC ∆所在平面上的一点,且330,22MB MA MC D ++=是AC 中点,则MD BM的值为( )11...1.232A B C D答案:A解析:D 为AC 中点,33()2322MB MA MC MD MD ∴=-+=-⋅=-13MD MB ∴=8.已知函数9()4,(0,4),1f x x x x =-+∈+当x a =时,()f x 取得最小值b ,则在直角坐标系中函数||1()()x b g x a+=的图像为( )答案:B解析:因为x ∈(0,4),∴x+1>1,故99()41551,(0,4),11f x x x x x x =-+=++-≥-=∈++当且仅当911x x +=+时取得等号,此时函数有最小值1,∴a=2,b=1,可知g(x)的解析式进而作图可知结论选B.9.下列说法正确的是( )A .函数y f x =()的图象与直线x a =可能有两个交点;B .函数22log y x =与函数22log y x =是同一函数;C .对于[]a b ,上的函数y f x =(),若有0f a f b ⋅()()<,那么函数y f x =()在()a b ,内有零点; D .对于指数函数xy a = (1a >)与幂函数ny x = (0n >),总存在一个0x ,当0x x >时,就会有x n a x >. 答案:D解析:因为选项A 中最多有个交点,选项B 中,不是同一函数,定义域不同,选项C 中,函数不一定是连续函数,故选D.10.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a = ( ) A. 1-或2564- B. 1-或214 C. 74-或2564- D. 74-或7答案:A解析:由3y x =求导得2'3y x =设曲线3y x =上的任意一点300(,)x x 处的切线方程为320003()y x x x x -=-,将点()1,0代入方程得00x =或032x =. (1)当00x =时:切线为0y =,所以215904ax x +-=仅有一解,得2564a =- (2)当032x =时:切线为272744y x =-,由22727441594y x y ax x ⎧=-⎪⎪⎨⎪=+-⎪⎩得24309ax x --=仅有一解,得1a =-. 综上知1a =-或2564a =-. 二、填空题,本大题共5个小题,每小题5分,共25分,请将正确答案填在答题卷上. 11.sin155cos35cos 25cos 235-= __ .12.已知指数函数()y f x =,对数函数()y g x =和幂函数()y h x =的图像都过1(,2)2P ,如果123()()()4f x g x h x ===,那么123x x x ++=答案:32解析:令(),()log ,()xcb f x a g x x h x x ===则12111()2,()log log 22222b b f a g ====-=,11()()222c h ==11123114,1()441,,44x a b c f x x x x ∴===-∴==⇒===12332x x x ∴++=13答案:( 解析:t a b t a b +-与 的夹角为钝角,∴2222()0,0,36720,ta b ta b t a b t t +⋅-<∴-<∴-<<< )(又因为ta b + 与ta b -不共线,所以0t ≠,所以(t ∈14.已知命题p :函数2()2f x x ax =+-在[1,1]-内有且仅有一个零点.命题q :23(1)20x a x +++≤在区间13[,]22内恒成立.若命题“p 且q”是假命题,实数a 的取值范围是 . 答案:52a >-提示:先确定p 且q 为真命题的a 的取值范围,然后取补集可得结果. 15.给出定义:若11,,()22x m m m Z ⎛⎤∈-+∈ ⎥⎝⎦,则m 叫做实数x 的“亲密函数”,记作{}x m =,在此基础上给出下列函数{}()f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =是周期函数,最小正周期为1; ③函数()y f x =的图像关于直线()2kx k Z =∈对称; ④当(]0,2x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是 答案:②③④ 解析:11,22x ⎛⎤∈-⎥⎝⎦时,{}()0f x x x x =-=-,当13,22x ⎛⎤∈ ⎥⎝⎦时,()1f x x =- 当35,22x ⎛⎤∈⎥⎝⎦时,()2f x x =-,作出函数的图像可知①错,②,③对,再作出ln y x =的图像可判断有两个交点,④对三、解答题,本大题共6个小题,共75分,请将答案及过程写在答题卷上.16.(12分)已知函数2()42cos (2)14f x x x π=-++(1)求()f x 得最小正周期;(2)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的取值范围.解析:(1)()4cos(4)4sin 42sin(4),233f x x x x x x T πππ=-+=+=+∴=(2)4,4,sin(4)1643333x x x ππππππ-≤≤∴-≤+≤≤+≤ ()f x ∴的取值范围为2⎡⎤⎣⎦ 17. (12分)已知数列{}n a 满足11121,(*)2n nn nn a a a n N a ++==∈+. (Ⅰ)证明数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)设(1)n n b n n a =+,求数列{}b 的前n 项和S .解析:1的等差数列.(Ⅲ)由(Ⅱ)知,2n n b n =⋅,所以231222322n n S n =⋅+⋅+⋅++⋅ ,234121222322n n S n +=⋅+⋅+⋅++⋅ ,相减得23122222n n n S n +-=++++-⋅ 11222n n n ++=--⋅,∴1(1)22n n S n +=-⋅+18.(12分) ABC ∆为一个等腰三角形形状的空地,腰AC 的长为3(百米),底AB 的长为4(百米).现决定在空地内筑一条笔直的小路EF (宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为1S 和2S . (1)若小路一端E 为AC 的中点,求此时小路的长度; (2)若小路的端点,E F 两点分别在两腰上,求12S S 得最小值. 解:(1)E 为AC 中点,333,34222AE EC ∴==+<+ ,F ∴不在BC 上,故F 在AB 上,可得72AF =, 在ABC ∆中,2cos 3A=,在AEF ∆中,222152cos 2EF AE AF AE AF A =+-⋅=,EF ∴=(2)若小路的端点,E F 两点分别在两腰上,如图所示, 设,CE x CF y ==,则5x y +=CABEF1221sin 991121111125sin 22ABC CEF ABCCEF CEFCA CB CS S S S S S S xy x y CE CF C∆∆∆∆∆⋅-==-=-=-≥-=+⎛⎫⋅ ⎪⎝⎭当且仅当52x y ==时取等号,故12S S 的最小值为1125. 19.(12分)关于x(Ⅰ)当1m =时,解此不等式;(Ⅱ)设函数|)7||3lg(|)(--+=x x x f ,当解析:(1)当1m =时,原不等式可变为0|3||7|10x x <+--<,可得其解集为{|27}.x x << (2)设|3||7|t x x =+--,则由对数定义及绝对值的几何意义知100≤<t ,因x y lg =在),0(∞+上为增函数, 则1lg ≤t ,当7,10≥=x t 时,1lg =t , 故只需1>m 即可,即1m >时,m x f <)(恒成立.20.(13分)设y x ,满足约束条件的可行域为M (1)求x y A 2-=的最大值与22y x B +=的最小值;(2)若存在正实数a ,的图象经过区域M 中的点,.解:(1)由⎩⎨⎧=+=1021y x x ,得⎩⎨⎧==81y x ∴)8,1(B ,得⎩⎨⎧==24y x ∴)2,4(c ,可行域M 为如图ABC ∆ ,又∵x y A 2-= ∴A A x y ,2+=是y 轴的截距,∴过点)8,1(B 时,6128最大=⨯-=A ∵22y x B +=是表示区域M 上的点),(yx 到原点O )0,0(距离平方.(2M 中的点,而区域中41≤≤x 又∵0>a ,函数x a y cos =图象过点∴满足x a y cos =过区域M 中的点,只须图象与射线. ∴只须1=x 时∴所求a 的取值范21.(14分)已知函数21(),()()sin 2f x xg x f x x λ'==+,其中函数()g x 在[]1,1-上是减函数. (1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()3sin1g x λ≤+在[]1,1x ∈-上恒成立,求λ得取值范围.(3)关于x 的方程ln (1)2f x x m +=-,11.1x e e ⎡⎤∈--⎢⎥⎣⎦有两个实根,求m 的取值范围.解析:(1)2(),()2,(1)2f x x f x x f ''=∴== ,∴在点(1,(1))f 处的切线方程为12(1)y x -=-, 即210x y --=(2)()sin ,()cos ,()g x x x g x x g x λλ'=+∴=+ 在[]1,1-上单减()0g x '∴≤在[]1,1-上恒成立, 即cos x λ≤-在[]1,1-上恒成立,1λ∴≤-,又()g x 在[]1,1-单减,[]max ()(1)sin1g x g λ∴=-=-()3sin1g x λ≤+ 在[]1,1x ∈-上恒成立,∴只需sin13sin1λλ--≤+恒成立,2sin1λ∴≥-sin 30sin1,12sin1,2sin11λ<<∴-≤≤-(3)由(1)知2(1)(1)f x x +=+∴方程为2ln(1)2x x m +=-,设2()ln(1)2h x x x m =+-+,则方程2ln(1)2x x m +=-根的个数即为函数()h x 图像与x 轴交点的个数.22()211xh x x x-'=-=++ ,当(1,0)x ∈-时,()0,()h x h x '>∴在(1,0)-上为增函数, 当(,1)(0,)x ∈-∞-+∞ 时,()0,()h x h x '<∴在(,1)(0,)x ∈-∞-+∞和都是减函数.() h x∴在1,01e⎡⎫⎪⎢-⎣⎭上为减函数,在(]0,1e-上为减函数.() h x∴在1,11ee⎡⎤-⎢⎥-⎣⎦上的最大值为(0)h m=,又12(1),(1)42h m h e m ee e-=--=+-且224ee->,∴所求方程有两根需满足1(1)0(0)0(1)0hehh e⎧-≤⎪⎪>⎨⎪-≤⎪⎩20me⇒<≤时原方程有两根,20,me⎛⎤∴∈ ⎥⎝⎦。

相关文档
最新文档