2017年高中数学第二讲证明不等式的基本方法考前过关训练含解析新人教A版选修4_5
高中数学 第二讲:证明不等式的基本方法课件 新人教A版选修4

注:分析法的思维特点是:执果索因.对于思路不 明显,感到无从下手的问题宜用分析法探究证明途径. 另外,不等式的基本性质告诉我们可以对不等式做这 样或那样的变形,分析时贵在变形,不通思变,变则通! (如课本第 24 页例 3)
y
x
2
第十二页,编辑于星期五:十点 三十九分。
已知 f ( x) x2 px q ,求证:| f (1) |,| f (2) |,| f (3) | 中至少有 一个不小于 1 .
2
分析:设 | f (1) |,| f (2) |,| f (3) | 中没有一个大于或等于 1 , 2
观察: f (1) 1 p q, f (2) 4 2 p q, f (3) 9 3 p q 得: f (1) 2 f (2) f (3) 2 所以 2= | f (1) 2 f (2) f (3) | ≤| f (1) | 2 | f (2) | | f (3) | < 1 +2× 1 + 1 =2 这是不可能的,矛盾表明原结论成立。
A2. ab2 B.ab C.2ab D .2ab
5.设 Pa2b25,Q 2a ba24a,若 PQ ,则实 a,b
满足的 _ ab _ 1条 或 _a_ b 件 _ 2 _为 __
6.若0ab1,Plo1ga2b,Q12(lo1galo1gb),
2
2
2
Mlo1g(ab),则P,Q,M的大小关 Q_>_系 P_>M_是 ______
( 2 ) 在分式中放大或缩小分
子或分母 ;
( 3 ) 应用基本不等式进行放
高中数学第二讲证明不等式的基本方法知识归纳与达标验收(含解析)新人教A版选修4_5

第二讲证明不等式的基本方法考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.2.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.比较法证明不等式作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.[例1] 若x ,y ,z ∈R ,a >0,b >0,c >0,求证:b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx ). [证明] ∵b +c a x 2+c +a b y 2+a +b cz 2-2(xy +yz +zx ) =⎝ ⎛⎭⎪⎫b ax 2+a b y 2-2xy +⎝ ⎛⎭⎪⎫cby 2+b cz 2-2yz +⎝ ⎛⎭⎪⎫a c z 2+c a x 2-2zx =b a x - a b y 2+ cby - b cz 2+a cz - c ax 2≥0. ∴b +c a x 2+c +a b y 2+a +b cz 2≥2(xy +yz +zx ).综合法证明不等式件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.[例2] 设a ,b ,c ∈R +且a +b +c =1. 求证:(1)2ab +bc +ca +c 22≤12;(2)a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.[证明] (1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2, 当且仅当a =b 时等号成立,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca,当且仅当a =b =c =13时等号成立.所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎪⎫ac b +ab c +⎝ ⎛⎭⎪⎫ab c +bc a +⎝ ⎛⎭⎪⎫ac b +bc a =a ⎝ ⎛⎭⎪⎫c b +b c +b ⎝ ⎛⎭⎪⎫a c +c a +c ⎝ ⎛⎭⎪⎫a b +b a≥2a +2b +2c =2,当且仅当a =b =c =13时等号成立.分析法证明不等式理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.[例3] 已知a >0,b >0,且a +b =1,求证: a +12+b +12≤2.[证明] 要证a +12+b +12≤2,只需证⎝⎛⎭⎪⎫a +12+b +122≤4,即证a +b +1+2⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤4. 即证⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤1.也就是要证ab +12(a +b )+14≤1,即证ab ≤14.∵a >0,b >0,a +b =1.∴1=a +b ≥2ab ,∴ab ≤14,即上式成立.故a +12+b +12≤2.反证法证明不等式种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件、公理、定理或某些性质相矛盾的结论,从而肯定原命题成立.[例4] 已知a ,b ,c 为实数,a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.[证明] 假设a ,b ,c 不全是正数,即其中至少有一个不是正数.不妨先设a ≤0,下面分a =0或a <0两种情况讨论.①如果a =0,那么abc =0,与已知矛盾, 所以a =0不可能.②如果a <0,那么由abc >0,可得bc <0. 又因为a +b +c >0,所以b +c >-a >0, 于是ab +bc +ca =a (b +c )+bc <0, 这与已知中的ab +bc +ca >0相矛盾. 因此,a <0也不可能.综上所述,a >0. 同理可以证明b >0,c >0,所以原命题成立.放缩法证明不等式放缩法是在顺推法逻辑推理过程中,有时利用不等式关系的传递性,作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当放缩,否则达不到目的.[例5] 已知n ∈N +,求证:19+125+…+1(2n +1)2<14.[证明] 因为1(2k +1)2<14k 2+4k =14⎝ ⎛⎭⎪⎫1k -1k +1, 所以19+125+…+1(2n +1)2<14⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1<14.(时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分析法证明不等式的推论过程一定是( ) A .正向、逆向均可进行正确的推理 B .只能进行逆向推理 C .只能进行正向推理D .有时能正向推理,有时能逆向推理解析:选B 在用分析法证明不等式时,是从求证的不等式出发,逐步探索使结论成立的充分条件即可,故只需进行逆向推理即可.2.设a =lg 2+lg 5,b =e x(x <0),则a 与b 的大小关系是( ) A .a <b B .a >b C .a =bD .a ≤b解析:选B ∵a =lg 2+lg 5=1,b =e x(x <0),故b <1, ∴a >b .3.已知a ,b ,c ,d 为实数,ab >0,-ca <-d b,则下列不等式中成立的是( ) A .bc <ad B .bc >adC.a c >b dD.a c <b d解析:选B 将-c a <-d b两边同乘以正数ab ,得-bc <-ad ,所以bc >ad .4.已知x 1>0,x 1≠1,且x n +1=x n (x 2n +3)3x 2n +1(n ∈N *),试证“数列{x n }对任意正整数n 都满足x n <x n +1,或者对任意正整数n 都满足x n >x n +1”,当此题用反证法否定结论时,应为( )A .对任意的正整数n ,都有x n =x n +1B .存在正整数n ,使x n >x n +1C .存在正整数n (n ≥2),使x n ≥x n +1且x n ≤x n -1D .存在正整数n (n ≥2),使(x n -x n -1)(x n -x n +1)≥0解析:选D 命题的结论是等价于“数列{x n }是递增数列或是递减数列”,其反设是“数列既不是递增数列,也不是递减数列”,由此可知选D.5.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根解析:选A 至少有一个实根的否定是没有实根,故做的假设是“方程x 3+ax +b =0没有实根”.6.使不等式3+8>1+a 成立的正整数a 的最大值为( ) A .10 B .11 C .12D .13解析:选C 用分析法可证a =12时不等式成立,a =13时不等式不成立. 7.已知a ,b ,c ,d ∈R +且S =a a +b +c +b b +c +d +c c +d +a +da +b +d,则下列判断中正确的是( )A .0<S <1B .1<S <2C .2<S <3D .3<S <4解析:选 B 用放缩法,aa +b +c +d <a a +b +c <a a +c ,b a +b +c +d <b b +c +d <bd +b,ca +b +c +d <c c +d +a <c c +a ,d a +b +c +d <d d +a +b <dd +b,以上四个不等式相加,得1<S <2.8.已知a ,b 为非零实数,则使不等式a b +b a≤-2成立的一个充分不必要条件是( ) A .ab >0 B .ab <0 C .a >0,b <0D .a >0,b >0解析:选C 因为a b 与b a 同号,由a b +b a ≤-2,知a b <0,b a<0,即ab <0. 又若ab <0,则a b <0,b a<0,所以a b +b a=-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-a b +⎝ ⎛⎭⎪⎫-b a ≤-2⎝ ⎛⎭⎪⎫-a b ·⎝ ⎛⎭⎪⎫-b a =-2, 综上,ab <0是a b +b a≤-2成立的充要条件,所以a >0,b <0是a b +ba≤-2成立的一个充分不必要条件.9.已知a >0,b >0,c >0,且a 2+b 2=c 2,则a n +b n 与c n的大小关系为(n ≥3,n ∈N +)( ) A .a n +b n >c nB .a n +b n <c nC .a n +b n ≥c nD .a n+b n=c n解析:选 B 因为a 2+b 2=c 2,所以⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1.所以⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c 2,所以⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c2=1.所以a n +b n <c n.故选B. 10.若α∈⎝ ⎛⎭⎪⎫π,5π4,M =|sin α|,N =|cos α|,P =12|sin α+cos α|,Q = 12sin 2α,则它们之间的大小关系为( ) A .M >N >P >Q B .M >P >N >Q C .M >P >Q >ND .N >P >Q >M解析:选D ∵α∈⎝ ⎛⎭⎪⎫π,5π4,∴0>sin α>cos α. ∴|sin α|<|cos α|,∴P =12|sin α+cos α|=12(|sin α|+|cos α|)>12(|sin α|+|sin α|)=|sin α|=M . P =12|sin α|+|cos α|<12(|cos α|+|cos α|)=|cos α|=N . ∴N >P >M . ∵Q =12sin 2α=sin αcos α<|sin α|+|cos α|2=P ,Q =sin αcos α>sin 2α=|sin α|=M , ∴N >P >Q >M .二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上)11.用反证法证明“在△ABC 中,若∠A 是直角,则∠B 一定是锐角”时,应假设________________.解析:“∠B 一定是锐角”的否定是“∠B 不是锐角”. 答案:∠B 不是锐角12.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________.解析:由a 知a ≥0,b 知b ≥0,而a a +b b ≠a b +b a ,知b ≠a .此时a a +b b -(a b +b a )=(a -b )2(a +b )>0,不等式成立.故实数a ,b 应满足的条件是a ≥0,b ≥0,a ≠b .答案:a ≥0,b ≥0,a ≠b13.已知a +b >0,则a b2+b a 2与1a +1b 的大小关系是________.解析:a b2+b a2-⎝ ⎛⎭⎪⎫1a +1b =a -b b2+b -a a2=(a -b )⎝ ⎛⎭⎪⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b2+b a2≥1a +1b . 答案:a b2+b a2≥1a +1b14.设0<m <n <a <b ,函数y =f (x )在R 上是减函数,下列四个数f ⎝ ⎛⎭⎪⎫b a ,f ⎝ ⎛⎭⎪⎫a b ,f ⎝⎛⎭⎪⎫b -m a -m ,f ⎝⎛⎭⎪⎫a +n b +n 的大小顺序依次是____________.解析:∵a b <a +nb +n <1<b a <b -ma -m,根据函数的单调性, 知f ⎝ ⎛⎭⎪⎫a b >f ⎝⎛⎭⎪⎫a +n b +n >f ⎝ ⎛⎭⎪⎫b a >f ⎝⎛⎭⎪⎫b -m a -m . 答案:f ⎝ ⎛⎭⎪⎫a b >f ⎝⎛⎭⎪⎫a +n b +n >f ⎝ ⎛⎭⎪⎫b a >f ⎝ ⎛⎭⎪⎫b -m a -m三、解答题(本大题共4个小题,满分50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)设|a |<1,|b |<1,求证:|a +b |+|a -b |<2. 证明:当a +b 与a -b 同号时,|a +b |+|a -b |=|a +b +a -b |=2|a |<2; 当a +b 与a -b 异号时,|a +b |+|a -b |=|a +b -(a -b )|=2|b |<2.∴|a +b |+|a -b |<2.16.(本小题满分12分)已知:在△ABC 中,∠CAB >90°,D 是BC 的中点,求证:AD <12BC (如右图所示).证明:假设AD ≥12BC .(1)若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .(2)若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD . 同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A .因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A 即∠A <90°,与已知矛盾, 故AD >12BC 不成立.由(1)(2)知AD <12BC 成立.17.(本小题满分12分)求证:1+11+11×2+11×2×3+…+11×2×3×…×n <3.证明:由11×2×3×…×k <11×2×2×…×2=12k -1(k 是大于2的自然数),得1+11+11×2+11×2×3+…+11×2×3×…×n <1+1+12+122+123+…+12n -1=1+1-12n1-12=3-12n -1<3.18.(本小题满分14分)已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c≥3.解:(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞); 当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈[3,6); 当x ≥2时,f (x )=2(x +1)+(x -2)=3x ∈[6,+∞). 综上,f (x )的最小值m =3.(2)证明:a ,b ,c 均为正实数,且满足a +b +c =3,因为b 2a +c 2b +a 2c+(a +b +c )=⎝ ⎛⎭⎪⎫b 2a +a +⎝ ⎛⎭⎪⎫c 2b +b +⎝ ⎛⎭⎪⎫a 2c +c ≥2⎝⎛⎭⎪⎫b 2a·a + c 2b·b + a 2c ·c =2(a +b +c ), 当且仅当a =b =c =1时,取等号,所以b 2a +c 2b +a 2c ≥a +b +c ,即b 2a +c 2b +a 2c≥3.。
高中数学第二讲证明不等式的基本方法考前过关训练含解析新人教A版选修4_5

(二)证明不等式的基本方法考前过关训练(35分钟60分)一、选择题(每小题3分,共18分)1.已知m≠n,若x=m4-m3n,y=mn3-n4,则x,y的大小关系为( )A.x>yB.x=yC.x<yD.与m,n的取值有关【解析】选A.x-y=(m4-m3n)-(mn3-n4)=m3(m-n)-n3(m-n)=(m-n)(m3-n3)=(m-n)2(m2+mn+n2)=(m-n)2,因为m≠n,所以x-y>0,即x>y.2.求证:-<-.证明:欲证-<-,只需证+<2,只需证(+)2<(2)2,只需证10+2<20,只需证<5,只需证21<25,这显然成立.所以-<-.上述证明过程应用了( )A.综合法B.分析法C.综合法、分析法配合使用D.间接证法【解析】选B.根据分析法的特点可知,上述证明过程是分析法.3.若1<x<10,下面不等式中正确的是( )A.(lgx)2<lgx2<lg(lgx)B.lgx2<(lgx)2<lg(lgx)C.(lgx)2<lg(lgx)<lgx2D.lg(lgx)<(lgx)2<lgx2【解析】选D.因为1<x<10,所以0<lgx<1,0<(lgx)2<1,0<lgx2<2,lg(lgx)<0.又(lgx)2-lgx2=(lgx)2-2lgx=lgx(lgx-2)<0,所以(lgx)2<lgx2.所以lg(lgx)<(lgx)2<lgx2.【一题多解】选D.因为1<x<10,所以0<lgx<1,lg(lgx)<0,结合选项知A,B,C错误.4.若a,b,c为△ABC的三条边,S=a2+b2+c2,p=ab+bc+ac,则( )A.S≥2pB.p<S<2pC.S>pD.p≤S<2p【解析】选D.S-p=a2+b2+c2-(ab+bc+ac)=[(a-b)2+(b-c)2+(a-c)2]≥0,所以S≥p.又因为|a-b|<c,|b-c|<a,|a-c|<b;所以a2-2ab+b2<c2,b2-2bc+c2<a2,a2-2ac+c2<b2.所以a2+b2+c2<2(ab+bc+ac),所以S<2p.5.已知x,y∈R,M=x2+y2+1,N=x+y+xy,则M与N的大小关系是( )A.M≥NB.M≤NC.M=ND.不能确定【解析】选A.M-N=x2+y2+1-(x+y+xy)=[(x2+y2-2xy)+(x2-2x+1)+(y2-2y+1)]=[(x-y)2+(x-1)2+(y-1)2]≥0.故M≥N.6.(2016·合肥高二检测)已知a,b,c是△ABC的三边长,A=+,B=,则( ) A.A>B B.A<BC.A≥BD.A≤B【解析】选A.因为a,b,c是△ABC的三边长,所以c<a+b,所以B==<==+<+=A,所以B<A.【补偿训练】设a,b,x,y均为正数,且a,b为常数,x,y为变量,若x+y=1,则+的最大值为( )A. B.C. D.【解析】选C.本题可利用换元的方法处理:由x+y=1且x>0,y>0,可设x=sin2α,y=cos2α,故+=sinα+c osα=sin(α+φ)≤.二、填空题(每小题4分,共12分)7.(2016·沈阳高二检测)设α,β为锐角,P=sin(α+β),Q=sinα+sinβ,则P与Q的大小关系为________. 【解析】因为α,β为锐角,P-Q=sin(α+β)-(sinα+sinβ)=sinα(cosβ-1)+sinβ(cosα-1)<0,所以P<Q.答案:P<Q8.(2016·郑州高二检测)A=1+++…+与(n∈N+)的大小关系是________.【解析】A=+++…+≥==.答案:A≥9.若a,b∈R+,且a≠b,M=+,N=+,则M,N的大小关系为________.【解析】因为a≠b,所以+>2,+>2,所以+++>2+2.所以+>+.即M>N.答案:M>N三、解答题(每小题10分,共30分)10.已知0<a<1,求证:+≥9.【证明】因为(3a-1)2≥0,所以9a2-6a+1≥0.所以1+3a≥9a(1-a).因为0<a<1,所以≥9,即≥9,所以+≥9.11.已知a2+b2=1,x2+y2=1,试用分析法证明:ax+by≤1.【证明】要证ax+by≤1成立,只需证1-(ax+by)≥0,只需证2-2ax-2by≥0,因为a2+b2=1,x2+y2=1,只需证a2+b2+x2+y2-2ax-2by≥0,即证(a-x)2+(b-y)2≥0,显然成立.所以ax+by≤1.12.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1).等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.(1)求数列{a n}的通项公式.(2)设数列的前n项和为M n,求证:≤M n<.【解析】(1)因为等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5,所以b4+b5=2b5,所以b4=b5,所以公比a1==1,故等比数列{b n}是常数数列.数列{a n}的前n项和S n满足:S n=na n-2n(n-1),当n≥2时,a n=S n-S n-1=na n-2n(n-1)-[(n-1)a n-1-2(n-1)(n-2)],所以a n-a n-1=4(n≥2),所以数列{a n}是以1为首项,以4为公差的等差数列,a n=4n-3.(2)因为数列的前n项和为M n,===,所以M n==<.再由数列{M n}是增数列,所以M n≥M1=.综上可得,≤M n<.。
高考数学大一轮复习提升练七十二2证明不等式的基本方法理新人教A版选修4_5

核心素养提升练七十二证明不等式的基本方法(25分钟40分)1. (10分)已知函数f(x)=|x+2|.(1)解不等式f(x)>4-|x+1|.(2)已知a+b=2(a>0,b>0),求证:-f(x)≤+.【解析】(1)不等式f(x)>4-|x+1|,即|x+1|+|x+2|>4,当x<-2时,不等式化为-(x+1)-(x+2)>4,解得x<-3.5;当-2≤x≤-1时,不等式化为-(x+1)+(x+2)>4,无解;当x>-1时,不等式化为(x+1)+(x+2)>4,解得x>0.5;综上所述:不等式的解集为(-∞,-3.5)∪(0.5,+∞).(2)因为+=(a+b)=≥4.5,当且仅当a=,b=时等号成立.由题意知,-f(x)=-|x+2|≤=4.5,所以-f(x)≤+.2. (10分)设函数f(x)=|x-3|,g(x)=|x-2|.(1)解不等式f(x)+g(x)<2.(2)对任意的实数x,y,若f(x)≤1,g(y)≤1,求证:|x-2y+1|≤3. 【解析】(1)当x<2时,原不等式可化为3-x+2-x<2,可得x>,所以<x<2.当2≤x≤3时,原不等式可化为3-x+x-2<2,恒成立,所以2≤x≤3. 当x>3时,原不等式可化为x-3+x-2<2,可得x<,所以3<x<.综上,不等式的解集为.(2)|x-2y+1|=|(x-3)-2(y-2)|≤|x-3|+2|y-2|≤1+2=3.3. (10分) (2018·海口模拟)已知函数f(x)=|x-1|-|x+2|. (1)求不等式-2<f(x)<0的解集A.(2)若m,n∈A,证明:|1-4mn|>2|m-n|.【解析】(1)依题意f(x)=|x-1|-|x+2|=由-2<-2x-1<0解得-<x<,故A=.(2)m,n∈A,由(1)可知m2<,n2<,因为|1-4mn|2-4|m-n|2=(1-8mn+16m2n2)-4(m2-2mn+n2)=(4m2-1)(4n2-1)>0,故|1-4mn|2>4|m-n|2,故|1-4mn|>2|m-n|.4. (10分) (2018·潍坊模拟)已知函数f(x)=|x+4|,不等式f(x)>8-|2x-2|的解集为M.(1)求M.(2)设a,b∈M,证明:f(ab)>f(2a)-f(-2b).【解析】(1)将f(x)=|x+4|代入不等式整理得|x+4|+|2x-2|>8.①当x≤-4时不等式转化为-x-4-2x+2>8,解得x<-,所以此时x≤-4;②当-4<x<1时不等式转化为x+4+2-2x>8,解得x<-2,所以此时-4<x<-2,③当x≥1时,不等式转化为x+4+2x-2>8,解得x>2,所以此时x>2,综上,M={x|x<-2或x>2}.(2)因为f(2a)-f(-2b)=|2a+4|-|-2b+4|≤|2a+4+2b-4|=|2a+2b|,所以要证f(ab)>f(2a)-f(-2b),只需证|ab+4|>|2a+2b|,即证(ab+4)2>(2a+2b)2,即证a2b2+8ab+16>4a2+8ab+4b2,即证a2b2-4a2-4b2+16>0,即证(a2-4)(b2-4)>0.因为a,b∈M,所以a2>4,b2>4,所以(a2-4)(b2-4)>0成立,所以原不等式成立.。
高考数学总复习第2讲证明不等式的基本方法理新人教a版选修省公共课一等奖全国赛课获奖课件

3. 证明不等式的方法
(1)比较法
①求差比较法
由a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证
明________即可,这种方法称为求差比较法.
②求商比较法
由a>b>0⇔
a b
>1且a>0,b>0,因此当a>0,b>0时要证明
a>b,只要证明________即可,这种方法称为求商比较法.
填一填:(1)3
31 (2)3 4
第17页
2.填一填:(1)
1 21
提示:∵1=x+2y+
4z≤
x2+y2+z2 ·
1+4+16
,∴x2+y2+z2≥
1 21
,即x2+y2+z2
的最小值为211.
(2)[-5 2 ,5 2 ] 提示:∵(x2+y2)[22+(-1)2]≥(2x-
y)2,
∴-5 2≤2x-y≤5 2.
第24页
例2 已知a,b,c均为正数,证明:a2+b2+c2+ 1a+1b+1c2≥6 3,并确定a,b,c为何值时,等号成立.
[审题视点] 因为a,b,c均为正数,且a+b+c≥
3 3
abc,故可利用三个正数的算术——几何平均不等式证明.
第25页
[证明] 因为a,b,c均为正数,
所以a2+b2+c2≥3(abc)23,
c的最大值为( )
A. 1
B. 2
C. 3
D. 2
答案:C
第41页
解析:( a+ b+ c)2=(1× a+1× b+1× c)2≤(12+ 12+12)(a+b+c)=3.
当且仅当a=b=c=13时,等号成立. ∴( a+ b+ c)2≤3. 故 a+ b+ c的最大值为 3.
高中数学 第2讲 证明不等式的基本方法 第2课时 综合法课件 新人教A版选修4

+acb>a+b+C.
【解题探究】 不等式中 a,b,c 为对称的且两边都是和 式,所以从基本不等式入手,再根据不等式的可加性导出证明 的结论.
【解析】因为 a>0,a>0,c>0 且互不相等,
所以bac+cba>2 bac·cba=2C.
【答案】a2+b2 【解析】取 a=13,b=23,则 a2+b2=59,2ab=49, 因为 0<a<b,所以 a2+b2>a2+ab=a(a+b)=a, a2+b2>2ab,a2+b2>a+2b2=12.所以最大的是 a2+b2.
4.已知 a>0,a>0,c>0 且 a+b+c=1,求a+1a+b+1b+
【解题探究】 要证不等式左边是积的结构,且条件是和 x+y+z 为定值 1,所以可通过基本不等式将和转化为积.
【解析】∵x+y+z=1, ∴(1-x)(1-y)(1-z)=(y+z)(z+x)(x+y). 又∵x>0,y>0,z>0,∴(y+z)(z+x)(x+y)≤y+z+z+3 x+x+y3 =[2x+2y7+z]3=287, 当且仅当 x=y=z=13时取等号. 故(1-x)(-ab-ac-bc =12(2a2+2b2+2c2-2ab-2ac-2bc) =12[(a-b)2+(a-c)2+(b-c)2]≥0, 则 a2+b2+c2≥ab+ac+bc(当且仅当 a=b=c 取得等号).
和式与积式的转化
【例 2】 若 x>0,y>0,z>0 且 x+y+z=1,求证:(1-x)(1 -y)(1-z)≤287.
b+12≤2.
∴a+b≥2 ab,即 ab≤14,当且仅当 a=b=12时等号成立.
高中数学 第二讲 讲明不等式的基本方法达标检测 新人教A版选修4-5-新人教A版高二选修4-5数学试

第二讲 讲明不等式的基本方法达标检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分析法证明不等式的推论过程一定是( ) A .正向、逆向均可进行正确的推理 B .只能进行逆向推理 C .只能进行正向推理D .有时能正向推理,有时能逆向推理解析:在用分析法证明不等式时,是从求证的不等式出发,逐步探索使结论成立的充分条件,故只能进行逆向推理. 答案:B2.已知a >2,b >2,则有( ) A .ab ≥a +b B .ab ≤a +b C .ab >a +b D .ab <a +b解析:作商比较法.a +b ab =1b +1a,又a >2,b >2, ∴1a <12,1b <12,∴a +b ab <12+12=1. 答案:C3.用反证法证明命题“如果a <b ,那么3a >3b ”时,假设的内容应是( ) A.3a =3bB .3a <3bC.3a =3b 且3a >3bD .3a =3b 或3a <3b解析:3a 与3b 的大小关系包括3a >3b ,3a =3b ,3a <3b , ∴应假设的内容为3a =3b 或3a <3b . 答案:D4.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >aD .a >c >b解析:∵c -b =(a -2)2≥0,∴c ≥b . 由题中两式相减,得b =a 2+1,∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a . 答案:A5.已知a >b >c >0,A =a 2a b 2b c 2c,B =a b +c b c +a c a +b,则A 与B 的大小关系是( )A .A >B B .A <BC .A =BD .不确定解析:∵a >b >c >0,∴A >0,B >0.∴A B =a a a a b b b b c c c c a b a c b c b a c a cb =a a -b a a -c b b -c b b -a c c -a c c -b =⎝ ⎛⎭⎪⎫a b a -b ⎝ ⎛⎭⎪⎫a c a -c ⎝ ⎛⎭⎪⎫b c b -c .∵a >b >0,∴a b>1,a -b >0. ∴⎝ ⎛⎭⎪⎫a ba -b >1. 同理⎝ ⎛⎭⎪⎫b cb -c >1,⎝ ⎛⎭⎪⎫a c a -c >1.∴A B>1,∴A >B . 答案:A6.若0<x <y <1,则( ) A .3y<3xB .log x 3<log y 3C .log 4x <log 4yD .⎝ ⎛⎭⎪⎫14x <⎝ ⎛⎭⎪⎫14y 解析:∵y =3x在R 上是增函数,且0<x <y <1, ∴3x<3y,故A 错误.∵y =log 3x 在(0,+∞)上是增函数且0<x <y <1, ∴log 3x <log 3y <log 3 1=0,∴0>1log 3x >1log 3y ,∴log x 3>log y 3,故B 错误.∵y =log 4x 在(0,+∞)上是增函数且0<x <y <1, ∴log 4x <log 4y ,故C 正确.∵y =⎝ ⎛⎭⎪⎫14x在R 上是减函数,且0<x <y <1,∴⎝ ⎛⎭⎪⎫14x >⎝ ⎛⎭⎪⎫14y,故D 错误. 答案:C7.设a 、b 、c ∈R ,且a 、b 、c 不全相等,则不等式a 3+b 3+c 3≥3abc 成立的一个充要条件是( )A .a ,b ,c 全为正数B .a ,b ,c 全为非负实数C .a +b +c ≥0D .a +b +c >0解析:a 3+b 3+c 3-3abc =(a +b +c )(a 2+b 2+c 2-ab -ac -bc )=12(a +b +c )[(a -b )2+(b -c )2+(a -c )2],而a 、b 、c 不全相等⇔(a -b )2+(b -c )2+(a -c )2>0.∴a 3+b 3+c 3-3abc ≥0⇔a +b +c ≥0. 答案:C8.若实数a ,b 满足a +b =2,则3a +3b的最小值是( ) A .18 B .6 C .2 3D .243解析:3a+3b≥23a·3b=2·3a +b=2×3=6(当且仅当a =b =1时,等号成立).答案:B9.要使3a -3b <3a -b 成立,a ,b 应满足的条件是( ) A .ab <0且a >b B .ab >0且a >b C .ab <0且a <bD .ab >0且a >b 或ab <0且a <b 解析:3a -3b <3a -b⇔a -b +33ab 2-33a 2b <a -b ⇔3ab 2<3a 2b , ∴当ab >0时,有3b <3a ,即b <a . 当ab <0时,有3b >3a ,即b >a . 答案:D10.已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.则ac +bd 的X 围为( ) A .[-1,1] B .[-1,2) C .(-1,3]D .(1,2]解析:因为a ,b ,c ,d 都是实数, 所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22=1.所以-1≤ac +bd ≤1. 答案:A11.在△ABC 中,A ,B ,C 分别为a ,b ,c 所对的角,且a ,b ,c 成等差数列,则B 适合的条件是( ) A .0<B ≤π4B .0<B ≤π3C .0<B ≤π2D .π2<B <π解析:∵b =a +c2,∴cos B =a 2+c 2-b 22ac=a 2+c 2-⎝⎛⎭⎪⎫a +c 222ac=3a 2-2ac +3c 28ac=3a 8c +3c 8a -14≥2·38-14=12, ∵余弦函数在⎝⎛⎭⎪⎫0,π2上为减函数,∴0<B ≤π3,选B.答案:B12.若a ∈⎝⎛⎭⎪⎫π,54π,M =|sin α|,N =|cos α|,P =12|sin α+cos α|, Q =12sin 2α,则它们之间的大小关系为( ) A .M >N >P >Q B .M >P >N >Q C .M >P >Q >ND .N >P >Q >M解析:∵α∈⎝⎛⎭⎪⎫π,5π4,∴0>sin α>cos α,∴|sin α|<|cos α|, ∴P =12|sin α+cos α|=12(|sin α|+|cos α|)>12(|sin α|+|sin α|)=|sin α|=M ,排除A 、B 、C ,故选D 项.答案:D二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是________. 解析:a -b =3-2-6+5=3+5-(2+6), 而(3+5)2=8+215,(2+6)2=8+212, ∴3+5>2+ 6.∴a -b >0,即a >b . 同理可得b >c .∴a >b >c . 答案:a >b >c14.用反证法证明命题“三角形中最多只有一个内角是钝角”时的反设是________. 解析:三角形的内角中钝角的个数可以为0个,1个,最多只有一个即为0个或1个,其对立面是“至少两个”.答案:三角形中至少有两个内角是钝角 15.已知a ,b ,c ,d 都为正数,且S =a a +b +c +b b +c +d +c c +d +a +da +b +d,则S 的取值X 围是________. 解析:由放缩法,得aa +b +c +d <a a +b +c <aa +c;b a +b +c +d <b b +c +d <bd +b;c a +b +c +d <c c +d +a <cc +a ;da +b +c +d <d d +a +b <dd +b.以上四个不等式相加,得1<S <2. 答案:(1,2)16. 请补全用分析法证明不等式“ac +bd ≤a 2+b 2c 2+d 2”时的推论过程:要证明ac +bd ≤a 2+b 2c 2+d 2,①______________________________________________________________, 只要证(ac +bd )2≤(a 2+b 2)(c 2+d 2),即要证:a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2, 即要证:a 2d 2+b 2c 2≥2abcd .②________________________________________________________________. 解析:对于①只有当ac +bd ≥0时,两边才能平方,对于②只要接着往下证即可. 答案:①因为当ac +bd ≤0时,命题显然成立,所以当ac +bd ≥0时 ②∵(ab -bc )2≥0,∴a 2d 2+b 2c 2≥2abcd ,∴命题成立三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)求证:a 2+b 2+3≥ab +3(a +b ). 证明:∵a 2+b 2≥2ab ,a 2+3≥23a ,b 2+3≥23b ;将此三式相加得2(a 2+b 2+3)≥2ab +23a +23b , ∴a 2+b 2+3≥ab +3(a +b ).18.(12分)已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .证明:因为m >0,所以1+m >0.所以要证⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m , 即证(a +mb )2≤(1+m )(a 2+mb 2), 即证m (a 2-2ab +b 2)≥0, 即证(a -b )2≥0. 而(a -b )2≥0显然成立,故⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 19.(12分)已知a >b >0,试比较a 2-b 2a 2+b 2与a -b a +b 的大小.解析:∵a >b >0,∴a 2-b 2a 2+b 2>0,a -ba +b >0. 又∵a 2-b 2a 2+b 2a -b a +b=a 2-b 2a +ba 2+b 2a -b=a +b 2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2aba 2+b 2>1, ∴a 2-b 2a 2+b 2>a -b a +b. 20.(12分)若0<a <2,0<b <2,0<c <2,求证:(2-a )b ,(2-b )c ,(2-c )a ,不能同时大于1. 证明:假设三数能同时大于1, 即(2-a )b >1,(2-b )c >1,(2-c )a >1那么2-a+b2≥2-a b>1,①同理2-b+c2>1,②2-c+a2>1,③由①+②+③得3>3,上式显然是错误的,∴该假设不成立,∴(2-a)b,(2-b)c,(2-c)a不能同时大于1.21.(13分)求证:2(n+1-1)<1+12+13+…+1n<2n(n∈N+).证明:∵1k>2k+k+1=2(k+1-k),k∈N+,∴1+12+13+…+1n>2[(2-1)+(3-2)+…+(n+1-n)] =2(n+1-1).又1k<2k+k-1=2(k-k-1),k∈N+,∴1+12+13+…+1n<1+2[(2-1)+(3-2)+…+(n-n-1)] =1+2(n-1)=2n-1<2n.故原不等式成立.22.(13分)已知数列{a n}的前n项和S n=2n2+2n,数列{b n}的前n项和T n=2-b n.(1)求数列{a n}与{b n}的通项公式;(2)设=a2n·b n,证明当n≥3时,+1<.解析:(1)∵S n=2n2+2n,∴当n≥2时,S n-1=2(n-1)2+2(n-1),∴a n=S n-S n-1=4n(n≥2).当n =1时,S 1=4,符合上式. ∴数列{a n }的通项公式为a n =4n .又∵T n =2-b n ,∴当n ≥2时,T n -1=2-b n -1, ∴b n =T n -T n -1=2-b n +b n -1-2, 即2b n =b n -1. ∴b n b n -1=12. 而T 1=b 1=2-b 1,∴b 1=1.∴数列{b n }的通项公式为b n =1·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1.(2)证明:由(1),知=(4n )2·⎝ ⎛⎭⎪⎫12n -1=16n 2·⎝ ⎛⎭⎪⎫12n -1,∴+1=16(n +1)2·⎝ ⎛⎭⎪⎫12n .∴+1=16n +12⎝ ⎛⎭⎪⎫12n 16n 2⎝ ⎛⎭⎪⎫12n -1=12⎝ ⎛⎭⎪⎫1+1n 2.当n ≥3时,1+1n ≤43<2,∴+1<12×(2)2=1,又由=a 2n ·b n 可知,+1和均大于0, ∴+1<.。
2017年高中数学第二讲证明不等式的基本方法模块复习课课件新人教A版选修4_5

因为α ∈(0,π),所以sinα >0,1-cosα >0,
又(2cosα -1)2≥0,所以2sin2α 所以2sin2α≤ 1sicno.s
1 s≤icno0s,
sin 1 cos
类型二 综合法证明不等式 【典例2】已知a>0,a2-2ab+c2=0且bc>a2,试证明:b>c. 【证明】因为a2-2ab+c2=0,所以a2+c2=2ab. 又a2+c2≥2ac,且a>0,所以2ab≥2ac,所以b≥c. 若b=c,由a2-2ab+c2=0,得a2-2ab+b2=0,所以a=b. 从而a=b=c,这与bc>a2矛盾.从而b>c.
当a>b>0时,bn-an<0,a-b>0,此时(a-b)(bn-an)<0; 当b>a>0时,bn-an>0,a-b<0, 此时(a-b)(bn-an)<0; 当a=b>0时,bn-an=0,a-b=0,此时(a-b)(bn-an)=0. 综上所述:(a+b)(an+bn)-2(an+1+bn+1)≤0. 即(a+b)(an+bn)≤2(an+1+bn+1).
由于0<x<2,所以0<x(2-x)=-x2+2x=-(x-1)2+1≤1, 同理:0<y(2-y)≤1,且0<z(2-z)≤1, 所以三式相乘得0<xyz(2-x)(2-y)(2-z)≤1,…② ②与①矛盾,故假设不成立.所以x(2-y),y(2-z),z(2-x) 不都大于1.
【方法技巧】 1.反证法 先假设要证明的结论是不正确的,然后利用公理、已有 的定义、定理、命题的条件逐步分析,得到和命题的条 件(已有的定义、定理、公理等)矛盾的结论,以此说明 假设的结论不成立,从而原来的命题结论正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)证明不等式的基本方法
考前过关训练
(35分钟60分)
一、选择题(每小题3分,共18分)
1.已知m≠n,若x=m4-m3n,y=mn3-n4,则x,y的大小关系为( )
A.x>y
B.x=y
C.x<y
D.与m,n的取值有关【解析】选A.x-y=(m4-m3n)-(mn3-n4)
=m3(m-n)-n3(m-n)=(m-n)(m3-n3)
=(m-n)2(m2+mn+n2)
=(m-n)2,
因为m≠n,所以x-y>0,即x>y.
2.求证:-<-.
证明:欲证-<-,
只需证+<2,
只需证(+)2<(2)2,
只需证10+2<20,
只需证<5,只需证21<25,这显然成立.
所以-<-.
上述证明过程应用了( )
A.综合法
B.分析法
C.综合法、分析法配合使用
D.间接证法
【解析】选B.根据分析法的特点可知,上述证明过程是分析法.
3.若1<x<10,下面不等式中正确的是( )
A.(lgx)2<lgx2<lg(lgx)
B.lgx2<(lgx)2<lg(lgx)
C.(lgx)2<lg(lgx)<lgx2
D.lg(lgx)<(lgx)2<lgx2
【解析】选D.因为1<x<10,
所以0<lgx<1,0<(lgx)2<1,0<lgx2<2,lg(lgx)<0.
又(lgx)2-lgx2=(lgx)2-2lgx
=lgx(lgx-2)<0,
所以(lgx)2<lgx2.
所以lg(lgx)<(lgx)2<lgx2.
【一题多解】选D.因为1<x<10,
所以0<lgx<1,lg(lgx)<0,
结合选项知A,B,C错误.
4.若a,b,c为△ABC的三条边,S=a2+b2+c2,p=ab+bc+ac,则( )
A.S≥2p
B.p<S<2p
C.S>p
D.p≤S<2p
【解析】选D.S-p=a2+b2+c2-(ab+bc+ac)=
[(a-b)2+(b-c)2+(a-c)2]≥0,所以S≥p.
又因为|a-b|<c,|b-c|<a,|a-c|<b;
所以a2-2ab+b2<c2,b2-2bc+c2<a2,a2-2ac+c2<b2.所以a2+b2+c2<2(ab+bc+ac),所以S<2p.
5.已知x,y∈R,M=x2+y2+1,N=x+y+xy,则M与N的大小关系是( )
A.M≥N
B.M≤N
C.M=N
D.不能确定
【解析】选A.M-N=x2+y2+1-(x+y+xy)
=[(x2+y2-2xy)+(x2-2x+1)+(y2-2y+1)]
=[(x-y)2+(x-1)2+(y-1)2]≥0.故M≥N.
6.(2016·合肥高二检测)已知a,b,c是△ABC的三边长,A=+,B=,则
( ) A.A>B B.A<B
C.A≥B
D.A≤B
【解析】选A.因为a,b,c是△ABC的三边长,所以c<a+b,
所以B==<==+<+=A,所以B<A.
【补偿训练】设a,b,x,y均为正数,且a,b为常数,x,y为变量,若x+y=1,则+的最大值为( )
A. B.
C. D.
【解析】选C.本题可利用换元的方法处理:由x+y=1且x>0,y>0,可设x=
sin2α,y=cos2α,故+=sinα+c osα=sin(α+φ)≤
.
二、填空题(每小题4分,共12分)
7.(2016·沈阳高二检测)设α,β为锐角,P=sin(α+β),Q=sinα+sinβ,则P与Q的大小关系为________. 【解析】因为α,β为锐角,
P-Q=sin(α+β)-(sinα+sinβ)
=sinα(cosβ-1)+sinβ(cosα-1)<0,
所以P<Q.
答案:P<Q
8.(2016·郑州高二检测)A=1+++…+与(n∈N+)的大小关系是________.
【解析】A=+++…+≥==.
答案:A≥
9.若a,b∈R+,且a≠b,M=+,N=+,则M,N的大小关系为________.
【解析】因为a≠b,所以+>2,+>2,
所以+++>2+2.
所以+>+.即M>N.
答案:M>N
三、解答题(每小题10分,共30分)
10.已知0<a<1,求证:+≥9.
【证明】因为(3a-1)2≥0,
所以9a2-6a+1≥0.
所以1+3a≥9a(1-a).
因为0<a<1,所以≥9,
即≥9,所以+≥9.
11.已知a2+b2=1,x2+y2=1,试用分析法证明:ax+by≤1.
【证明】要证ax+by≤1成立,
只需证1-(ax+by)≥0,
只需证2-2ax-2by≥0,
因为a2+b2=1,x2+y2=1,
只需证a2+b2+x2+y2-2ax-2by≥0,
即证(a-x)2+(b-y)2≥0,显然成立.
所以ax+by≤1.
12.设数列{a n}的前n项和S n满足:S n=na n-2n(n-1).等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5.
(1)求数列{a n}的通项公式.
(2)设数列的前n项和为M n,求证:≤M n<.
【解析】(1)因为等比数列{b n}的前n项和为T n,公比为a1,且T5=T3+2b5,所以b4+b5=2b5,
所以b4=b5,所以公比a1==1,故等比数列{b n}是常数数列.
数列{a n}的前n项和S n满足:S n=na n-2n(n-1),
当n≥2时,a n=S n-S n-1
=na n-2n(n-1)-[(n-1)a n-1-2(n-1)(n-2)],所以a n-a n-1=4(n≥2),
所以数列{a n}是以1为首项,以4为公差的等差数列,a n=4n-3.
(2)因为数列的前n项和为M n,
==
=,所以M n=
=<.
再由数列{M n}是增数列,所以M n≥M1=.
综上可得,≤M n<.。