高中数学不等式的几种常见证明方法(县二等奖)

合集下载

不等式的几种证明方法

不等式的几种证明方法

不等式证明的几种常用方法一、比较法(1)差值比较法要证明a >b ,只要证明a -b >0。

①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变 形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。

应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。

【例一】求证:233x x +>证明:()()()222233223333x x x x +-=-+-+23330244x ⎛⎫=-+≥> ⎪⎝⎭233x x ∴+>(2)商值比较法已知a ,b 都是正数,要证明a >b ,只要证明a/b >1 ①作商:将左右两端作商; ②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。

应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

【例二】已知a,b>0,求证a b b a a b a b ≥证明: =∵a,b>0+,当a >b 时,>1,a-b >0,>1;当a≤b 时,≤1,a -b≤0, ≥1.∴≥1, 即a b b aa b a b ≥二、综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。

其逻辑关系为:A-B1- B2- B3… Bn -B ,即从已知A 逐步推演不等式成立的必要条件从而得出结论B 。

重点:基本不等式【例三】已知a ,b ,c 是不全等的正数,求证 a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .证明: 222a b ab +≥ ,222a c ac +≥,222c b bc +≥()222a b cabc ∴+≥,()222b acabc +≥,()222c ababc +≥∴a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)≥6abc .又因为a ,b ,c 是不全等的正数所以有a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .三、分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。

高中数学不等式的证明方法有哪些?

高中数学不等式的证明方法有哪些?

高中数学不等式的证明方法有哪些?高中数学不等式的证明方法有哪些?导语:不定式常见考法:在阶段考中,一般以解答题的形式考查比较法、分析法、综合法、数学归纳法这四种基本方法证明不等式,属于难题。

下面是小编为大家整理的,数学知识,更多相关信息请关注CNFLA相关栏目!1不等式考试要求在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。

不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

(1)理解不等式的性质及其证明。

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

(3)掌握分析法、综合法、比较法证明简单的`不等式。

(4)掌握简单不等式的解法。

(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│。

2不等式证明方法1、比较法包括比差和比商两种方法。

2、综合法证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。

3、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。

4、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。

5、数学归纳法用数学归纳法证明不等式,要注意两步一结论。

在证明第二步时,一般多用到比较法、放缩法和分析法。

6、反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。

但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。

我就来总结一下不等式的证明方法。

01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。

前者为作差法,后者为作商法。

但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。

02分析法和综合这两个方法我们一般会一起使用。

分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。

如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。

我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。

当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。

03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。

这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。

反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。

04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。

放缩法的目的性强,必须恰到好处,。

同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。

高考数学复习-不等式证明的六种方法

高考数学复习-不等式证明的六种方法
不等式证明的六种方法
一、比较法
以不等式的等价命题为依据,揭示不等式的常用证明方法之一——比较法,要 求学生能教熟练地运用作差、作商比较法证明不等式
新疆 王新 敞
奎屯
一、复习引入: 1.重要不等式:
如果 a,b ∈ R, 那么a 2 + b2 ≥ 2ab(当且仅当a = b时取"="号)
2.定理:如果 a,b 是正数,那么 a + b ≥ ab (当且仅当a = b时取"="号). 2
新疆 王新 敞
奎屯
用综合法证明不等式的逻辑关系是: A ⇒ B1 ⇒ B2 ⇒ " ⇒ Bn ⇒ B
综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质 和公式,推出结论的一种证明方法
a
b
c
ab ac bc
≥ 3+2+2+2=9
2°∵ a + b + b + c + c + a ≥ 3 3 (a + b)(b + c)(c + a) 2 2 22
1 + 1 + 1 ≥ 33
1
两式相乘即得
a + b b + c c + a (a + b)(b + c)(c + a)
3°由上题: (a + b + c)( 1 + 1 + 1 ) ≥ 9 a+b b+c c+a 2
6.推论:如果 a, b, c ∈ R + ,那么 a + b + c ≥ 3 abc (当且仅当 a = b = c 时取“=”) 3

不等式证明的常用方法

不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。

【技巧题型】不等式题目的七种证明方法

【技巧题型】不等式题目的七种证明方法

【技巧题型】不等式题目的七种证明方法高考的题目中,有80%都是中低档难度,也就是说,要想脱颖而出成为佼佼者,压轴题是无论如何都要攻克的难关!压轴题目一般是开放型的题目,每年都是会变化。

但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。

今天,我就来总结一下不等式的证明方法。

1比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。

前者为作差法,后者为作商法。

但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。

2分析法和综合这两个方法我们一般会一起使用。

分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。

如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。

我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。

当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。

3反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。

这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。

反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4)肯定原来命题的结论是正确的。

4放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。

不等式证明的几种方法

不等式证明的几种方法

不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。

例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。

2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。

该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。

例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。

由此可知,不等式不成立。

3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。

通过反证法证明。

例如,要证明n^2<2^n,首先当n=1时,不等式成立。

假设当n=k时,不等式也成立,即k^2<2^k成立。

我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。

通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。

4.几何法几何法可以通过将不等式转化为几何问题来证明。

例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。

通过建立几何模型,可以直观地看出不等式成立的原因。

例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。

5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。

例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。

以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。

在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。

不等式证明的常见方法

不等式证明的常见方法

不等式证明的常见方法
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小
于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不
等式,或称广义不等式。

总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式.在
不等式的证明问题中,发现一类证法原理一样的不等式,现呈现如下:
比较不等式①、②发现其形式与证法都是类似的,不等式①、②的形式左边、右边都
是几个的和,左边是分式的形式,且分子的次数比分母高一次;然后是证法都是通过添加
项多次利用基本不等式,得到最终想要的结果。

由这样的规律,可把上述不等式推广到更
一般的形式有:
以上述形式相似,证法一样的题目除了很多,下面再握一个例子:
从上述的例子,我们可以看到,在运用基本不等式证明不等式时,有这样一类不等式,就是把不等式左边的所有项通过添加项运用基本不等式,再用不等式加法性质把所有式子
相加,而得到最终要证明的不等式。

这类不等式的证明在添加项的时候,添加什么样的项
需要一定的技巧。

因此,我们在平时需多进行练习,去熟悉基本不等式,并且能熟练的运
用基本不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学不等式的几种常见证明方法摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解.关键字:不等式;数学归纳法;均值;柯西不等式一、比较法所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1ab<”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法.例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+-因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+例 2 已知:a >b >c >0, 求证:222a b c a b c ⋅⋅>b c a c b c a b c +++⋅⋅.证明:222a b cb c a c b c a b c a b c+++⋅⋅⋅⋅=222a b c b a c c b c a b c ------⋅⋅>222a b c b a c c b c c c c ------⋅⋅=0c =1222a b cb c a c b ca b c a b c+++⋅⋅∴⋅⋅>1 ∴222a b c a b c ⋅⋅>b c a c b c a b c +++⋅⋅二、分析法分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立.例 3 求证3<证明: 960+>>5456<成立∴原不等式成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法.例 4 已知,a b R +∈,1a b +=,求证:221125()()2a b a b +++≥证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 2212a b +≥又 ∵2222221111()()8a b a b a b +=++≥⨯= ∴ 2222221111()()()4()a b a b a b a b +++=++++1254822≥++=.四、反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,这种证明方法叫做反证法.用反证法证明不等式时,必须将命题结论的反面的各种情形一一导出矛盾.反证法证明一个命题的思路及步骤: (1) 假定命题的结论不成立;(2) 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾; (3) 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; (4) 肯定原来命题的结论是正确的.例 5 已知0,0,a b c ab bc ca abc o ++>++>>,求证:0,0,0.a b c >>> 证明:由0abc >知0a ≠,假设0a <,则0bc < 又因为0a b c ++>,所以0b c a +>->,即()0a b c +< 从而()0ab bc ca a b c bc ++=++<,与已知矛盾.∴ 假设不成立,从而0a >同理,可证0,0b c >> 五、放缩法放缩法就是在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明比原不等式更好的不等式来代替原不等式的证明.放缩法的目的性强,必须恰到好处, 同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及.否则不能达到目的.例 6 设a 、b 、c 是三角形的边长,求证3a b cb c a c a b a b c++≥+-+-+-证明:由不等式的对称性,不妨设a b c ≥≥,则a c b -+≤b a c -+≤c b a -+ 且20c a b --≤, 20a b c --≥ ∴3111a b c a b cb c a c a b a b c b c a c a b a b c++-=-+-+-+-+-+-+-+-+-222a b c b a c c a b b c a c a b a b c------=++≥+-+-+-0222=-+--+-+--+-+--b a c ba cb ac a c b b a c c b a∴3a b cb c a c a b a b c++≥+-+-+-六、数学归纳法对于含有)(N n n ∈的不等式,当n 取第一个值时不等式成立,如果使不等式在)(N n k n ∈=时成立的假设下,还能证明不等式在1+=k n 时也成立,那么肯定这个不等式对n 取第一个值以后的自然数都能成立.例 7 证明:222,.n n n N ++>∈证明:(1)当1n =时,左边=1224+=;右边=1,左边>右边.所以原不等式成立. 当n =2时,左=2226+=,右=22=4,所以左>右; 当n =3时,左=32210+=,右=23=9,所以左>右. 因此当1,2,3n =时,不等式成立.(2)假设当n k =(3k ≥且k N ∈)时,不等式成立.即222k k +>. 因为()1222222222222k k k k ++=⋅+=+->-=222123k k k k +++--=()()()22113k k k k ++++- (因3k ≥,则30k -≥,10k +>) 221k k ≥++()21k =+所以,()21221k k ++>+.故当1n k =+时,原不等式也成立. 根据(1)和(2),原不等式对于任何n N ∈都成立. 七、换元法在证明过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明得到简化.例 8 已知,,a b R ∈且221,a b +≤求证:222a ab b +-≤. 证明:设cos ,sin ,a r b r θθ==其中[)1,0,2r θπ≤∈则222a ab b +-=22222cos 2sin cos sin r r r θθθθ+- =22cos 2sin 2r r θθ+=2sin 24πθ⎛⎫+≤ ⎪⎝⎭∴222a ab b +-≤原不等式得证.例 9 已知:1=++c b a ,求证:31≤++ca bc ab . 证明:设t a -=31,)(31R t at b ∈-=,则t a c )1(31++=, ⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=++t a t t a at at t ca bc ab )1(3131)1(31313131,31)1(3122≤++-=t a a所以 31≤++ca bc ab 例 10 已知,a b R ∈且1a b +=,求证:()()2225222a b +++≥ 证明:因为,a b R ∈且1a b += 所以设()11,22a tb t t R =+=-∈ 则()()222211222222a b t t ⎛⎫⎛⎫+++=+++-+ ⎪ ⎪⎝⎭⎝⎭=225522t t ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=22525222t +≥ 即()()2225222a b +++≥ 原不等式成立. 八、利用均值不等式均值不等式是高考中一个重要知识点,其变形多,约束条件“苛刻“(一正、二定,三相等).均值不等式公式:①222,(,)a b ab ab ab a b R +≥=+∈(当且仅当a b =时取“=”);②,)a b a b R ++≥=∈(当且仅当a b =时取“=”).例 11 已知a ,b ,c 为不全相等的正数,求证: a(b 2+c 2)+b(c 2+a 2)+c(a 2+b 2)>6abc. 证明: ∵ b 2+c 2≥2bc , a >0, ∴ a (b 2+c 2)≥2abc 同理,b (c 2+a 2)≥2bac, c (a 2+b 2)≥2cab , 又 因为a ,b ,c 不全相等,所以上述三个不等式中等号不能同时成立, 因此 a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2)>6abc .例 12 若,0,2x y x y >+=,求证:112x y +=证明:因为,0,x y >所以11111()()2x y x y x y+=++1(11)22y xx y=+++≥ 当且仅当y xx y+,即1,1x y ==时等号成立 九、导数法当x 属于某区间,有0)(≥'x f ,则)(x f 单调递增;若0)(≤'x f ,则)(x f 单调递减.推广之,若证)()(x g x f ≤,只须证)()(a g a f =及)),((),()(b a x x g x f ∈'≤'即可.例 13 证明不等 x e x +>1,.0≠x证明:设,1)(x e x f x --=则.1)(-='x e x f 故当0>x 时,f x f ,0)(>'递增;当f x f x ,0)(,0<'<递减.则当0≠x 时, ,0)0()(=>f x f 从而证得 .0,1≠+>x x e x十、利用柯西不等式设,,,a b c d 均为实数,则22222()()()a b c d ac bd ++≥+,当且ad bc =仅当时成立.例 14 若,0,2x y x y >+=,求证:112x y+=分析:此题在前面可用均值不等式解,这儿也可以用柯西不等式解.证明:11111()()2x y x y x y+=++22≥≥当且仅当=1,1x y ==时等号成立 十一、 在不等式两端取变限积分证明新的不等式例 15 证明:0>x 时,1206sin 6533x x x x x x +-<<-.证明:已知1cos ≤x ,(0>x 时只有πn x 2=时等号成立),在此式两端同时取[]x ,0上的积分得x x <sin )0(>x ,对得到的不等式取[]x ,0上的积分得到2cos 12x x <-)0(>x ,第三次取在[]x ,0上的积分得6sin 3x x x <-)0(>x即x x x sin 63<-)0(>x ,继续在[]x ,0上积分两次即可得1206sin 53x x x x +-<,所以1206sin 6533x x x x x x +-<<-.结束语:不等式知识在高中尤为重要,在学术上也有很大的研究的余地,本文只是浅显的举例说明了一些关于不等式的内容,更深层的知识有待学者继续研究.参考文献:[1] 傅荣强,于长军.《龙门专题高中数学不等式》 [M].龙门书局出版社,2007:58—88[2] 胡汉明.不等式证明问题的思考方法.数学通讯,2001(9).[3] 王胜林,卫赛民.证明不等式的几种特殊方法.数学通讯,2004(11).[4] 普片多,例谈中学不等式的证明方法.西南大学数学与统计学院。

相关文档
最新文档