高中不等式的常用证明方法归纳总结

合集下载

不等式证明的基本方法

不等式证明的基本方法

不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。

对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。

首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。

通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。

2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。

这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。

例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。

3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。

这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。

通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。

无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。

在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。

此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法

高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。

但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。

我就来总结一下不等式的证明方法。

01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。

前者为作差法,后者为作商法。

但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。

02分析法和综合这两个方法我们一般会一起使用。

分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。

如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。

综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。

我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。

当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。

03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。

这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。

反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。

04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。

放缩法的目的性强,必须恰到好处,。

同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。

不等式证明使用技巧

不等式证明使用技巧

不等式证明使用技巧不等式证明是高中数学中的一个重要内容,掌握不等式证明的技巧对于解题和提升数学水平都有很大的帮助。

下面我将介绍一些常用的不等式证明技巧。

一、代入法代入法是一种常用的证明不等式的方法。

我们可以先假设不等式成立,然后进行推导得出结论。

如果得到的结论与原不等式一致,就证明了不等式的成立。

例如,我们要证明对于任意正实数a、b和c,有$(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\ge q 9$。

我们可以假设$a\leq b\leq c$,然后代入得到:$a^2+b^2+c^2=2a^2+(b^2-a^2+c^2)\geq 2a^2=2(a\cdot a)\geq2(ab)$,$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\fra c{1}{b^2}+\frac{1}{c^2}\geq 3(\frac{1}{ab})=\frac{3}{ab}$。

然后,将两个不等式代入原不等式得到:$(2ab)(\frac{3}{ab})=6\geq 9$。

由此可见,原不等式成立。

二、放缩法放缩法是另一种常用的证明不等式的方法。

我们可以通过放缩不等式的各个部分来改变不等式的形式,从而得到更容易证明的形式。

例如,我们要证明对于任意正实数a、b和c,有$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$。

我们可以通过放缩的方法,将不等式的各个部分放缩至一个更容易证明的形式。

我们注意到,$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ca}$。

然后,我们可以通过平方展开和放缩的方法,得到:$\frac{(a+b+c)^2}{ab+bc+ca}\geq 3$。

不等式证明的常用方法

不等式证明的常用方法

不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。

高考数学证明不等式的基本方法

高考数学证明不等式的基本方法
讲末复习
知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络

不等式的性质与证明方法总结

不等式的性质与证明方法总结

不等式的性质与证明方法总结在数学中,不等式是一种非常重要的数学工具,用于描述数值之间的大小关系。

不等式可以帮助我们解决各种实际问题,同时也是数学推理和证明的基础。

本文将总结一些常见的不等式性质和证明方法,帮助读者更好地理解和应用不等式。

一、基本不等式性质1. 传递性:如果a < b,b < c,则有a < c。

这个性质是不等式推理的基础,可以用于简化证明过程。

2. 加法性:如果a < b,则a + c < b + c。

这个性质表示在不等式两边同时加上一个相同的数,不等式的大小关系不变。

3. 乘法性:如果a < b,c > 0,则ac < bc;如果a < b,c < 0,则ac > bc。

这个性质表示在不等式两边同时乘以一个正数或负数,不等式的大小关系会发生改变。

4. 对称性:如果a < b,则-b < -a。

这个性质表示如果不等式两边同时取相反数,不等式的大小关系会发生改变。

二、常见不等式1. 平均不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an)^(1/n)平均不等式可以用于证明其他不等式,如均值不等式、柯西不等式等。

2. 均值不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1^p + a2^p + ... + an^p)^(1/p)其中p为大于0的实数。

均值不等式可以用于证明其他不等式,如柯西不等式、夹逼定理等。

3. 柯西不等式:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有以下不等式成立:(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... +bn^2)柯西不等式可以用于证明向量内积的性质,以及其他不等式的推导。

例谈证明不等式的三种常用方法

例谈证明不等式的三种常用方法

考点透视不等式证明问题比较常见,且具有较强的综合性,常与向量、集合、数列、函数等知识相结合.求解此类问题的方法很多,掌握一些常用的证明方法,有助于拓展解题的思路,提升解题的效率.本文主要谈一谈证明不等式的三种常用方法:比较法、换元法、放缩法.一、比较法比较法是证明不等式的常用方法,包括作差比较法和作商比较法.运用比较法证明不等式的步骤为:①根据不等式的结构特点,将不等式左右两边的式子作差或作商;②将差式或商式进行因式分解或配方;③将所得差值与0比较,所得的商式与1比较.比较法的适用范围广,适用于解答大多数不等式证明问题.例1.若集合M ={}|x -1<x <1,试证明:当a ,b ∈M 时,||a +b <||1+ab .证明:由题意可知,将不等式两边的式子平方后相减可得:()a +b 2-()1+ab 2=a 2+2ab +b 2-()1+2ab +a 2b 2=()a 2-1()1-b 2,∵-1<a <1,-1<b <1,∴0≤a 2<1,0≤b 2<1,即a 2-1<0,1-b 2>0,∴()a 2-1()1-b 2<0,()a +b 2<()1+ab 2,∴当a ,b ∈M 时,不等式||a +b <||1+ab 成立.不等式两边的式子均为平方式,很难比较出它们的大小,于是将其两边平方并作差,再将其结果与0比较,即可证明不等式.为了便于比较出差式与0的大小,往往要将差式化简为几个因式的积或完全平方式的形式.例2.已知a >0,b >0,试证明:a b +b a≥a +b .证明:∵aba +b =ab a +b=()a +b ()a -ab +bab ()a+b =+1,当a >0,b >0+1≥-1=1(当a =b 时等号成立),∵aba +b≥1,∴+≥a +b成立.要证明的不等式中含有根式,需运用作商比较法证明不等式.在化简商式时,需将商式化为最简形式,以便判断该式与1的大小关系,从而证明不等式成立.二、换元法换元法适用于证明变量的个数较多或结构复杂的不等式.运用换元法证明不等式,需先仔细观察已知条件和所要证明不等式的结构,找到条件与所证目标之间的联系;然后根据二者之间的联系,选择合适的式子或某一部分用新变量替换;再化简换元后的不等式,并根据基本不等式、函数单调性、导函数的性质证明不等式成立.例3.若x ∈()0,+∞,试证明:x +1x -≤2-3,证明:令x +=u,∴u=x ≥2,u 2=x +1x +2,∴只需证明u -u 2-1=1u +u 2-1≤2-3,∵u ≥2,函数y =1u +u 2-1单调递减,∴1u +u 2-1≤2-3,∴x 1≤2-3.仔细观察该不等式,可发现x +1x 与x +1x 之间存在一定的联系:æèçx +2=x +1x+2,于是令x =u ,将不等式转化为关于u 且不含有根式的不等式,运用基本不等式即可证明目标不等式成立.例4.若x ,y 满足xy =100,x ≥10,y ≥10,试证明:34≤lg ()y lg x ≤1.证明:设u =lg ()y lg x=lg x lg y ,∵xy =100,∴y =100x,∴u =lg x ()2-lg x ,陈刚34考点透视∵x≥10,y≥10,∴lg x≥12,lg100x≥12,即lg x≤32,可知lg x∈éëùû12,32,令lg x=t,∴u=-()t-12+1,t∈éëùû12,32,∵函数u()t在æèöø12,1上单调递增,在æèöø1,32上单调递减,∴当lg x=1,即x=10,y=10时,u=lg x lg y=1,该值为函数的最大值,当lg x=12或lg x=32时,x=10,y=1010或x=1010,y=10,∴u=lg x lg y=34,该值为函数的最小值,∵u()t∈éëùû34,1,∴34≤lg()y lg x≤1.根据已知条件和对数函数的运算性质将所证目标不等式进行化简、消元,便可将函数式转化为关于lg x的函数式,再令lg x=t,通过换元,将函数式转化为关于t的简单二次函数,根据二次函数的性质和对数函数的值域即可解题.三、放缩法放缩法是证明不等式的常用方法.运用放缩法证明不等式,需仔细观察所要证明的不等式的结构特点,根据切线的几何意义,通过添项或减项,借助基本不等式,利用函数的单调性等对不等式进行适当的放大或缩小.例5.已知a>12,x>1,试证明:ax2-a-ln x>1x-e1-x成立.证明:由题意可得a>1x-e1-x+ln xx2-1,则当x趋近于1时,1x-e1-x+ln xx2-1趋近12,当x趋近于+∞时,1x-e1-x+ln xx2-1趋近0,可知a>12>1x-e1-x+ln xx2-1,只需证明1x-e1-x+ln xx2-1<12在()1,+∞上恒成立,即证明12x2-12-ln x-1x+e1-x>0在()1,+∞上恒成立,设g()x=12x2-12-ln x-1x+e1-x,则g′()x=x-1x+1x2-e1-x=x-e1-x+1-xx2,令h()x=e1-x,x∈()1,+∞,则h′()x=-e1-x<0,函数h()x在()1,+∞上单调递减,则h()x<1,所以g′()x=x-e1-x+1-x x2>x-1+1-x x2=()x-1æèçöø÷1-1x2>0,故函数g()x在()1,+∞上单调递增,则g()x>g()1=0,因为1x-e1-x+ln xx2-1<12在()1,+∞上恒成立,所以当a>12,x>1时,ax2-a-ln x>1x-e1-x.该不等式中含有指数函数式、对数函数式,较为复杂,需先把参数分离,将问题转化为证明12x2-12-ln x-1x+e1-x>0在()1,+∞上恒成立,然后构造函数,利用函数的单调性求得最值,进而证明不等式成立.例6.已知a,b∈R,且a≠b,若a3-b3=a2-b2,求证:1<a+b<43.证明:由a3-b3=a2-b2可得()a-b()a2+ab+b2=()a-b()a+b,因为a≠b,所以a2+ab+b2=a+b,则()a+b2>a2+ab+b2=a+b,由a+b>0可得a+b>1,且ab<14()a+b2,则a+b=()a+b2-ab>()a+b2-æèöøa+b22,即a+b<43,故不等式1<a+b<43成立.将已知关系式进行变形,可发现a2+ab+b2=a+b与基本不等式a2+b2≥2ab之间有联系,于是两次利用基本不等式将代数进行放缩,从而证明结论.在运用基本不等式放缩不等式时,要注意三个前提条件:一正、二定、三相等,尤其要注意等号成立的条件.总之,证明不等式,需仔细观察不等式的结构特征,建立已知条件和所要求证不等式之间的联系,再通过作差、作商、换元、放缩等方式来进行合理的变形、化简.(作者单位:江苏省苏州市昆山经济技术开发区高级中学)35。

不等式证明基本方法

不等式证明基本方法

不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。

其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。

二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。

反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。

三、插值法插值法也是一种常见的不等式证明方法。

其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。

四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。

例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。

另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。

五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。

例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。

综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。

在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 222≥+的变式应用。

常用2222ba b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。

一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。

1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴0)(4)(44)()(14141)(2≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理0)(414141)(2≥+=+-+-c b bc c b c b c b ,0)(414141)(2≥+=+-+-c a ac a c a c a c 三式相加,可得0111212121≥+-+-+-++ac c b b a c b a ∴ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。

2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a证:2222)(1)(3c b a c b a ++=≥++⇔∴2222)()(3c b a c b a ++-++0)()()(222222222222≥-+-+-=---++=a c c b b a cabc ab c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++证:∵22442b a b a >+22442c b c b >+22442a c a c >+∴222222444a c c b b a c b a ++>++∵ c ab c b b a c b b a 22222222222=⋅>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+∴)(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++证明:∵)(22222222)(22b a b a b a b aab ab +≥++≥+∴≥+即2)(222b a b a+≥+,两边开平方得)(222222b a b a b a+≥+≥+ 同理可得)(2222c b c b+≥+)(2222a c a c+≥+三式相加,得 )(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。

证:)1)(1()11)(11(y y x x y x y x ++++=++)(25)2)(2(y xx y y x x y ++=++=9225=⋅+≥ 6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 策略:由于的背后隐含说明1,,4121,,2=+∈≤⇒⎪⎩⎪⎨⎧⎪⎭⎫⎝⎛+≤=+∈++b a R b a ab b a ab b a R b a .41 ≤ab 着一个不等式 证明:411,,≤∴=+∈+ab b a R b a 。

.91111.981211111111111 ≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∴=+≥+=+++=+++=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+b a ab ab ab b a ab b a b a 而三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+证:要证:)3(3)2(23abc c b a ab b a -++≤-+只需证:332abc c ab -≤- 即:332abc ab c ≥+∵ 3333abc ab ab c ab ab c =≥++成立∴ 原不等式成立8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。

证:3≤++c b a 3)(2≤++⇔c b a 即:2222≤++ac bc ab∵b a ab +≤2 c b bc +≤2 c a ac +≤2即2)()()(222=+++++≤++c a c b b a ac bc ab ∴原命题成立 四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。

9、1<b ,求证:1)1)(1(22≤--+b a ab 。

证明:令αsin =a 2ππα+≠k Z ∈k βsin =b2ππβ+≠k Z ∈k左βαβαβαβαcos cos sin sin cos cos sin sin ±=⋅+=1)cos(≤±=βα∴1)1)(1(22≤--+b a ab10、122=+y x ,求证:22≤+≤-y x 证:由122=+y x 设αcos =x ,αsin =y ∴ ]2,2[)4sin(2sin cos -∈+=+=+παααy x∴ 22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 证明:∵a -b>0, b -c>0, a -c>0 ∴可设a -b=x, b -c=y (x, y>0) 则a -c= x + y, 原不等式转化为证明y x y x +≥+411即证4)11)((≥++y x y x ,即证42≥++x y y x ∵2≥+xy y x ∴原不等式成立(当仅x=y 当“=”成立)12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2),∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3∴ 21≤x 2-xy +y 2≤3. 13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2. ∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan 21)|≤r 5≤10. 14、解不等式15+--x x >21解:因为22)1()5(++-x x =6,故可令 x -5 =6 sin θ,1+x =6 cos θ,θ∈[0,2π] 则原不等式化为 6 sin θ-6 cos θ >21所以6 sin θ >21+6 cos θ 由θ∈[0,2π]知21+6 cos θ>0,将上式两边平方并整理,得48 cos 2θ+46 cos θ-23<0解得0≤cos θ<246282-所以x =6cos 2θ-1<124724-,且x ≥-1,故原不等式的解集是{x|-1≤x <124724-} .15、-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π.则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π),∵-4π≤θ-4π≤43π,∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简. 16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R)则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225.∴(a +2)2+(b +2)2≥225.六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知策略:做“1”的代换。

证明: c c b a b c b a a c b a c b a ++++++++=++111922233=+++≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b .七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。

18、若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 ⇒ p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2<0,矛盾.故假设p +q >2不成立,∴p +q ≤2.19、已知a 、b 、∈c (0,1),求证:b a )1(-,c b )1(-,a c )1(-,不能均大于41。

证明:假设b a ⋅-)1(,c b ⋅-)1(,a c ⋅-)1(均大于41∵ )1(a -,b 均为正 ∴2141)1(2)1(=>⋅-≥+-b a b a同理2141)1(2)1(=>⋅-≥+-c b c b212)1(>+-a c ∴ 2121212)1(2)1(2)1(++>+-++-++-a c c b b a∴ 2323>不正确 ∴ 假设不成立 ∴ 原命题正确20、已知a,b,c ∈(0,1),求证:(1-a )b, (1-b )c, (1-c )a 不能同时大于41。

相关文档
最新文档