第五章 空间解析几何与向量代数

合集下载

高等数学 向量代数与空间解析几何题【精选文档】

高等数学 向量代数与空间解析几何题【精选文档】

第五章向量代数与空间解析几何5。

1。

1 向量的概念例1 在平行四边形中,设=a,=b.试用a和b表示向量、、和,这里是平行四边形对角线的交点(图5-8)解由于平行四边形的对角线互相平行,所以a+b==2即-(a+b)=2于是=(a+b)。

因为=-,所以(a+b)。

图5-8又因-a+b==2,所以=(b-a).由于=-,=(a-b).例2 设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的速度均为(常向量)v.设n为垂直于S的单位向量(图5-11(a)),计算单位时间内经过这区域流向n 所指向一侧的液体的质量P(液体得密度为)。

(a)(b)图5-11解该斜柱体的斜高|v |,斜高与地面垂线的夹角为v与n的夹角,所以这柱体的高为|v|cos,体积为A|v|cos=A v·n。

从而,单位时间内经过这区域流向n所指向一侧的液体的质量为P= A v·n.例3 设的三条边分别是a、b、c(图5-15),试用向量运算证明正弦定理证明注意到CB=CA+AB,故有CBCA=(CA+AB) CA=CACA+ABCA=ABCA=AB(CB+BA) =ABCB图5-15于是得到CBCA=ABCA =ABCB从而 |CBCA|=|ABCA| =|ABCB|即ab sin C=cb sin A=ca sin B所以5。

2 点的坐标与向量的坐标例1 已知点A(4,1,7)、B(-3,5,0),在y轴上求一点M,使得|MA|=|MB|。

解因为点在y轴上,故设其坐标为,则由两点间的距离公式,有解得,故所求点为例2 求证以三点为顶点的三角形是一个等腰三角形.解因为所以,即△为等腰三角形。

5.2。

2 向量运算的坐标表示例3 设有点,,求向量的坐标表示式.解由于,而,,于是即例4 已知两点A(4,0,5)和B(7,1,3),求与方向相同的单位向量e。

解因为=–=(7,1,3)-(4,0,5)=(3,1,–2),所以=,于是 e.例5 求解以向量为未知元的线性方程组其中a=(2,1,2),b=(—1,1,-2).解解此方程组得x=2a–3b , y =3a–5b以a,b代入,即得x=2(2,1,2)–3(–1,1,–2)=(7,–1,10)y=3(2,1,2)–5(–1,1,–2)=(11,–2,16)。

空间解析几何与向量代数(IV)

空间解析几何与向量代数(IV)
参数式方程
给定直线上一点$P(x_0, y_0, z_0)$和方向向量$vec{s} = (l, m, n)$,则直线方程为$left{ begin{array}{l} x = x_0 + lt y = y_0 + mt z = z_0 + nt end{array} right.$,其中$t$为参数。
平面与直线垂直当且仅当直线的方向向 量与平面的法向量平行。即,若直线方 程为$frac{x - x_0}{l} = frac{y y_0}{m} = frac{z - z_0}{n}$,平面方 程为$Ax + By + Cz + D = 0$,则存 在常数$k$使得$(A, B, C) = k(l, m, n)$。
直线的方程
一般式方程
$frac{x - x_0}{l} = frac{y - y_0}{m} = frac{z - z_0}{n}$,其中$l, m, n$不全为0。该方程表示一条直线,方向向量为$(l, m, n)$。
对称式方程
给定直线上一点$P(x_0, y_0, z_0)$和方向向量$vec{s} = (l, m, n)$,则直线方程为$frac{x - x_0}{l} = frac{y - y_0}{m} = frac{z - z_0}{n}$。
点到直线的距离
给定直线上一点$P(x_0, y_0, z_0)$和方向向量$vec{s} = (l, m, n)$,以及空间一点$Q(x_1, y_1, z_1)$,则点$Q$到直线的距 离为$d = sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 z_0)^2 - left(frac{|l(x_1 - x_0) + m(y_1 - y_0

空间解析几何与向量代数13175共26页文档

空间解析几何与向量代数13175共26页文档

上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
9
3.两个向量的平行关系
定 理 设 向 a 量 0, 向 b 平 量行 a 的 于充
分必要条件 一是 的: 实 ,存 数 b 使 在 a . 唯
10
三、空间直角坐标系
1.坐标轴:给定一个点和单位向量就确
定了一个坐标轴。
o i P
x
x1
连接点 O 与 点 P 得向量 OP , OP x1i
11
2.空间直角坐标系: 原点 O ,
三个两两垂直的坐标轴, 坐标轴正方向符合右手法则.
z竖轴
k
定点 o•
j
y纵轴
i
横轴 x
以i , j , k 分别表示 x, y, z轴正向的单位向量.
12
3.空间直角坐标系共有八个卦限

uuuur 则向量 OM = ( x, y, z) 的模为 uuuur OM x2 y2 z2 .
20
20
例1
求平行于向量a
6i
7
j
6k 的单位向
量.
21
例1
求平行于向量a
6i
7
j
6k 的单位向
量. 解:所求向量有两个,一个与 ar 同向,一个与 ar 反向.
|a |6 2 7 2 ( 6 ) 2 11,
d OM x2y2z2.
19
19
小结:
设 M1= x1,y1,z1 ,M2= x2,y2,z2 为空间两点
uuuuuur
则向量 M1M2= x2 x1,y2 y1,z2 z1 的模为
uuuuuur M1M2
x2 x1 2 y2 y1 2 z2 z1 2 .

向量代数与空间解析几何5课件

向量代数与空间解析几何5课件
第一节 空间直角坐标系
引 我们学过平面直角坐标系,平面上的点都对应平 面直角坐标系上的一个二维坐标.那么,在空间中, 如何建立坐标系,以表示空间点呢?
一、空间直角坐标系及点的坐标
为了沟通空间图形与方程的关系,需要建立空间 点与有序数组之间的联系.为此,我们引进空间直角 坐标系.
在空间中取定一点 O 作为原点, 通过该点做三 条相互垂直的数轴, 分别称为 x 轴、 y 轴和 z 轴, 统 称为坐标轴.
d x2y2z2.
例1 在 z 轴上求一点 M , 使点 M 到点 A ( 1, 0, 2 ) 和点 B ( 1, - 3, 1 ) 的距离相等.
解 因为所求的点 M 在 z 轴上, 故点 M 的坐 标应为 ( 0 , 0 , z ) . 根据题意, 有
( 0 1 ) 2 ( 0 0 ) 2 ( z 2 ) 2 ( 0 1 ) 2 ( 0 3 ) 2 ( z 1 ) 2 , 解得 z = – 3 , 即点 M 的坐标是 ( 0 , 0 , – 3 ) .
各卦限内, 点的坐标符号为
Ⅰ: ( + , + , + ) , Ⅲ: ( – , – , + ) , Ⅴ: ( + , + , – ) , Ⅶ: ( – , – , – ) ,
Ⅱ: ( – , + , + ) , Ⅳ: ( + , – , + ) , Ⅵ: ( – , + , – ) , Ⅷ: ( + , – , – ) .
二、空间中两点间的距离 对空间中两点 M 1 ( x 1 , y 1 , z 1 ) 和 M 2 ( x 2 , y 2 , z 2 ) , 可用其坐标表示它们之间的距离 d . 过 M 1 , M 2 两点各做三个分别垂直于三条坐标 轴的平面. 这 6 个平面围成以 M 1 , M 2 为顶点的长 方体, 见图 6 – 4 .

空间解析几何与向量代数

空间解析几何与向量代数

空间解析几何与向量代数空间解析几何与向量代数是数学中的两个重要分支,它们分别从几何和代数的角度,研究了空间中点、线、面的性质,以及向量的运算与性质。

本文将介绍空间解析几何与向量代数的基本概念、性质以及它们在数学和物理中的应用。

一、空间解析几何空间解析几何是以坐标系为基础,利用代数方法研究空间中点、线、面的性质与相互关系的数学学科。

它的基本概念包括平面直角坐标系、空间直角坐标系,以及点、直线、平面的方程等。

1. 点的坐标在平面直角坐标系中,点的坐标用有序实数对(x, y)表示;在空间直角坐标系中,点的坐标用有序实数三元组(x, y, z)表示。

通过坐标,可以确定点在坐标系中的位置。

2. 直线的方程空间解析几何中,直线的方程有多种表示形式,常见的有点向式、对称式和一般式。

在点向式中,直线上的任意一点可以用一个固定点和一个方向向量表示;在对称式中,直线上的任意一点满足一个关系式;一般式则是通过线的法向量与截距来表示。

这些方程形式各有特点,在不同的问题中有不同的用途。

3. 平面的方程平面的方程也有多种表示形式,常见的有点法式和一般式。

在点法式中,平面上的任意一点满足一个关系式,并且平面的法向量可以通过法线上的两个点相减并取正交向量得到;一般式则是通过平面的法向量与截距来表示。

同样,不同的方程形式适用于不同类型的问题。

二、向量代数向量代数是关于向量的计算与运算的数学学科,它以向量作为基本研究对象,研究向量的性质、向量之间的关系以及向量的运算规则等。

1. 向量的表示向量可以用有向线段表示,也可以用坐标表示。

在空间中,一个向量可以写成一个实数三元组,例如向量v(x, y, z)表示从原点指向点(x, y, z)的有向线段。

向量的长度用模表示,记作|v|。

2. 向量的运算向量的运算包括向量的加法、减法、数量乘法和内积运算。

向量的加法和减法遵循平行四边形法则和三角形法则;数量乘法将向量的模与一个实数相乘,改变了向量的长度和方向;内积运算结果是一个实数,满足交换律和分配律。

同济大学高等数学教案第五章向量与空间解析几何

同济大学高等数学教案第五章向量与空间解析几何

高等数学教学教案第五章向量与空间解析几何授课序号012(x =b ,即b b a=,、向量的运算, 见图5-14. 以向量的终点为起点,b 向量的终点为终点的对角线向量为向量的差()b -.设λ是一个数,向量a a λ=,方向与0a =是零向量;a a a λ=,方向与1=-时,(又设α、β、γ为与三坐标轴正向之间的夹角分别为向量a cos a α=cos a cos a 、cos γ称为向量a 的方向余弦,通常用它表示向量的方向(()21a x y y =--22xa a ++(aa=、数量积 给定向量a 与b ,我们做这样的运算:a 与b 及它们的夹角与,即cos cos a b a b a b α== Pr j Pr j a b b a b b a ==; 2cos ,a a a a a a a ⋅==;)若0a ≠,0b ≠,则0a b ⋅=⇔、向量积 若由向量a 与b 所确定的一个向量c 满足下列条件:()()()y z z y x z z x x y y x a b a b i a b a b j a b a b k =---+-)x y zxyzi j k a a a j k a a a b b b += 向量的混合积(,x a a =a =a a cos AB θ=.定理2 两个向量的和在轴上的投影等于两个向量在轴上的投影的和(()4,3,1M 、()7,1,2M 及例4设()111,,A x y z 和AM MB=,y 和z .例5 设3m=,4k j -(2) a b的夹角θ; (3)b.液体流过平面S上面积为A的一个区域,液体在这区域上各点处的流速均为(液体的比重为ν都垂直的单位向量授课序号021212cos n n A A n n A B θ⋅==+)2-、(2 M授课序号03,其中(s m =12s s s s m ⋅=(),,A B C ,则n ,因此Am n +=.授课序号04。

高等数学B:第五章 向量代数与空间解析几何

高等数学B:第五章 向量代数与空间解析几何


x

z zox 面

o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
福 州 大 学 2020/11/13
4
1、空间点的坐标: 空间的点 11 有序数组( x, y, z)
特殊点的表示: O(0,0,0) 坐标轴上的点 P, Q, R,
坐标面上的点 A, B, C,
z
(过M点作一直线与 平面垂直相交的点, 称为面上投影点)
第五章 向量代数与空间解析几何
第一部分 向量代数
第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
福 州 大 学 2020/11/13
1
第五章
第一节 向量及其线性运算
一、空间直角坐标系 二、向量的概念
三、向量的加减法
四、向量与数的乘法 五、小结
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
向量的以模M(1n为or起m点): ,向M量2的为大终小点.的| a有| 或向|线M段1M. 2 | ≥0
单位与向a量同:向模的长单为位1的向向量量,记. 为Ma1
M
0
0 2

ea
零向量:模长为0的向量. 0 (方向不确定)
自由向量:不考虑起点位置,只考虑它的大小与方向 的向量. (研究对象)
当 | a | ax2 ay2 az2 0 时,cos
cos
ay
,
ax2 ay2 az2
若 a / /b ,则 a0 b0
福 州 大 学 2020/11/13
14
数与向量的乘积符合下列运算规律:

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

[专题]北大版高等数学第五章向量代数与空间解析几何答案习题53.docx

习题5・31•指出下列平面位置的特点:(1)5x - 3z +1 = 0(2)x + 2y - 7z = 0(3)y + 5 = 0(4)2),- 9z = 0(5)x-y-5 = 0(6)x = 0. 解⑴平行于屛由.⑵过原点.⑶平行于平面.⑷ 过兀轴.(5)平行于z轴•⑹0〃平面.2.求下列各平面的方程:⑴平行于y轴且通过点(1,-5,1)和(3,2,-2);(2)平行于O私平面且通过点(5,2,-8);(3)垂直于平面兀-4y + 5z = 1且通过点(-2,7,3)及(0,0,0);⑷垂直于Oyz平面且通过点(5,-4,3)及(-2,1,8).1j k解⑴—(0 ,l,0),* = (2,7,-3),n= 0 1 0 =(-3,0,-2).27-3_3O_1)_2(Z_1)=0,3JC +2Z_5=0.⑵y = 2.i j k(3)a = (1,-4,5), 6 = (-2,7,3),n = 1 -4 5 = (-47,-13,-1).-2 7 347x+13y+ 1 = 0.i j k(4)“ = (1,0,0),〃 = (-7,5,5),〃= 1 0 0 =(0,-5,5) = 5(0, -1,1).-7 5 5_(y + 4) + (z_3) = 0,y_z + 7 = 0.3.求通过点A(2,4,8), B(-3,1,5)及C(6,—2,7)的平面方程.解 a = (一5, —3,—3),〃 = (4,-6,-1).i j kn= -5 -3 -3 =(-15,-17,42),4 -6 -1一15(兀一2) —17(y — 4) + 42(z — 8) = 0,15x + 17y —42z + 238 = 0.4.设一平而在各坐标轴上的截距都不等于零并相等,且过点(5, -7, 4),求此平而的方程.解—+ —+ — = 1, —H—+ — = l,a = 2, x + y + z — 2 = 0.a, a a a a a5已知两点4(2,-1,-2)及〃(8,7,5),求过B且与线段AB垂直的平面.解〃 =(6, & 7).6(x-8) + 8(y-7) + 7(z-5) = 0,6x + 8y + 7z-139 = 0.6.求过点(2,0, -3)且与2兀-2y + 4z + 7 = 0,3x+y-2z + 5二0垂直的平面方程.i j k解 n= 2 -24 =(0,16,8) = 8(0,2,l).2y + (z + 3) = 0,y + z + 3 = 0. 3 1 -27.求通过兀轴且与平面9兀-4y-2z + 3 = 0垂直的平面方程. 解 By + Cz=0,—4B —2C = 0,取B = 1,C = —2,y —2z = 0.8•求通过直纟划:{;;工:二5地:仁鳥平行的平面方程. i j ki j k 解a = 1 0 2 = (-6,1,3), 6 = 1 -1 0= (1,1,1), 0 3-10 1 -1 i j kn - -6 13 =(-2,9,-7).用z ()= 0代入厶的方程,得x° =4,>\} =-8/3.1 1 1 -2(x-4) + 9(^ + 8/3)-7(z) = 0,-2x + 9y-7z + 32 = 0.x = 3r + 89.求直线厶:* +彳=•' +1 = __与直线/ :< y = f + l 的交点坐标,3 24 _ 小, z = + 6并求通过此两直线的平面方程.解求两条直线交点坐标:3r + 8 + 3 / + 1 + 1 2/ + 6 —2 \\ t t A 163 24 3 2 23 i j kn= 3 2 4 = (0,6, -3) = 3(0,2, -l).2(y +1) - (z - 2) = 0,2y - z + 4 = 0.3 1 2 10•求通过两直线厶=^ = 凹和厶:土 = □=三的平面方程. 1 2 -1 1 -4 2 -2i j k解 两直线平行•平面过点(1,-1,-1)和(-2,2,0).川=2 — 1 1 = (—4,—5,3).-33 1一4(兀一 l)-5(y + l) + 3(z + l) = 0,-4x — 5y + 3z + 2 = 0.11证明两直线厶:口和是异面直线*-121 - 0 1 -2证首先,两直线的方向向量(-1,2,1)和(0,1,-2)不平行.x 二 _2l 2< y 二1+t —―二匕〜 力+ 3J = 5』= 0,矛盾.故两直线无公共点.-1 2 1 X Q = 一& 儿=一一牛交点(一8占弓)两-直线不平行,又无交点,故是异面直线. 12.将下列直线方程化为标准方程及参数方程:[2x+y-z + l = 0 [x-3z + 5 = 0(1* ⑵彳[3x - y + 2z - 8 = 0; [y - 2z + 8 = 0.i j k解(1)〃= 2 1 -1 =(1,-7,-5).3-12V — 7 + 1 = 0⑴中令兀0=0,{ 解Z得儿=6,Zo=7・-y+ 2z-8 = 0;标准方程—q・1 -7 -5x = t参数方程:< y = 6-lt,-oo <t < +oo.z = l-5ti j k(2)(1加=1 0 -3 =(3,2,1).0 1 -2⑵中令z° = 0,直接得x° = -5, y Q = -8.标准方程出二凹二工3 2 1x ——5 + 3t参数方程:* >' = -8 + 2r,-co<t < +oo.z = t13•求通过点(32-5)及乂轴的平面与平面3x-y-7z + 9 = 0的交线方程・ ■I j k解地第一个平面的法向量〃二1 0 0 =(0,5,2), 3 2 -5平面方程5y + 2z = 0.直线方程严+ 2*°[3 兀-y-7z + 9 = 0.i j k直线的方向向量a =0 5 2 =(一336-15) = 3(-112-5)・3 -1 -7直线方程:r 匕14 •当D 为何值时,直线产? £弓与0z 轴相交?[x + 4y-z + D = 0解直线F :y + 2z-6弓与Oz 轴相交O 存在(0,0,勺)在此直线上,[x + 4y-z + £> = 0f2z o -6 = O <=> < u> £> =知=3. Ho+o=o15.试求通过直线人:£一2":弓并与直线Z. = 2平行的平面方程.[3y — z + 8 = 0 *•匕 _y + 6 = 0i J k解厶的方向向&a = 1 0 -2 =(6丄3).0 3-1i J 平面的法向量/i =6 1 1 1 Q 在的方程中令z ()二0得X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 空间解析几何与向量代数
1、 已知c , b , a 两两垂直,且352===c , b ,a ,设c b a d ++=,试求(1)d ;(2)c j Pr d
2、求xoy 平面上的曲线142
2=+y x 分别绕x 轴,y 轴旋转所得旋转曲面的方程。

3、说明下列旋转曲面是怎样形成的: (1) 1994222=++z y x (2)14
22
2=+-z y x 4、求球面9222=++z y x 与平面1=+z x 的交线在xoy 面上的投影的方程。

5、求过点(3,0,-1),且与平面012573=-+-z y x 平行的平面方程。

6、求平面0122=+--z y x 与各坐标面的夹角余弦。

7、求平行于y 轴且经过点(1,-2,0)和点(2,-3,1)的平面方程。

8、求过点(1,-1,1),且与两平面1=+-z y x 和012=+++z y x 都垂直的平面方程。

9、求过点(1,3,-1)且平行于直线3
31122-=-+=-z y x 的直线方程。

10、求过点(-3,2,-5)且与两个平面034=--z x 和0152=---z y x 平行的直线方程。

11、求过点(2,0,-3)且与直线⎩
⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程。

12、求过点(1,2,1)且与直线⎩⎨
⎧=+-=+-0
02z y x z y x 和32111-=-+=-z y x 垂直的直线方程。

13、已知点M (1,2,3),直线L :⎩⎨⎧=-+=+-4
3212z y x z y x ,
求:(1)直线对称式方程; (2)过点M 与直线L 的平面方程;
(3)过点M 且与直线L 垂直相交的直线方程。

14、在平面1=++z y x 上求一直线,使其与直线⎩⎨
⎧-==11z y 垂直相交。

15、求点(2,3,1)在直线3
22217+=+=+z y x 上的投影点。

16、求通过直线⎩⎨⎧=+--=+-0
620223z y x y x L:且与点),,(M 1210的距离为1的平面π的方程。

17、求平行于平面01001=-++z y :x π,并且与球面4222=++∑z y :x 相切的平面π的方程。

相关文档
最新文档