生物化学-简答题
生物化学简答题及答案

1.说明动物体内氨的来源、转运和去路。
答:(一)体内氨的来源1.氨基酸脱氨氨基酸脱氨基作用产生的氨是体内氨的主要来源。
2.肠道吸收的氨一是肠道细菌通过腐败作用分解蛋白质和氨基酸产生氨,二是血中尿素扩散入肠道后经细菌尿素酶作用下水解产生氨。
3.肾小管上皮细胞分泌氨在肾小管上皮细胞内,谷氨酰胺酶催化谷氨酰胺水解生成谷氨酸和氨。
肠道和原尿中的pH对氨的来源有一定的影响,NH3易吸收入血,NH+4不易透过生物膜,在碱性环境中,NH+4易转变为NH3,所以肠道pH 偏碱时,氨的吸收增加。
(二)氨的转运1.丙氨酸一葡萄糖循环肌肉中的氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运到肝。
在肝中,丙氨酸通过联合脱氨基作用,释放出氨,用于合成尿素。
转氨基后生成的丙酮酸可经糖异生途径生成葡萄糖,葡萄糖由血液输送到肌组织,沿糖分解途径转变成丙酮酸,后者再接受氨基而生成丙氨酸。
这一途径称为丙氨酸一葡萄糖循环。
通过这个循环,即使肌肉中的氨以无毒的丙氨酸形式运输到肝。
2.谷氨酰胺的生成作用在脑、心脏及肌肉等组织中,谷氨酸与氨由谷氨酰胺合成酶催化生成谷氨酰胺。
谷氨酰胺生成后可及时经血液运向肾、小肠及肝等组织,以便利用。
在肾由谷氨酰胺酶水解为谷氨酸与氨,氨被释放到肾小管腔中和肾小管腔的H’以增进机体排泄多余的酸。
所以,谷氨酰胺是氨的解毒产物,也是氨的储存及运输的形式。
(三)氨的去路1.尿素合成这是氨的主要代谢去路。
肝是合成尿素最主要的器官,通过鸟氨酸循环过程完成的。
首先NH3和CO2在ATP、Mg2+及N\|乙酰谷氨酸存在时,合成氨基甲酰磷酸,氨基甲酰磷酸在线粒体中与鸟氨酸氨在鸟氨酸氨基甲酰基转移酶催化下,生成瓜氨酸,然后瓜氨酸与另一分子的氨结合生成精氨酸,最后在精氨酸酶的作用下,水解生成尿素和鸟氨酸。
鸟氨酸再重复上述反应。
尿素合成是一个耗能过程,每生成一分子尿素需要4个高能键,尿素中的两个氮原子,一个来自氨基酸脱氨基生成的氨,另一个则来自天冬氨酸。
生物化学简答题

什么是蛋白质的二级结构,他主要有哪几种?α-螺旋,β -折叠,β- 转角和无规则卷曲四种。
蛋白质的二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。
它主要有简述α- 螺旋结构特征:1、在α-螺旋结构中,多肽链主要围绕中心轴以右手螺旋方式螺旋上升,每隔 3.6 个氨基酸残基上升一圈,螺距为 0.54nm2、氨基酸残基的侧链伸向螺旋外侧。
3、每个氨基酸残基的亚氨基上的氢与第四个氨基酸残基羟基上的氧形成氢键,以维持α-螺旋稳定。
简述常用蛋白质分离、纯化方法:盐析、透析、超速离心、电泳、离子交换层析、分子筛层析。
简述谷胱甘肽的结构和功能:组成:谷胱甘肽由谷氨酸、半胱氨酸和甘氨酸构成的活性三肽,功能基团:半胱氨酸残基中的巯基。
功能:1、作为还原剂清除体内 H2O2,使含巯基的酶或蛋白质免遭氧化,维持细胞膜的完整性。
2.具有嗜核特性,与亲电子的毒物或药物结合,保护核酸和蛋白质免遭损害。
1、一条多肽链中,带有相同电荷的氨基酸彼此相邻,相互排斥,妨碍α- 螺旋的形成。
哪些原因影响蛋白质α- 螺旋结构的形成或稳定?2、含有大侧链的氨基酸残基,彼此相邻,空间位阻较大也会影响α -螺旋的形成。
3、脯氨酸为亚氨基酸,亚氨基酸形成肽键后,没有了游离的氢,不能形成氢键,因此不能形成α-螺旋。
酶的化学修饰的特点是什么:①在化学修饰过程中,酶发生无活性和有活性两种形式的互变②该修饰时共价键的变化,最常见的是磷酸化和去磷酸化修饰③常受激素的调控④是酶促反应⑤有放大效应酶的变构调节特点是什么:细胞内一些中间代谢产物能与某些酶分子活性中心以外的某一部位以非共价键可逆结合,使酶构象发生改变并影响其催化活性,进而调节代谢反应速率,这种现象为变构反应,其特点是①变构酶常由多个亚基构成②变构效应剂常结合在活性中心以外的调节部位,引起酶空间构象的改变,从而改变酶的活性③变构效应剂与调节部位以非共价键结合④酶具有无活性和有活性两种方式互变⑤不服从米曼氏方程,呈S 型曲线酶和一般催化剂比较有何异同:相同点:①反应前后无质和量的改变②不改变反应的平衡点③只催化热力学允许的反应④都是通过降低反应活化能而增加反应速率的不同点①酶的催化效率高②酶对底物有高度特异性③酶活性的可调节性,酶的催化作用多受多种因素调节④酶是蛋白质,对反应条件要求严格,如温度、pH 等简述 Km 和 Vmax 的意义:Km的意义:①Km等于反应速率为最大速率一半时的底物浓度②一些酶的K2 >> K3,Km 可表示酶和底物的亲和力③ Km 值是酶的特征性常数,它与酶结构,酶所催化的底物和反应环境如温度、pH 、离子强度等有关,而与酶浓度无关Vmax 的意义: Vmax 是酶被底物完全饱和时的反应速率简述何谓酶原与酶原激活的意义:一些酶在细胞合成时,没有催化活性,需要经一定的加工剪切才有活性。
(整理)生物化学简答题

2 什么是蛋白质的二级结构,主要包括哪几种,各有什么结构特征?3 变性概念、本质、特征及在日常生活中应用。
4 热变性DNA具有什么特征?5 试说明DNA双螺旋结构模型的要点及与DNA生物学功能的关系。
6 核酸杂交技术的基础是什么?有哪些应用价值?7 简述蛋白质的一、二、三、四级结构。
8 固定化酶的概念、优点、制备方法。
9 酶的特点及其高效作用机理。
10 酶的活性中心和必需基团及其关系。
11 辅酶与辅基有何不同?维生素(3种以上)与辅酶(辅基)的关系?在代谢中的应用。
12 简述蛋白质酶和修饰酶在新药研究中的应用以及核酶和抗体酶对新药设计的指导意义。
13 请从各个方面比较糖酵解和糖的有氧氧化的异同。
14 比较糖酵解和糖的有氧氧化的异同。
15 比较DNA、RNA在化学组成、结构、功能上各有何特点、16 比较原核细胞的mRNA和真核细胞的mRNA的结构特点。
17 比较哺乳动物脂肪酸β氧化和合成的主要区别。
18 脂肪酸β氧化和合成。
19 糖酵解和糖的有氧氧化。
20 糖在机体内主要代谢途径及重要生物学意义。
21 酮体的生成、利用和意义。
22 简述乙酰CoA的体内来源与去路及其细胞定位。
23 什么是尿素循环、过程?有什么生理意义?24 大肠杆菌DNA复制过程。
25 蛋白质生物合成过程。
26 何谓抗代谢物?简述磺胺药、氨甲喋呤等药物作用机制。
27 生物技术主要研究内容及在现代药学新药研究应用。
28 简述基因工程的基本原理和一般过程及在制药领域应用。
29 有哪些生物化学研究成果被用于新药设计和筛选研究?试分别举例说明之。
30 简述蛋白质纯化的常用方法及其基本原理。
31 利用蛋白质电离性质可采用哪些方法将其分离纯化?举例说明。
2 什么是蛋白质的二级结构,主要包括哪几种,各有什么结构特征?3 变性概念、本质、特征及在日常生活中应用。
4 热变性DNA具有什么特征?5 试说明DNA双螺旋结构模型的要点及与DNA生物学功能的关系。
生物化学简答题

2.简述三羧酸循环的生理意义是什么?它有哪些限速步骤?生理意义:三羧酸循环是机体获取能量的主要方式;为生物合成提供原料;影响果实品质糖;脂肪和蛋白质代谢的枢纽限速步骤:1)在柠檬酸合酶的作用下,由草酰乙酸和乙酰-CoA合成柠檬酸2)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢形成草酰琥珀酸。
3)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化、脱羧,生成琥珀酰-CoA、 NADH+H+和CO2。
4.什么是转氨作用?简述转氨作用的两步反应过程?为什么它在氨基酸代谢中有重要作用?概念:转氨作用是指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,生成相应的α-酮酸和一种新的α-氨基酸的过程。
磷酸吡哆醛是转氨酶的辅酶,起到携带NH2基的作用。
这一过程分为两步反应:-H2O+H2O+H2O-H 2O转氨作用的生理意义:a)通过转氨作用可以调节体内非必需氨基酸的种类和数量,以满足体内蛋白质合成时对非必需氨基酸的需求。
b)转氨作用可使由糖代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸变为氨基酸,因此,对糖和蛋白质代谢产物的相互转变有其重要性。
c)由于生物组织中普遍存在有转氨酶,而且转氨酶的活性又较强,故转氨作用是氨基酸脱氨的重要方式。
d)转氨作用的另一重要性是因肝炎病人血清的转氨酶活性有显著增加,测定病人血清的转氨酶含量大有助于肝炎病情的诊断。
转氨基作用还是联合脱氨基作用的重要组成部分,从而加速了体内氨的转变和运输,勾通了机体的糖代谢、脂代谢和氨基酸代谢的互相联系。
5.简述磷酸戊糖途径概念及生理意义概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化作用下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖作为中间代谢产物,故将此过程称为磷酸戊糖途径。
1)产生大量的NADPH,为细胞的各种合成反应提供还原力2)途径中的中间物为许多化合物的合成提供原料:PPP途径可以产生多种磷酸单糖,如磷酸核糖、4-磷酸赤藓糖与磷酸烯醇式丙酮酸等。
生物化学考试题

生物化学考试题1.简答题(每题5分,共50分)a) 请简述蛋白质是如何在细胞内合成的。
b) 请解释DNA和RNA的结构和功能。
c) 请简要说明葡萄糖的代谢途径。
d) 解释ATP在细胞内的作用。
e) 解释细胞色素P450及其在药物代谢中的作用。
f) 请解释酶的特性和催化机制。
g) 请解释DNA修复的不同机制。
h) 请解释细胞内信号传导的过程。
i) 解释氧化磷酸化和光合作用的关系。
j) 解释核糖体的结构和功能。
2.选择题(每题2分,共40分)从以下选项中选择正确答案。
a) DNA双链的连接方式是:A. 磷酸键连接B. 氢键连接C. 硫键连接D. 碳键连接b) 下列哪个物质不是细胞色素P450的辅助因子:A. NADPHB. 氧气C. 酶D. 金属离子c) 下列哪个不是细胞内信号传导的传递方式:A. 激素传导B. 神经传导C. 胞吞作用D. 转录传导d) 下列哪个不是酶的特性:A. 可逆性B. 高效性C. 特异性D. 可再生性e) 氧化磷酸化在细胞中发生在:A. 内质网B. 线粒体C. 细胞核D. 溶酶体f) 下列哪个不是DNA修复机制:A. 直接修复B. 错误配对修复C. 碱基切割修复D. 甲基化修复g) 下列哪个不是RNA的结构特点:A. 双链结构B. 脱氧核糖C. 碱基配对D. 磷酸骨架h) ATP是细胞内的能量货币,其全称为:A. Adenosine triphosphateB. Adenosine tetraphosphateC. Adenosine pentaphosphateD. Adenosine hexaphosphatei) 下列哪个不是葡萄糖的代谢途径:A. 糖解B. 糖原合成C. 糖异生D. 三羧酸循环j) 下列哪个不是细胞色素P450在药物代谢中的作用:A. 增加药物毒性B. 降解药物C. 活化药物D. 减少药物效果3.论述题(30分)请选择一道题目进行论述。
题目:解释光合作用的细胞生物化学过程及产物。
生物化学简答题

生物化学简答题生物化学是研究生物体内的化学成分和生物体内化学反应过程的科学。
它涉及到很多重要的概念和原理,下面我将依次回答几个简答题,以帮助您更好地理解生物化学的基本知识。
1. 什么是酶?酶在生物体中起到什么作用?酶是一类催化生物化学反应的蛋白质分子。
它们能够加速化学反应的速率,使反应达到生物体内所需的程度。
酶可以在非常温和的条件下,提高化学反应的速度。
生物体内的代谢、合成反应、分解反应等都离不开酶的催化作用。
2. DNA和RNA有什么区别?DNA(脱氧核糖核酸)和RNA(核糖核酸)是生物体内两种重要的核酸分子。
它们在结构上和功能上存在着一些差异。
首先,在结构上,DNA是由两条螺旋结构的链组成,而RNA则是单链结构。
其次,在碱基组成上,DNA包含腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),而RNA则包含腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胞嘧啶(C)。
此外,DNA在存储和传递遗传信息方面起到关键作用,而RNA则在蛋白质合成中发挥重要作用。
3. 核糖酸循环是什么?它在生物体内的作用是什么?核糖酸循环,也称为三羧酸循环或Krebs循环,是生物体内的一种重要的代谢途径。
它是将碳源分解为能够供应细胞产生能量所需的化合物的过程。
核糖酸循环主要发生在线粒体中,通过一系列的反应,将葡萄糖、脂肪酸等有机物分解为二氧化碳和水,并在此过程中产生三氧化磷(ATP)等高能化合物。
核糖酸循环是细胞内能量代谢的重要组成部分,也是产生细胞需要的能量的关键过程。
4. 蛋白质是生物体内重要的有机物质,它有什么功能和结构特点?蛋白质是生物体内功能最为多样复杂的有机分子,具有多种重要的功能。
首先,蛋白质是生物体内大部分酶的组成部分,能够催化和调控许多关键的生化反应。
其次,蛋白质在细胞结构和功能的维持中发挥着重要的作用,例如构成细胞骨架、参与免疫反应等。
此外,蛋白质还可以作为激素、抗体和运输分子等。
蛋白质的结构特点包括四级结构:一级结构指由氨基酸残基的线性序列组成;二级结构指由α螺旋和β折叠等基本结构单元组成;三级结构指蛋白质折叠成三维结构的形态;四级结构指多个蛋白质亚单位组合形成功能性蛋白质复合物。
生物化学各章节简答题归纳总结

生物化学第一章蛋白质的结构与功能1、用凯氏定氮法测得0.1g大豆中氮含量为4.4mg,试计算100g大豆中含多少克蛋白质?答:0.1g大豆中氮含量为 4.4mg,即0.044g/1g,则100g大豆含蛋白质含量为0.044x100x6.25=27.5g。
2、氨基酸侧链上可解离的功能基团有哪些?试举例说明之?答:不同的氨基酸侧链上具有不同的功能基团,如丝氨酸和苏氨酸残基上有羟基,半胱氨酸残基上有巯基,谷氨酸和天冬氨酸残基上有羧基,赖氨酸残基上有氨基,精氨酸残基上有胍基,酪氨酸残基上有酚羟基等。
3、使蛋白质沉淀的方法有哪些?简述之。
答:使蛋白质沉淀的方法主要有四种:①中性盐沉淀蛋白质,即盐析法。
②有机溶剂沉淀蛋白质。
③重金属盐沉淀蛋白质。
④有机酸沉淀蛋白质。
4、何谓蛋白质的变性作用?有何实际意义。
答:蛋白质的变性作用是指蛋白质在某些理化因素的作用下,其空间结构发生改变(不改变其一级结构),因而失去天然蛋白质的特性,这种现象称为蛋白质的变性作用。
意义:利用变性原理,如用乙醇、加热和紫外线消毒灭菌,用热凝固法检查尿蛋白等;防止蛋白质变性,如制备或保存酶、疫苗、免疫血清等蛋白质制剂时,应选择适当条件,防止其变性失活。
5、什么是蛋白质的两性电离和等电点?答:蛋白质分子中既有能解离成阴离子的基团,所以蛋白质是两性电解质。
在某一pH溶液中,蛋白质分子可成为带正电荷和负电荷相等的兼性离子,即蛋白质分子的净电荷为零,此时溶液的pH称为该蛋白质的等电点。
6、为什么说蛋白质的一级结构决定其空间结构?答:蛋白质一级结构指蛋白质多肽链中氨基酸残基的排列顺序。
因为蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。
7、蛋白质的α-螺旋结构有何特点?答:α-螺旋结构特点有:①多肽链主链绕中心轴旋转,形成螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距有0.54nm,氨基酸之间的轴心距为0.15nm。
生物化学简答题

生物化学简答题1. 产生ATP的途径有哪些?试举例说明。
答:产生ATP的途径要紧有氧化磷酸化和底物水平磷酸化两条途径。
氧化磷酸化是需氧生物ATP生成的要紧途径,是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化进程。
例如三羧酸循环第4步,α-酮戊二酸在α-酮戊二酸脱氢酶系的催化下氧化脱羧生成琥珀酰CoA的反映,脱下来的氢给了NAD+而生成NADH+H+,1分子NADH+H+进入呼吸链,通过呼吸链递氢和递电子,可有个ADP磷酸化生成ATP的偶联部位,这确实是通过氧化磷酸化产生了ATP。
底物水平磷酸化是指直接与代谢底物高能键水解相偶联使ADP磷酸化的进程。
例如葡萄糖无氧氧化第7步,1,3-二磷酸-甘油酸在磷酸甘油酸激酶的催化下生成3-磷酸甘油酸,在该反映中由于底物1,3-二磷酸-甘油酸分子中的高能磷酸键水解断裂能释放出大量能量,可偶联推动ADP磷酸化生成ATP,这确实是通过底物水平磷酸化产生了ATP。
2.简述酶作为生物催化剂与一样化学催化剂的共性及其特性。
(1)共性:用量少而催化效率高;仅能改转变学放映速度,不能改转变学反映的平稳点,酶本身在化学反映前后也不改变;可降低化学反映的活化能。
(2)特性:酶作为生物催化剂的特点是催化效率更高,具有高度专一性,容易失活,活力受条件的调剂操纵,活力与辅助因子有关。
3.什么是乙醛酸循环,有何生物学意义?乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组织中尚未发觉。
乙醛酸循环反映分为五步(略)。
总反映说明,循环每转1圈需要消耗两分子乙酰辅酶A,同时产生一分子琥珀酸。
琥珀酸产生后,可进入三羧酸循环代谢,或变成葡萄糖乙醛酸循环的意义分为以下几点:(1)乙酰辅酶A经乙醛酸循环可生成琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。
(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。
(3)乙醛酸循环是油料植物将脂肪酸转变成糖的途径。
3. 简述氨基酸代谢的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试题编号
试题类型问答
试题难度易
试题水平记忆
试题结构03swhx08
题干简述线粒体呼吸链的组成。
答案
复合体酶名称辅基
复合体ⅠNADH-Q 还原酶FMN,Fe-S
复合体Ⅱ琥珀酸-Q还原酶FAD, Fe-S
复合体ⅢQ-CytC 还原酶铁卜啉,Fe-S
复合体ⅣCytC 氧化酶铁卜啉,Cu
试题编号
试题类型问答
试题难度易
试题水平记忆
试题结构03swhx10
题干为什么糖摄入量不足的爱斯基摩人,从营养学的角度看,吃含奇数碳原子脂酸的脂肪比含偶数碳原子脂酸的脂肪好?
答案因为奇数碳原子脂肪酸讲解最后产生丙酰CoA,这个化合物将进一步代谢生成琥珀酰CoA,琥珀酰CoA将减轻爱斯基摩人糖的缺乏,并且因为增加了三羧酸循环
中间物的水平二减轻了伴随而来的酮症。
试题编号
试题类型问答
试题难度易
试题水平记忆。