极限的概念
极限与连续的定义与性质

极限与连续的定义与性质极限与连续是微积分中非常重要的概念,它们在数学中具有广泛的应用。
本文将介绍极限及其定义和性质,以及连续函数的定义和性质。
一、极限的定义与性质1. 极限的定义在数学中,极限是数列或函数逐渐接近某个确定值的过程。
对于数列,极限可以通过数学符号来表示,即lim(an)=a,表示数列an当n趋近于无穷时,逐渐趋向于a。
而对于函数,极限可以用lim(f(x))=L来表示,表示当x趋近于某个值时,函数f(x)的值趋近于L。
2. 极限的性质(1)唯一性:若极限存在,那么它是唯一的。
(2)局部有界性:存在极限的数列一定是有界的,即存在一个范围包含该数列的所有项。
(3)保序性:如果数列an逐渐趋近于a,而bn逐渐趋近于b,且an小于等于bn(对于所有的n),则有a小于等于b。
二、连续函数的定义与性质1. 连续函数的定义在数学中,连续函数是指在定义域的每个点上都有定义,并且在该点上的极限等于该点的函数。
形式化地,对于函数f(x),如果对于任意x0∈定义域D,lim(x→x0)(f(x))=f(x0),则称函数f(x)在x0上连续。
2. 连续函数的性质(1)极限与连续的关系:若函数f(x)在x=a处连续,那么lim(x→a)(f(x))=f(a)。
(2)连续函数的四则运算:如果函数f(x)和g(x)在x=a处连续,那么它们的和、差、积和商(当g(a)≠0时)也在x=a处连续。
(3)复合函数的连续性:若函数f(x)在x=a处连续,函数g(x)在x=b处连续,并且b=f(a),那么复合函数g(f(x))在x=a处连续。
三、总结极限是数学中的重要概念,它在数列和函数中都有丰富的应用。
极限的定义和性质使我们能够更加准确地描述数列和函数的收敛性和趋势。
同时,连续函数是一类特殊的函数,其在定义域内不存在断点,平滑地连接着各个点。
连续函数的性质使我们能够进行更加灵活和精确的运算和推导。
通过对极限和连续的定义和性质的学习,我们可以更好地理解数学中的变化和趋势,应用于实际问题的建模和求解中。
数学极限知识点总结

数学极限知识点总结一、极限的概念极限是一个重要的数学概念,它描述了一个函数在自变量趋近某个特定值时的行为。
具体地说,当自变量x在某一点a附近不断靠近,同时函数f(x)的取值也逐渐接近某个特定的数L时,我们就说函数f(x)在自变量x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
这个定义可以用符号表示为:对于任意给定的正数ε,存在一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε。
在这个定义中,ε和δ分别表示"误差"和"变化范围",而当自变量x距离a足够近时,函数f(x)的取值与极限L的差异也会变得足够小。
换句话说,极限描述了函数在某点附近的稳定性和趋势。
在实际问题中,极限的概念常常用于描述随着自变量的变化,函数取值的趋势。
比如,在物理学中,我们可以用极限来描述速度、加速度、流体的流动等随着时间或空间的变化而变化的量。
而在工程中,极限也可以描述材料的强度、电路的稳定性等。
因此,极限是数学中一个十分重要、普遍且有广泛应用的概念。
二、极限的性质1.极限的唯一性如果一个函数在某点附近有极限,那么这个极限是唯一的。
换句话说,对于一个自变量x趋近于a的函数f(x),其极限只能有一个确定的值。
这个性质使得我们可以不用担心在计算函数的极限时会出现多个可能的结果,从而保证了极限的一致性和确定性。
2.极限的局部保号性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则当L>0时,存在a的某个邻域,使得邻域内的函数值都大于0;当L<0时,存在a的某个邻域,使得邻域内的函数值都小于0。
这个性质表明了在极限存在的情况下,函数在足够靠近极限点的地方都具有一致的正负性。
3.极限的局部有界性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则存在一个正数M,使得a的某个邻域内函数的取值都在区间(-M,M)之间。
极限的概念解释

极限的概念解释极限是数学中的一个重要概念,用于描述函数在逼近某个值时的行为。
在数学分析中,极限可以通过严格的定义和符号来描述,也可以通过直观的图像和例子来理解。
本文将详细解释极限的概念,从简单的定义开始,逐步深入,以便读者全面理解和掌握。
在数学中,极限是指当一个变量趋近于某个确定值时,函数的值逐步接近这个确定值的过程。
通常,我们将自变量无限接近某个值时对应的函数值称为极限。
函数的极限可以是无穷大、有限或不存在,取决于函数在逼近过程中的性质。
数学家用严格的定义来描述极限的概念。
设函数f(x)定义在某个区间内,x趋近于某个数a时,如果对于任意给定的大于零的数ε,总存在另一个大于零的数δ,当0 < x - a < δ时,则有f(x) - L < ε成立。
其中L为一个常数,称为极限。
这个定义表明,当自变量x无限接近a时,函数值f(x)无限接近L。
为了更直观地理解极限,我们可以借助图像和例子。
考虑函数f(x) = 1/x,其中x不等于0。
当x越来越接近0时,1/x 的值趋近正无穷或负无穷。
我们可以画出这个函数的图像,可以看到当x接近0时,函数的值变得越来越大(正无穷)或越来越小(负无穷)。
这就是函数f(x) = 1/x 在x趋近于0时的极限。
极限还可以是有限值。
考虑函数f(x) = x^2 - 1,当x趋近于2时,函数的极限是3。
我们可以绘制出这个函数的图像,可以看到函数值在x=2附近逐步接近于3。
这就是函数f(x) = x^2 - 1在x趋近于2时的极限。
另一种情况是函数的极限不存在。
考虑函数f(x) = sin(1/x),其中x不等于0。
当x趋近于0时,函数值在不断振荡,没有明确的趋势。
无论我们如何接近0,函数值都不会趋近于一个确定的值。
因此,这个函数在x趋近于0时极限不存在。
为了更精确地计算和处理极限,数学家还引入了一些重要的极限性质和运算法则。
这些性质和法则提供了一些简化计算的方法。
极限概念知识点总结

极限概念知识点总结一、极限的基本概念1.1 极限的引入极限的概念最早是在微积分的发展过程中被引入的。
当人们试图解决一些问题时,发现需要对一些数列、函数、变量等的趋势进行描述和分析。
例如,当我们用一个数列的前几项来逼近某个数时,我们希望能够明确当数列的项数趋于无穷时,该数列是否真的能够逼近这个数;再如,当我们试图分析一个函数在某一点的性质时,我们也会遇到极限的概念。
因此,为了能够更加准确地描述数学对象在某个方面的性质,人们引入了极限的概念。
1.2 极限的定义数列的极限是极限的最基本形式之一。
对于一个数列{an},当n趋于无穷时,如果an可以无限地地接近某个确定的数a,则称a为数列{an}的极限,记作lim(n→∞)an=a。
这个定义也可以推广到函数的极限、变量的极限等其他情形,如对于函数f(x),当x趋于某一点c时,如果f(x)可以无限地地接近某个确定的数L,则称L为函数f(x)当x→c时的极限,记作lim(x→c)f(x)=L。
这就是极限的基本定义形式。
1.3 极限的性质极限具有一系列重要的性质,在实际应用中,这些性质被广泛地用于求解各种问题。
以下是一些极限的基本性质:1)唯一性:如果数列an有极限a,则这个极限是唯一的。
也就是说,一个数列只能有一个极限。
类似地,函数f(x)当x→c时的极限也是唯一的。
2)保号性:如果数列an的极限a>0(或a<0),则对于充分大的n,an>0(或an<0)。
3)夹逼准则:如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=a,那么必有lim(n→∞)bn=a。
这个性质在确定一些数列的极限时常常会被用到。
4)四则运算法则:如果lim(n→∞)an=a,lim(n→∞)bn=b,那么有lim(n→∞)(an±bn)=a±b,lim(n→∞)(an×bn)=a×b,lim(n→∞)(an÷bn)=a÷b(b≠0)。
极限的定义和相关定理

极限的定义和相关定理极限是微积分中的重要概念,它描述了函数在趋近某一点时的行为。
通过研究极限,我们可以深入理解函数的变化规律和性质。
本文将从极限的定义开始,逐步介绍相关定理和应用。
一、极限的定义在介绍极限之前,我们先定义一下数列的收敛性。
给定一个数列{an},如果存在实数 a,使得对于任意正数ε,都存在正整数 N,当n>N 时,不等式 |an-a|<ε 成立,那么数列 {an} 收敛于 a。
现在,我们来定义函数f(x) 在x=a 处的极限。
如果对于任意正数ε,存在正数δ,使得当 0<|x-a|<δ 时,都有 |f(x)-L|<ε 成立,那么函数 f(x)在 x=a 处的极限为 L,记作:lim(x->a) f(x) = L其中,x 表示自变量,a 表示趋近的点,L 表示极限的值。
二、极限的性质在我们研究极限的过程中,有许多有用的定理可以帮助我们求解极限。
以下是一些常用的极限性质:1. 极限的唯一性:如果函数 f(x) 在 x=a 处有极限,那么它的极限值是唯一确定的。
2. 四则运算法则:设函数 f(x) 和 g(x) 在 x=a 处有极限,那么它们的和、差、积、商的极限也存在,且有以下运算法则:lim(x->a) [f(x) ± g(x)] = lim(x->a) f(x) ± lim(x->a) g(x)lim(x->a) [f(x) · g(x)] = lim(x->a) f(x) · lim(x->a) g(x)lim(x->a) [f(x) / g(x)] = [lim(x->a) f(x)] / [lim(x->a) g(x)] (若 lim(x->a) g(x)≠0)3. 夹逼定理:如果函数 f(x)、g(x) 和 h(x) 在 x=a 处满足f(x)≤g(x)≤h(x),且 lim(x->a) f(x) = lim(x->a) h(x) = L,则 lim(x->a) g(x) 也存在,并且 lim(x->a) g(x) = L。
极限的概念

极限的概念
极限是数学中的分支微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。
此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
极限的定义与基本性质

极限的定义与基本性质极限在数学中是一个十分重要的概念,被广泛应用于微积分、数学分析等领域。
极限主要是描述函数在某一点上的特定性质,这个特定的性质可以用一些简单的公式来表示。
定义对于实数序列或函数序列来说,如果它的极限值存在,我们就称这个序列或函数序列是有极限的。
在函数中,极限的定义表述如下:对于一个函数f(x),如果x从c点的左侧或者右侧越来越接近于c值时,f(x)也相应地越来越接近于一个数L,那么我们称L 为f(x)当x趋向于c时的极限,记作:lim x->c f(x) = L.其中 L 可以是实数、负无穷大或正无穷大。
基本性质极限有以下几个基本的性质:(1) 有限性原理:如果极限的值存在,那么它一定是唯一的。
这是因为如果有两个极限值,那么函数在这两个极限值处的取值是不同的。
(2) 局部有界性原理:如果函数f(x)在某一点c的极限存在,那么必定存在一个邻域,使得除了c点外这个邻域内的所有函数值都是有界的。
(3) 存在性原理:如果函数f(x)在某一点c的左侧和右侧的极限都存在,并且这两个极限值相等,那么f(x)在这个点的极限也存在。
(4) 夹逼定理:如果存在两个函数g(x)和h(x),它们在某个点c的左侧和右侧都满足:g(x)≤f(x)≤h(x),并且g(x) 和 h(x)的极限都等于L,那么f(x)的极限也将是L。
(5) 算术性原理:如果存在函数f(x)和g(x),它们在某一点c的极限都存在,并且L和M是它们的极限值,那么:① f(x) ± g(x) 的极限存在且等于 L ± M。
② f(x)×g(x) 的极限存在且等于 L × M。
③ k×f(x) 的极限存在且等于 k×L,其中 k 是任意的实数。
④如果 M 不等于0,而且 f(x) 与 g(x) 的极限也都存在且等于L 和 M ,则 f(x)/g(x) 的极限L/M 也存在。
极限的基本定义

极限的基本定义极限是微积分中的一个重要概念,它是描述函数在某一点附近的行为的数学工具。
在数学中,极限的基本定义是指当自变量无限接近某个特定值时,函数的取值趋于某个确定的值。
极限的基本定义可以用符号语言表示为:对于函数f(x),当x趋近于a时,如果对于任意给定的ε>0,存在δ>0,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立,那么可以说函数f(x)在x趋近于a的极限为L,记作lim(x→a)f(x)=L。
在这个定义中,x趋近于a表示x的取值逐渐接近a,|x-a|表示x与a之间的距离,ε表示我们希望函数值与极限值之间的差距尽可能小,δ表示当x与a的距离足够小时,函数值与极限值之间的差距必然小于ε。
极限的基本定义有三个关键要素:自变量趋近的点a,函数趋近的值L以及两者之间的误差限ε。
其中,自变量趋近的点a可以是一个实数,也可以是无穷大或无穷小。
函数趋近的值L可以是一个实数,也可以是无穷大或无穷小。
误差限ε是一个正数,用来控制函数值与极限值之间的差距。
极限的基本定义可以帮助我们理解函数的趋势和变化规律。
通过分析函数在某一点附近的行为,我们可以推断函数在整个定义域上的性质。
极限的基本定义也是微积分中重要的计算工具,它可以用来求解导数、积分以及一些特殊函数的极限值。
除了极限的基本定义,还有一些常见的极限概念,如左极限、右极限、无穷极限等。
左极限表示自变量从左侧趋近于某一点时的极限值,右极限表示自变量从右侧趋近于某一点时的极限值,无穷极限表示函数在自变量趋近于无穷大或无穷小时的极限值。
极限是微积分的基石,也是许多数学理论的重要基础。
它在物理学、工程学、经济学等领域中有着广泛的应用。
通过研究函数的极限,我们可以深入理解自然界和社会现象中的变化规律,从而为科学研究和实际问题的解决提供有力的数学工具。
极限的基本定义是微积分中的一个重要概念,它描述了函数在某一点附近的行为。
通过极限的基本定义,我们可以推断函数在整个定义域上的性质,计算导数、积分以及一些特殊函数的极限值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
x x0的左右极限定义
定义1· 5
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
左极限与右极限的关系
定理1· 2
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
1
lim cosx 不存在 [B](4)limarc cotx 不存在(5) x x
2,x 0 f(x) f(x) [C] (6)设 ,则 xlim 2,x 0
不存在
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
(2)定义中考虑的是xx0时函数f(x)的变化趋势,并不 考虑在x0处f(x)的情况 .
( 3 ) 由极限的定义1.9容易得到以下两个结论:
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当 例1
x x0 时,函数 f ( x)的极限
考察下列函数,写出当x 2时函数的极限并作图验证 (1)y = c (c为常数) (2)y = x
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
x0 3, 3、 f(x) x 3, x 0
x 0
limf(x) 3 limf(x) lim (x 3) 3
x 0 x 0 x 0
x 0
因为 lim f(x) lim f(x) 3
x 时,函数 f ( x)的极限
例3
解: 作y
1 图象 x
lim
x
1 0 x
lim
x
1 0 x
因为,x→+∞和x→-∞可以写为x→∞ 1 所以 lim 0 x x
定理1· 1
lim f(x) A lim f(x) lim f(x) A
x x x
1.2 极限的概念
高等数学 1.2.2 函数的极限 1.当 例5 解:
x 时,函数 f ( x)的极限
已知函数 y=sin x, 判断当 x→∞时, y=sin x 是否 有极限,为什么?
由图可见,x→+∞时,y﹨ →某一固定常数A x→-∞时,y﹨ →某一固定常数A
所以 lim sinx 和 lim sinx 均不存在 ,因此 limsinx 不存在
4
(2,4)
2
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x) 的极限
x x0的极限定义
定义1· 4
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
注意
(1)定义中“xx0”表示x从小于x0和大于x0的两个方 向趋近于x0;
所以lim f(x)不存在 x0
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
求下列函数当 x 0 时的左、右极限, 并指出当 x 0 时极限是否存在
x0 x0
x 0
课堂练习
[A]
x, 1、f ( x) 2 x ,
lim f(x) 0, lim f(x) 0
x 0
当x0 时的极限为0
x 1, x 0 x 1, x 0
x 0
f(x)
[B] 2、f ( x )
x x
x 0
lim f(x) 1, lim f(x) 1
当x0 时的极限不存在
1.2 极限的概念
高等数学
第1 章
1.1 1.2 1.3 1.4
函数·极限·连续
函数 极限的概念 极限的运算 函数的连续性
目录
高等数学
1.2.1 1.2.2 1.2.3
数列的极限 函数的极限 无穷小量和无穷大量
主要内容
高等数学
1.2.1 数列的极限 1.引例 截丈问题 庄子(前369年—前286年,战国)曾写道: “一尺之棰,日取其半,万世不竭。”
2 4 3 5
7 3 6 2
5 4
0
6 1 7
2
1.2 极限的概念
高等数学 1.2.1 数列的极限 2.定义 例3 例4 例5
1 lim n 0 n 2 1 0.3,0.33,0.333,…,0.33…3,… 3 n个 1,-1,1,-1,…,(-1)n+1,…
1 1 1 1 0, , 2 , 3 , , n , 2 2 2 2
1, 2, 3, , n,
yn n :
1.2 极限的概念
高等数学 1.2.1 数列的极限 2.定义 定义1· 2
注意
1.2 极限的概念
高等数学 1.2.1 数列的极限 2.定义 例1
1 1 1 1, , , , , 0 2 3 n
n xn
1
1
. 0.5 0.33 0.1
111 1 654 3
x x0 时,函数 f ( x)的极限
x2 4 x2 4 例如 : lim 4或 lim 4 x 2 x 2 x 2 x 2
x2 4 f(x) x2
4
(2,4)
2
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
正负交错,n无限增大,数列不趋于任何定数,无极限.
例6
1,3,5, ,2n-1,
1.2 极限的概念
随n增大数 列的项也无限增大,也不趋于任何定数,无极限.
高等数学 1.2.2 函数的极限
1.当
例1
x 时,函数 f ( x)的极限
x y
1
1 2
2
1 4
3
1 8
4
1 16
…… ……
x: x趋向正无穷大(x→+∞)
x 0 x 0 x 0
lim f(x) lim x0
x 0
2 1 -2 -1 1 2
因为 lim f(x) lim f(x) 0
x 0 x 0
所以lim f(x) 0 x0
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当 例5
x x0 时,函数 f ( x)的极限
x、y的变化趋势
y: y无限接近于常数0 (y→0)
1.2 极限的概念
高等数学 1.2.2 函数的极限
1.当
x 时,函数 f ( x)的极限
1
再看函数f(x)=( 2 )x的图象
即对函数y=(
1 x 2 ) ,当
x→+∞时y→0
1.2 极限的概念
高等数学 1.2.2 函数的极限 1 .当 例2
[A] (1) lim t anx =0 x 0
2 =8 ( 2) lim 2 x x 2
课堂练习
(3) lim lnx x 1
x ( 4) lim 2 x 0
=0 =1
[B] (5) lim(x 3 2) =6 x 2
返回目录
1.2 极限的概念
x 2 9 lim ( x 3) 6 ( 6) x lim x 3 3 x 3
1.2 极限的概念
高等数学 1.2.2 函数的极限 1.当 例4
x 时,函数 f ( x)的极限
已知函数y=arctanx,试讨论当x→∞时,y=arctanx 是否有极限,为什么?
解:作图
因为 lim arct anx lim arct anx x→+∞时,arctan x→ 2 x x arct anx不存在 x→-∞时,arctan x→ - 2 所以lim x
讨论函数 f(x)
x, x 0 当 x 3 和 x 0 时的极限 x, x 0
例4
解: (1)当x 3时, 可以认为x 2( x在3附近)
limf(x) limx 3
x 3 x 3
( 2) lim f(x) lim ( x) 0
lim sinx 0 x0
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
作图
(2)设f(x)=cosx,
lim cosx 0 x0
1.2 极限的概念
高等数学 1.2.2 函数的极限 2.当
x x0 时,函数 f ( x)的极限
0
2
3
10
100
10000
0.01 0.0001
1 2
1
1.2 极限的概念
高等数学 1.2.1 数列的极限 2.定义 例2
3 2 5 4 (1) n 0, , , , , , 1 , 1 2 3 4 5 n
5 10 11 100 101 n 1 2 3 4 . .. . ... xn 0 1.5 0.66 1.25 0.8 1.1 0.9090 1.01 0.9900
所以lim f(x) 3(极限存在 ) x0
1.2 极限的概念
高等数学 1.2.3 无穷小量和无穷大量 1.无穷小量
在课堂练习的A与C中,变量在其变化过程中均有极限, 但A的极限为0,而C的极限不为0;为了今后学习方便,我 们将以0为极限的这一类变量给以以下定义: 定义1· 6
在某一变化过程中以零为极限的变量为无穷小。一般 用 、 、 、 表示。 如当 x 0 时,sin x是无穷小;当 x 时, 是无穷小