高中数学第2章圆锥曲线与方程2.6.3曲线的交点学案苏教版选修2_1

合集下载

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word 学案 [学习目标] 1.了解圆锥曲线的统一定义.2.能用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题.[知识链接]1.椭圆上一点到准线距离与它到对应焦点距离之比等于多少? 答:1e. 2.动点M 到一个定点F 的距离与到一条定直线l 的距离之比为定值的轨迹一定是圆锥曲线吗? 答:当F ∉l 时,动点M 轨迹是圆锥曲线.当F ∈l 时,动点M 轨迹是过F 且与l 垂直的直线. [预习导引]1.圆锥曲线的统一定义平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹. 0<e <1时,它表示椭圆;e >1时,它表示双曲线;e =1时,它表示抛物线.2.对于椭圆x 2a 2+y 2b 2=1 (a >b >0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)中,与F (c,0)对应的准线方程是l :x =a 2c ,与F ′(-c ,0)对应的准线方程是l ′:x =-a 2c;如果焦点在y 轴上,则两条准线方程为y =±a 2c.要点一 统一定义的简单应用例1 椭圆x 225+y 29=1上有一点P ,它到左准线的距离等于2.5,那么,P 到右焦点的距离为________.答案 8解析 如图所示,PF 1+PF 2=2a =10,e =c a =45, 而PF 12.5=e =45,∴PF 1=2,∴PF 2=10-PF 1=10-2=8.规律方法 椭圆的两个定义从不同角度反映了椭圆的特征,解题时要灵活运用.一般地,如果遇到有动点到两定点距离和的问题,应自然联想到椭圆的定义;如果遇到有动点到一定点及一定直线距离的问题,应自然联想到统一定义;若两者都涉及,则要综合运用两个定义才行.跟踪演练1 已知椭圆x 24b 2+y 2b 2=1上一点P 到右焦点F 2的距离为b (b >1),求P 到左准线的距离.解 方法一 由x 24b 2+y 2b 2=1,得a =2b ,c =3b ,e =32.由椭圆第一定义, PF 1+PF 2=2a =4b ,得PF 1=4b -PF 2=4b -b =3b .由椭圆第二定义,PF 1d 1=e ,d 1为P 到左准线的距离, ∴d 1=PF 1e =23b ,即P 到左准线的距离为23b . 方法二 ∵PF 2d 2=e ,d 2为P 到右准线的距离. e =c a =32,∴d 2=PF 2e =233b . 又椭圆的两准线的距离为2·a 2c =833b , ∴P 到左准线的距离为833b -233b =23b . 要点二 应用统一定义转化求最值例2 已知椭圆x 28+y 26=1内有一点P (1,-1),F 是椭圆的右焦点,在椭圆上求一点M ,使MP +2MF 之值为最小.解 设d 为M 到右准线的距离.∵e =c a =12,MF d =12, ∴MF 12=d ,即d =2MF (如图). 故MP +2MF =MP +MM ′.显然,当P 、M 、M ′三点共线时,所求的值为最小,从而求得点M 的坐标为(2315,-1).规律方法 本例中,利用统一定义,将椭圆上点M 到焦点F 的距离转化为到准线的距离,再利用图形的形象直观,使问题得到简捷的解决.跟踪演练2 已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),试在双曲线上求一点M ,使MA +35MF 的值最小,并求这个最小值. 解 过M 作MN 垂直于双曲线的右准线l 于N ,由第二定义可知MN =MF e(如图). 又a =3,b =4,c =5,e =53, ∴MN =35MF ,∴MA +35MF =MA +MN ,显然当M 、N 、A 三点共线时MA +MN =AN 为最小,即MA +35MF 取得最小值,此时AN =9-a 2c =9-95=365,∴MA +35MF 的最小值为365,此时点M (352,2). 要点三 圆锥曲线统一定义的综合应用例3 已知A 、B 是椭圆x 2a 2+y 2925a 2=1上的点,F 2是右焦点,且AF 2+BF 2=85a ,AB 的中点N 到左准线的距离等于32,求此椭圆方程. 解 设F 1为左焦点,则根据椭圆定义有:AF 1+BF 1=2a -AF 2+2a -BF 2=4a -(AF 2+BF 2)=4a -85a =125a . 再设A 、B 、N 三点到左准线距离分别为d 1,d 2,d 3,由梯形中位线定理有d 1+d 2=2d 3=3,而已知b 2=925a 2, ∴c 2=1625a 2,∴离心率e =45, 由统一定义AF 1=ed 1,BF 1=ed 2,∴AF 1+BF 1=125a =e (d 1+d 2)=125,∴a =1, ∴椭圆方程为x 2+y 2925=1. 规律方法 在圆锥曲线有关问题中,充分利用圆锥曲线的共同特征,将曲线上的点到准线的距离与到焦点的距离相互转化是一种常用方法.跟踪演练3 设P (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,F 1为其左焦点. (1)求PF 1的最小值和最大值;(2)在椭圆x 225+y 25=1上求一点P ,使这点与椭圆两焦点的连线互相垂直. 解 (1)对应于F 1的准线方程为x =-a 2c, 根据统一定义:PF 1x 0+a 2c=e , ∴PF 1=a +ex 0.又-a ≤x 0≤a ,∴当x 0=-a 时,(PF 1)min =a +c a×(-a )=a -c ; 当x 0=a 时,(PF 1)max =a +c a·a =a +c . (2)∵a 2=25,b 2=5,∴c 2=20,e 2=45. ∵PF 21+PF 22=F 1F 22,∴(a +ex 0)2+(a -ex 0)2=4c 2. 将数据代入得25+45x 20=40.∴x 0=±532. 代入椭圆方程得P 点的坐标为⎝⎛⎭⎫532,52,⎝⎛⎭⎫532,-52,⎝⎛⎭⎫-532,52,⎝⎛⎭⎫-532,-52.1.已知方程(1+k )x 2-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 -1<k <1解析 由题意得⎩⎪⎨⎪⎧ 1+k >0,1-k >0,解得⎩⎪⎨⎪⎧ k >-1,k <1,即-1<k <1. 2.已知点F 1,F 2分别是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF→1+PF →2|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF →1=(-1-x 0,-y 0),PF →2=(1-x 0,-y 0),∴PF →1+PF →2=(-2x 0,-2y 0),∴|PF →1+PF →2|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF →1+PF →2|取最小值为2.3.已知F 1、F 2是椭圆的两个焦点.满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案 (0,22) 解析 ∵MF 1→·MF 2→=0,∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径,由题意知椭圆上的点在圆x 2+y 2=c 2外部,设点P 为椭圆上任意一点,则OP >c 恒成立,由椭圆性质知OP ≥b ,其中b 为椭圆短半轴长,∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2,∴(c a )2<12,∴e =c a <22. 又∵0<e <1,∴0<e <22. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0),有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是________.答案 12解析 由题意,得⎩⎪⎨⎪⎧ a 2-b 2=c 2, ①m 2+n 2=c 2,②c 2=am ,③2n 2=2m 2+c 2,④由②④可得m 2+n 2=2n 2-2m 2,即n 2=3m 2,⑤⑤代入②得4m 2=c 2⇒c =2m ,⑥⑥代入③得4m 2=am ⇒a =4m .所以椭圆的离心率e =c a =12.1.三种圆锥曲线的共同特征是曲线上的点到定点的距离与它到定直线距离的比是常数.2.利用圆锥曲线的统一定义可实现曲线上的点到焦点的距离与到准线距离的相互转化.一、基础达标1.若直线ax -y +1=0经过抛物线y 2=4x 的焦点,则实数a =______.答案 -1解析 焦点为(1,0),代入直线方程,可得a =-1.2.已知椭圆的准线方程为y =±4,离心率为12,则椭圆的标准方程为____________. 答案 x 23+y 24=1 解析 由⎩⎨⎧ a 2c =4,c a =12,解得⎩⎪⎨⎪⎧ a =2,c =1. 所以b 2=a 2-c 2=3,所以椭圆的标准方程为x 23+y 24=1. 3.双曲线3x 2-y 2=9,P 是双曲线上一点,则P 点到右焦点的距离与P 点到右准线的距离的比值为________.答案 2解析 由统一定义,所求距离之比即为双曲线的离心率.双曲线方程可化为x 23-y 29=1, 得a 2=3,b 2=9,c 2=a 2+b 2=12,所以e =c a =123=2. 4.椭圆x 225+y 216=1上一点P 到左焦点F 1的距离为3,则点P 到左准线的距离为________. 答案 5解析 依题意e =35,所以点P 到左准线的距离d =PF 1e=5. 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,右准线方程为x =33,则双曲线方程为__________.答案 x 2-y 22=1 解析 由⎩⎨⎧c a =3,a 2c =33,得⎩⎪⎨⎪⎧a =1,c =3,所以b 2=3-1=2. 所以双曲线方程为x 2-y 22=1. 6.已知抛物线y 2=2px 的准线与双曲线x 2-y 2=2的左准线重合,则抛物线的焦点坐标为________.答案 (1,0)解析 双曲线的左准线为x =-1,抛物线的准线为x =-p 2,所以p 2=1,所以p =2. 故抛物线的焦点坐标为(1,0).7.已知双曲线的渐近线方程为3x ±4y =0,一条准线方程为y =95,求该双曲线的标准方程. 解 由已知可设双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0). 由题意有⎩⎨⎧a 2c =95,ab =34,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=9,b 2=16. 所以所求双曲线方程为y 29-x 216=1. 二、能力提升8.已知点P 在椭圆x 216+y 225=1上,F 1、F 2是椭圆的上、下焦点,M 是PF 1的中点,OM =4,则点P 到下准线的距离为________.答案 403解析 因为OM 是△F 1F 2P 的中位线,所以PF 2=2OM =8.又e =35,所以P 到下准线的距离d =PF 2e =8×53=403. 9.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)上横坐标为3a 2的点到右焦点的距离大于它到左准线的距离,则双曲线的离心率的取值范围是________.答案 (2,+∞)解析 由已知得(3a 2-a 2c )e >3a 2+a 2c,即3c 2>5ac +2a 2, 所以3e 2-5e -2>0,解得e >2或e <-13(舍去). 10.在给定的椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应的准线的距离为1,则椭圆的离心率为________.答案 22解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0), 则右焦点F (c,0),右准线l :x =a 2c. 把x =c 代入椭圆的方程得y 2=b 2(1-c 2a 2)=b 4a 2,即y =±b 2a. 依题设知2b 2a =2且a 2c -c =b 2c=1, 所以e =c a =b 2a ·c b 2=22×1=22. 11.已知双曲线过点(3,-2),且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.解 (1)椭圆的焦点为(5,0),(-5,0),它也是双曲线的焦点.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). 则由题设得⎩⎪⎨⎪⎧ 9a 2-4b 2=1,a 2+b 2=5,解得⎩⎪⎨⎪⎧a 2=3,b 2=2. 所以双曲线的标准方程为x 23-y 22=1. (2)由(1)可知双曲线的右准线为x =a 2c =355. 它也是抛物线的准线,所以p 2=355, 故抛物线的标准方程为y 2=-1255x . 12.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,点F 2到右准线l 的距离为 2.(1)求a 、b 的值;(2)设M 、N 是l 上的两个动点,F 1M →·F 2N →=0,证明:当|MN →|取最小值时,F 2F 1→+F 2M →+F 2N →=0.(1)解 因为e =c a ,F 2到l 的距离d =a 2c-c , 所以由题设得⎩⎨⎧ c a =22,a 2c -c =2,解得c =2,a =2.由b 2=a 2-c 2=2,得b = 2.故a =2,b = 2.(2)证明 由c =2,a =2得F 1(-2,0),F 2(2,0),l 的方程为x =22, 故可设M (22,y 1),N (22,y 2).由F 1M →·F 2N →=0知(22+2,y 1)·(22-2,y 2)=0,得y 1y 2=-6,所以y 1y 2≠0,y 2=-6y 1. |MN →|=|y 1-y 2|=|y 1+6y 1|=|y 1|+6|y 1|≥26, 当且仅当y 1=±6时,上式取等号,此时y 2=-y 1,所以,F 2F 1→+F 2M →+F 2N →=(-22,0)+(2,y 1)+(2,y 2)=(0,y 1+y 2)=0.三、探究与创新13.如图所示,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2作垂直于x 轴的直线与椭圆的一个交点为B ,且F 1B +F 2B =10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:F 2A 、F 2B 、F 2C 成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标.解 (1)由椭圆定义及条件知,2a =F 1B +F 2B =10,得a =5,又c =4,所以b =a 2-c 2=3.故椭圆方程为x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得F 2B =y B =95. 因为椭圆右准线方程为x =254,离心率为45, 根据椭圆定义,有F 2A =45⎝⎛⎭⎫254-x 1,F 2C =45⎝⎛⎭⎫254-x 2,由F 2A 、F 2B 、F 2C 成等差数列,得 45⎝⎛⎭⎫254-x 1+45⎝⎛⎭⎫254-x 2=2×95,由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0),则x 0=x 1+x 22=4.。

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2021_2022学年高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质讲义苏教版选修2_1

2.3.2 双曲线的几何性质学习目标核心素养1.了解双曲线的简单几何性质.(重点)2.会求双曲线的渐近线、离心率、顶点、焦点坐标等.(重点)3.知道椭圆与双曲线几何性质的区别.1.通过双曲线性质的学习,提升直观想象素养.2.借助性质的应用,提升数学运算素养.1.双曲线的简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称轴x轴,y轴对称中心原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±bax y=±abx(1)实轴和虚轴等长的双曲线叫做等轴双曲线.(2)性质:①等轴双曲线的离心率e=2;②等轴双曲线的渐近线方程为y =±x ,它们互相垂直. 思考:(1)渐近线一样的双曲线是同一条双曲线吗? (2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示] (1)渐近线一样的双曲线有无数条,但它们实轴与虚轴的长的比值一样.(2)e 2=c 2a 2=1+b 2a 2,ba是渐近线的斜率或其倒数.1.双曲线x 24-y 29=1的渐近线方程是( ) A .y =±23xB .y =±49xC .y =±32xD .y =±94xC [双曲线的焦点在x 轴上,且a =2,b =3,因此渐近线方程为y =±32x .]2.双曲线x 216-y 2=1的顶点坐标是( )A .(4,0),(0,1)B .(-4,0),(4,0)C .(0,1),(0,-1)D .(-4,0),(0,-1)B [由题意知,双曲线的焦点在x 轴上,且a =4,因此双曲线的顶点坐标是(-4,0),(4,0).]3.假设双曲线x 24-y 2m =1(m >0)的渐近线方程为y =±32x ,那么双曲线的焦点坐标是________.(-7,0),(7,0) [由双曲线方程得出其渐近线方程为y =±m2x ,∴m =3,求得双曲线方程为x 24-y 23=1,从而得到焦点坐标为(-7,0),(7,0).]4.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么双曲线的离心率为________.53 [因为渐近线方程为y =43x ,所以b a =43, 所以离心率e =ca=1+⎝ ⎛⎭⎪⎫b a2=1+⎝ ⎛⎭⎪⎫432=53.]由双曲线的方程求其几何性质【例1】 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.[思路探究] 此题给出的方程不是标准方程,应先化方程为标准形式,然后根据标准方程求出根本量a ,b ,c 即可得解,注意确定焦点所在坐标轴.[解] 将9y 2-4x 2=-36变形为x 29-y 24=1,即x 232-y 222=1, 所以a =3,b =2,c =13, 因此顶点坐标A 1(-3,0),A 2(3,0), 焦点坐标F 1(-13,0),F 2(13,0), 实轴长是2a =6,虚轴长是2b =4, 离心率e =c a =133, 渐近线方程为y =±b a x =±23x .作草图,如下图:用双曲线标准方程研究几何性质的步骤1.将双曲线方程化为标准方程形式; 2.判断焦点的位置; 3.写出a 2与b 2的值; 4.写出双曲线的几何性质.1.求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、渐近线方程和离心率. [解] 将方程x 2-3y 2+12=0化为标准方程为y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23, ∴c =a 2+b 2=16=4,∴双曲线的实轴长2a =4,虚轴长2b =43,焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2. 求双曲线的标准方程【例2】 求适合以下条件的双曲线的标准方程. (1)两顶点间的距离为6,渐近线方程为y =±32x ;(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).[思路探究] 利用待定系数法,当渐近线方程时,可利用双曲线设出方程进展求解. [解] (1)设以直线y =±32x 为渐近线的双曲线方程为x 24-y29=λ(λ≠0),当λ>0时,a 2=4λ,∴2a =24λ=6⇒λ=94.当λ<0时,a 2=-9λ,∴2a =2-9λ=6⇒λ=-1. ∴双曲线的标准方程为x 29-y 2814=1或y 29-x 24=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=λ(λ≠0),将点(2,-2)代入双曲线方程,得λ=222-(-2)2=-2.∴双曲线的标准方程为y 22-x 24=1.双曲线方程的求解方法1.根据双曲线的几何性质求双曲线的标准方程时,一般采用待定系数法,首先要根据题目中给出的条件,确定焦点所在的位置,然后设出标准方程的形式,找出a ,b ,c 的关系,列出方程求值,从而得到双曲线的标准方程.2.以y =±n m x 为渐近线的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0),以此求双曲线方程可防止分类讨论.2.求适合以下条件的双曲线的标准方程. (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 225-x 2144=1.(2)法一:∵双曲线的渐近线方程为y =±12x ,假设焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),那么b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1. ②由①②联立,无解.假设焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),那么a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.法二:由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0).∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.求双曲线的离心率及其取值范围ABC ABC A B C 曲线的离心率为________.(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,假设过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求双曲线离心率的取值范围.[思路探究] (1)根据图形并由双曲线的定义确定a 与c 的关系,求出离心率;(2)可以通过图形借助直线与双曲线的关系,因为过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,那么必有b a≥tan 60°.(1)1+32 [由题意2c =AB =BC ,∴AC =2×2c ×sin 60°=23c , 由双曲线的定义,有2a =AC -BC =23c -2c ⇒a =(3-1)c , ∴e =c a=13-1=1+32.] (2)[解] 因为双曲线渐近线的斜率为k =b a, 直线的斜率为k =tan 60°=3,故有b a≥3,所以e =ca =a 2+b 2a 2≥1+3=2, 所以所求离心率的取值范围是[2,+∞).双曲线离心率的求法1.求双曲线的离心率就是求a 和c 的关系,一般可以采用几何观察法和代数关系构造法来寻求a ,b ,c 三者中两者的关系,进而利用c 2=a 2+b 2进展转化.2.求双曲线离心率的取值范围,一般可以从以下几个方面考虑:(1)与范围联系,通过求值域或解不等式来完成.(2)通过判别式Δ>0来构造.(3)利用点在双曲线内部形成不等关系.(4)利用解析式的特征,如c >a ,或c >b .3.F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.[解] 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a.由PF 2=QF 2,∠PF 2Q =90°, 知PF 1=F 1F 2,∴b 2a=2c ,∴b 2=2ac ,∴c 2-2ac -a 2=0,∴⎝ ⎛⎭⎪⎫c a 2-2×c a-1=0, 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1(a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ(λ≠0),再结合其他条件求得λ,可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.利用双曲线的渐近线来画双曲线特别方便,而且较为准确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.1.判断(正确的打“√〞,错误的打“×〞)(1)双曲线虚轴的两个端点,不是双曲线的顶点.( ) (2)等轴双曲线的渐近线是y =±x .( ) (3)双曲线的实轴长一定大于虚轴长.( ) [答案] (1)√ (2)√ (3)×2.双曲线x 2a 2-y 23=1(a >0)的离心率为2,那么a =( )A .2B .62 C .52D .1 D [由题意得e =a 2+3a=2,∴a 2+3=2a ,∴a 2+3=4a 2,∴a 2=1,∴a =1.]3.假设双曲线的渐近线方程为y =±3x ,它的一个焦点是(10,0),那么双曲线的方程是________.x 2-y 29=1 [双曲线的焦点在x 轴上,那么c =10,b a∵a 2+b 2=c 2,解得a 2=1,b 2=9, ∴方程为x 2-y 29=1.]4.求适合以下条件的双曲线的标准方程.(1)焦点在x 轴上,虚轴长为8,离心率为53;(2)两顶点间的距离是6,两焦点的连线被两顶点和中心四等分.[解] (1)设所求双曲线的标准方程为x 2a 2-y 2b 2=1,由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y216=1. (2)由两顶点间的距离是6,得2a =6,即a 2c =4a =12,即c =6,于是b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.。

高中数学第2章2.6曲线与方程2.6.3曲线的交点讲义(含解析)苏教版选修2_1

高中数学第2章2.6曲线与方程2.6.3曲线的交点讲义(含解析)苏教版选修2_1

2.6.3曲线的交点[对应学生用书P43]给出下列两组直线,回答问题. (1)l 1:x +2y =0,l 2:2x +4y -3=0; (2)l 1:2x -y =0,l 2:3x +y -7=0. 问题1:两组直线的位置关系. 提示:(1)平行;(2)相交.问题2:如何判断它们的位置关系?能否用这种方法来判定两条曲线的位置关系? 提示:两直线位置关系的判断可有两种方法:一是利用斜率;二是两方程联立,利用方程的解来判定.第二种方法可以用来判定两曲线的位置关系.问题3:如何求两曲线的交点坐标.提示:把表示曲线的方程联立,解方程组,其解即为曲线交点的坐标.已知曲线C 1:f 1(x ,y )=0和C 2:f 2(x ,y )=0.(1)P 0(x 0,y 0)是C 1和C 2的公共点⇔⎩⎪⎨⎪⎧f 1(x 0,y 0)=0,f 2(x 0,y 0)=0.(2)求两曲线的交点,就是求方程组⎩⎪⎨⎪⎧f 1(x ,y )=0,f 2(x ,y )=0的实数解.(3)方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点.直线与圆锥曲线联立,消元得方程ax 2+bx +c =0方程特征 交点个数位置关系 直线与椭圆a ≠0,Δ>0 2 相交 a ≠0,Δ=0 1 相切 a ≠0,Δ<0 0 相离直线与双曲线a =0 1 直线与双曲线的渐近线平行,两者相交a ≠0,Δ>02相交a≠0,Δ=0 1 相切a≠0,Δ<00 相离直线与抛物线a=0 1直线与抛物线的对称轴平行,两者相交a≠0,Δ>0 2 相交a≠0,Δ=0 1 相切a≠0,Δ<00 相离[对应学生用书P44]直线与圆锥曲线的位置关系[例1] 已知直线l:kx-y+2=0,双曲线C:x2-4y2=4,当k为何值时:(1)l与C无公共点;(2)l与C有惟一公共点;(3)l与C有两个不同的公共点.[思路点拨] 直线与圆锥曲线公共点的个数就是直线与圆锥曲线方程所组成的方程组解的个数,从而问题可转化为由方程组的解的个数来确定参数k的取值.[精解详析] 将直线与双曲线方程联立消去y,得(1-4k2)x2-16kx-20=0.①当1-4k2≠0时,有Δ=(-16k)2-4(1-4k2)·(-20)=16(5-4k2).(1)当1-4k2≠0且Δ<0,即k<-52或k>52时,l与C无公共点.(2)当1-4k2=0,即k=±12时,显然方程①只有一解.当1-4k2≠0,Δ=0,即k=±52时,方程①只有一解.故当k=±12或k=±52时,l与C有惟一公共点.(3)当1-4k2≠0,且Δ>0时,即-52<k<52,且k≠±12时,方程有两解,l与C有两个公共点.[一点通] 直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,则有:Δ>0⇔直线与圆锥曲线相交于两个点; Δ=0⇔直线与圆锥曲线相交于一个点; Δ<0⇔直线与圆锥曲线无交点.1.对不同的实数值m ,讨论直线y =x +m 与椭圆x 24+y 2=1的位置关系.解:由⎩⎪⎨⎪⎧y =x +m ,x 24+y 2=1,消去y 得x 24+(x +m )2=1, 整理得5x 2+8mx +4m 2-4=0.Δ=(8m )2-4×5(4m 2-4)=16(5-m 2).当-5<m <5时,Δ>0, 直线与椭圆相交;当m =-5或m =5时,Δ=0, 直线与椭圆相切;当m <-5或m >5时,Δ<0, 直线与椭圆相离.2.已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线y 2=4x 只有一个公共点;有两个公共点;没有公共点?解:(1)当k =0时,直线l 与x 轴平行,易知与抛物线只有一个交点.(2)当k ≠0时,联立⎩⎪⎨⎪⎧y =k (x +2)+1,y 2=4x ,消去x ,得ky 2-4y +4(2k +1)=0,Δ=16-4k ×4(2k +1).①当Δ=0,即k =-1或12时,直线l 与抛物线相切,只有一个公共点;②当Δ>0,即-1<k <12且k ≠0时,直线l 与抛物线相交,有两个公共点;③当Δ<0,即k <-1或k >12时,直线l 与抛物线相离,没有公共点.综上:当k =-1或12或0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1或k >12时,直线l 与抛物线没有公共点.直线被圆锥曲线截得的弦长问题[例2] 已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A 、B 两点,求弦AB 的长.[思路点拨] 先求出直线与椭圆的两个交点,再利用两点间的距离公式,也可以从公式上考查A 、B 坐标间的联系,进行整体运算.[精解详析] 法一:∵直线l 过椭圆x 25+y 24=1的右焦点F 1(1,0),又直线的斜率为2.∴直线l 的方程为y =2(x -1),即2x -y -2=0. 由方程组⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1,得交点A (0,-2),B ⎝ ⎛⎭⎪⎫53,43.则AB =(x A -x B )2+(y A -y B )2=(0-53)2+(-2-43)2=1259=553. 法二:设A (x 1,y 1),B (x 2,y 2),则A 、B 的坐标为方程组⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1的公共解.对方程组消去y ,得3x 2-5x =0.则x 1+x 2=53,x 1·x 2=0.∴AB =(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2(1+k 2AB )=(1+k 2AB )[(x 1+x 2)2-4x 1x 2] =(1+22)[(53)2-4×0]=553.法三:设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1,消去y ,得3x 2-5x =0,则x 1,x 2是方程3x 2-5x =0的两根. ∴x 1+x 2=53.由圆锥曲线的统一定义,得AF 1=15×(5-x 1),F 1B =15×(5-x 2),则AB =AF 1+F 1B =15×[10-(x 1+x 2)]=15×253=553.[一点通] 弦长的求法:(1)求出端点坐标,利用两点间的距离公式求解. (2)结合根与系数的关系,利用变形公式l =(1+k 2)[(x 1+x 2)2-4x 1x 2]或 l =(1+1k2)[(y 1+y 2)2-4y 1y 2]求解.(3)利用圆锥曲线的统一定义求解.3.过抛物线y 2=8x 的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为________. 解析:由抛物线y 2=8x 的焦点为(2,0),得直线的方程为y =x -2,代入y 2=8x 得(x -2)2=8x ,即x 2-12x +4=0. ∴x 1+x 2=12,弦长=x 1+x 2+p =12+4=16. 答案:164.直线y =2x -3与双曲线x 22-y 2=1相交于两点A 、B ,则AB =________.解析:设直线y =2x -3与双曲线x 22-y 2=1两交点坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x -3,x 22-y 2=1,得7x 2-24x +20=0,∴x 1+x 2=247,x 1x 2=207,∴|AB |=1+22|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·(247)2-4×207=457. 答案:4575.如图,椭圆x 216+y 29=1的左、右焦点分别为F 1,F 2,一条直线l经过F 1与椭圆交于A ,B 两点,若直线l 的倾斜角为45°,求△ABF 2的面积.解:由椭圆的方程x 216+y 29=1知,a =4,b =3,∴c =a 2-b 2=7.由c =7知F 1(-7,0),F 2(7,0), 又直线l 的斜率k =tan 45°=1, ∴直线l 的方程为x -y +7=0.设A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧x -y +7=0,x 216+y 29=1消去x ,整理得25y 2-187 y -81=0,∴y 1+y 2=18 725,y 1y 2=-8125.∴|y 1-y 2|= (y 1+y 2)2-4y 1y 2=⎝ ⎛⎭⎪⎫187252+4×8125=72225, ∴S △ABF 2=12|F 1F 2|·|y 1-y 2|=12×2 7×72 225=721425.两曲线相交的综合问题[例3] 已知椭圆x 216+y 24=1,过点P (2,1)作一弦,使弦在这点被平分,求此弦所在直线方程.[思路点拨] 设出直线的斜率,联立直线与椭圆方程,消去y ,得关于x 的方程,用根与系数的关系和弦中点坐标,得斜率的方程,求解即可,也可用“点差法”求解.[精解详析] 法一:设所求直线的方程为y -1=k (x -2),代入椭圆方程并整理,得(4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0. 又设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2), 则x 1,x 2是上面的方程的两个根, 所以x 1+x 2=8(2k 2-k )4k 2+1, 因为P 为弦AB 的中点,所以2=x 1+x 22=4(2k 2-k )4k 2+1, 解得k =-12,所以所求直线的方程为x +2y -4=0.法二:设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2), 因为P 为弦AB 的中点,所以x 1+x 2=4,y 1+y 2=2, 又因为A ,B 在椭圆上, 所以x 21+4y 21=16,x 22+4y 22=16, 两式相减,得(x 21-x 22)+4(y 21-y 22)=0, 即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, 所以y 1-y 2x 1-x 2=-(x 1+x 2)4(y 1+y 2)=-12,即k AB =-12. 所以所求直线的方程为y -1=-12(x -2),即x +2y -4=0.[一点通] 解决直线与圆锥曲线的位置关系时,一般采用“设而不求”的思想,将直线方程与圆锥曲线方程联成方程组,转化为一元二次方程,利用根与系数的关系,把已知条件转化为弦的端点坐标之间的关系求解,在涉及“中点弦”问题时,“点差法”是最常用的方法.6.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. 求证:(1)x 1x 2为定值;(2)1FA +1FB为定值.证明:(1)抛物线y 2=2px 的焦点为F ⎝ ⎛⎭⎪⎫p2,0,当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -p2)(k ≠0).由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去y ,得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系,得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p 2,x 1x 2=p 24也成立.(2)由抛物线的定义知,FA =x 1+p 2,FB =x 2+p2.1FA +1FB =1x 1+p 2+1x 2+p2 =x 1+x 2+p p2(x 1+x 2)+x 1x 2+p 24=x 1+x 2+p p2(x 1+x 2)+p 22=x 1+x 2+pp 2(x 1+x 2+p )=2p (定值).7.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同点A ,B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,若PA u u u r =512PB u u u r,求a 的值.解:(1)将y =-x +1代入双曲线x 2a2-y 2=1(a >0)中得(1-a 2).x 2+2a 2x -2a 2=0.所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2,且a ≠1.又双曲线的离心率e =1+a2a=1a 2+1,所以e >62,且e ≠ 2. (2)设A (x 1,y 1),B (x 2,y 2),P (0,1),因为PA u u u r =512PB u u u r,所以(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2.由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根,且1-a 2≠0,所以1712x 2=-2a21-a2,512x 22=-2a21-a2. 消去x 2,得-2a 21-a 2=28960.由a >0,解得a =1713. 8.(陕西高考)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.解: (1)如图,设动圆圆心O 1(x ,y ),由题意得,O 1A =O 1M . 当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴O 1M = x 2+42, 又O 1A = (x -4)2+y 2, ∴(x -4)2+y 2= x 2+42, 化简得y 2=8x (x ≠0).当O 1在y 轴上时,O 1与O 重合,点O 1的坐标(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明:如图,由题意,设直线l 的方程为y =kx +b (k ≠0),P (x 1,y 1),Q (x 2,y 2),将y =kx +b 代入y 2=8x 中,得k 2x 2+(2bk -8)·x +b 2=0, 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk2,① x 1x 2=b 2k2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0,(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0,③将①②代入③,得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0, ∴直线l 的方程为y =k (x -1), ∴直线l 过定点(1,0).讨论直线与圆锥曲线的位置关系时,先联立方程,消去x 或y ,得出一个一元二次方程,通过研究判别式Δ的情况,研究位置关系,值得注意的是,若是直线与圆或椭圆时,无需讨论二次项系数是否为零(一定不为零),直接考察Δ的情况即可.若是直线与双曲线或抛物线时,则需讨论二次项系数等于零和不等于零两种情况.这是特别要注意的问题.同时还要注意直线斜率不存在时的情形.[对应课时跟踪训练(十七)]1.曲线x 2-xy -y 2-3x +4y -4=0与x 轴的交点坐标是________. 解析:当y =0时,得x 2-3x -4=0, 解得x 1=4或x 2=-1.所以交点坐标为(4,0)和(-1,0). 答案:(4,0),(-1,0)2.曲线x 2+y 2=4与曲线x 2+y 29=1的交点个数为________. 解析:由数形结合可知两曲线有4个交点. 答案:43.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.解析:由y 2=8x ,得准线方程为x =-2. 则Q 点坐标为(-2,0). 设直线y =k (x +2).由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0.若直线l 与y 2=8x 有公共点, 则Δ=(4k 2-8)2-16k 4≥0. 解得-1≤k ≤1. 答案:[-1,1]4.曲线y =x 2-x +2和y =x +m 有两个不同的公共点,则实数m 的范围是________.解析:由⎩⎪⎨⎪⎧y =x +m ,y =x 2-x +2,消去y ,得x 2-2x +2-m =0.若有两个不同的公共点,则Δ=4-4(2-m )>0, ∴m >1.答案:(1,+∞)5.如果椭圆x 236+y 29=1的一条弦被点(4,2)平分,那么这条弦所在直线的方程是 ________.解析:设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2). ∵P (4,2)为AB 中点,∴x 1+x 2=8,y 1+y 2=4. 又∵A ,B 在椭圆上,∴x 21+4y 21=36,x 22+4y 22=36. 两式相减得(x 21-x 22)+4(y 21-y 22)=0, 即(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0, ∴y 1-y 2x 1-x 2=-(x 1+x 2)4(y 1+y 2)=-12. 即直线l 的斜率为-12.∴所求直线方程为x +2y -8=0. 答案:x +2y -8=06.已知椭圆的中心在原点,焦点在x 轴上,长轴长为42,离心率为64. (1)求椭圆的标准方程;(2)直线l 与该椭圆交于M 、N 两点,MN 的中点为A (2,-1),求直线l 的方程. 解:(1)由题意2a =42, ∴a =22,又e =c a =c 22=64,∴c = 3.∴b 2=a 2-c 2=8-3=5.故所求椭圆的标准方程为x 28+y 25=1.(2)∵点A 在椭圆内部,∴过A 点的直线必与椭圆有两交点.当直线斜率不存在时,A 点不可能为弦的中点,故可设直线方程为y +1=k (x -2),它与椭圆的交点分别为M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y +1=k (x -2),x 28+y25=1.消去y 得(8k 2+5)x 2-16k (2k +1)x +8[(2k +1)2-5]=0, ∴x 1+x 2=16k (2k +1)8k 2+5, 又∵A (2,-1)为弦MN 的中点, ∴x 1+x 2=4,即16k (2k +1)8k 2+5=4, ∴k =54,从而直线方程为5x -4y -14=0.7.已知椭圆C 1与抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:(1)求C 1,C 2(2)请问是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同两点M ,N 且满足OM u u u u r ⊥ON u u u r?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)设抛物线C 2:y 2=2px (p ≠0),则有y 2x=2p (x ≠0),据此验证4个点知(3,-23),(4,-4)在抛物线上,易求C 2:y 2=4x .设C 1:x 2a 2+y 2b 2=1(a >b >0),把点(-2,0),⎝⎛⎭⎪⎫2,22代入得⎩⎪⎨⎪⎧4a 2=1,2a 2+12b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.∴C 1的方程为x 24+y 2=1.(2)容易验证直线l 的斜率不存在时,不满足题意;当直线l 的斜率存在时,假设存在直线l 过抛物线焦点F (1,0),设其方程为y =k (x -1),与C 1的交点坐标为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -1)消去y 得,(1+4k 2)x 2-8k 2x +4(k 2-1)=0,于是x 1+x 2=8k 21+4k 2,x 1x 2=4(k 2-1)1+4k 2. ①所以y 1y 2=k (x 1-1)·k (x 2-1) =k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎫4(k 2-1)1+4k 2-8k 21+4k 2+1=-3k 21+4k 2. ② 由OM u u u u r ⊥ON u u u r ,即OM u u u u r ·ON u u u r=0,得x 1x 2+y 1y 2=0. ③将①②代入③式得,4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0,解得k =±2.所以存在直线l 满足条件,且l 的方程为:y =2x -2或y =-2x +2.8.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.解:(1)由题意设椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0).由题意得a +c =3,a -c =1, ∴a =2,c =1,b 2=3. ∴椭圆的标准方程为x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1得,(3+4k 2)x 2+8mkx +4(m 2-3)=0, ∴Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0, 即3+4k 2-m 2>0.∴x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k2.y 1y 2=(kx 1+m )·(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k2. ∵以AB 为直径的圆过椭圆的右顶点D (2,0),k AD ·k BD =-1,∴y 1x 1-2·y 2x 2-2=-1,化简得 y 1y 2+x 1x 2-2(x 1+x 2)+4=0,即3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,化简得7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且满足3+4k 2-m 2>0.当m =-2k 时,l :y =k (x -2),直线过定点(2,0),与已知矛盾; 当m =-2k 7时,l :y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0. 综上可知,直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0.。

数学苏教版选修21课件:第2章2.6.3 曲线的交点

数学苏教版选修21课件:第2章2.6.3 曲线的交点
栏目 导引
∵Δ=(12k)2-4×6(2+3k2)=24(3k2-2),
∴当 3k2-2>0,即 k> 36或 k<- 36时,直线与曲线有两个 公共点;
当 3k2-2=0,即 k=±36时,直线与曲线仅有一个公共点; 当 3k2-2<0,即- 36<k< 36时,直线与曲线没有公共点.
[方法归纳] 直线与圆锥曲线的公共点问题,往往解由直线方程与圆锥曲 线的方程组成的方程组并消去x(或y)后,得到一个形式上为 一元二次的方程,这个方程是否为二次方程要看二次项的系 数是否为零(有时需讨论),是二次方程时还要判断“Δ”与 “0”的大小关系.
3x621 +y921=1, 则有 3x622 +y922=1,
两式相减得x22- 36x21+y22-9 y12=0, 整理得 kAB=xy22--yx11=-396((xy22++xy11)), 由于 P(4,2)是 AB 的中点, ∴x1+x2=8,y1+y2=4, 于是 kAB=-396××84=-12,
于是直线 AB 的方程为 y-2=-12(x-4),
即 x+2y-8=0.
[方法归纳] 处理直线与圆锥曲线相交的关系问题的通法是通过解直线与 圆锥曲线构成的方程.利用根与系数的关系或中点坐标公式 解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐 标,代入曲线方程,两式相减即得弦的中点与斜率的关系.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/102021/9/102021/9/102021/9/109/10/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月10日星期五2021/9/102021/9/102021/9/10 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/102021/9/102021/9/109/10/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/102021/9/10September 10, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/102021/9/102021/9/102021/9/10 • You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。 •

高二数学 教案 2.6.3 曲线的交点_苏教版_选修2-1

高二数学  教案  2.6.3 曲线的交点_苏教版_选修2-1

§2.6.3 曲线的交点编写:江凤琴 审核:黄爱华一、知识要点:求两条曲线的交点就是求方程组12()0()0f x y f x y =⎧⎨=⎩、、的实数解。

二、典型例题:例1 已知(如图)探照灯的轴截面是抛物线x y =2,平行于x 的轴的光线照射到抛物线上的点P(1,-1),反射光线过抛物线焦点后又照射到抛物线上的Q 点。

试确定点Q 的坐标.例2 在长、宽分别为10m 、18m 的矩形地块内,欲开凿一花边水池,池边由两个椭圆组成(如图),试确定两个椭圆的四个交点的位置.例3 若抛物线22++=mx x y 与以A (0,1),B (2,3)为端点的线段AB 有两个不同的交点,求实数m 的取值范围.三、巩固练习:2、曲线52422=+y x 与曲线3722=+y x 的交点个数是 .2、若两条直线02=+-k y x 与01=--y x 的交点在曲线122=+y x 上,则k 的值是 . 3、已知直线m x y +=与曲线22+-=x x y 有两个公共点,求m 的取值范围.四、小结:高二数学选修2-1教学案23五、课后作业:1.曲线03322=++x y 与曲线05422=--+x y x 的公共点的个数是 2.直线23+=x y 被曲线221x y =截得的线段的中点到原点的距离是 3.若直线1+=kx y 与曲线022=-++y kx y x 的两个交点恰好关于y 轴对称,则k 等于 4.抛物线2x y =与直线1-=kx y 无交点,则实数k 的取值范围是5.已知A (-2,3)、B (3,1),直线b x y +=与线段AB 有公共点,则b 的取值范围是6.求直线032=-+y x 被曲线xy 5-=截得的线段长 7、已知直线b x y +=与抛物线y x 22=交于A ,B 两点,且O A ⊥OB (O 为坐标原点),求b 的值.8.若直线3+=kx y 与14922=-y x 有一个公共点,求k 的值9.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且B C ∥x 轴,证明:直线AC 经过原点O .订正栏:。

高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

高中数学 第二章《圆锥曲线与方程》2.1圆锥曲线学案 新人教版选修2-1

第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。

高中数学 第2章 圆锥曲线与方程 2.6.2 求曲线的方程 2.6.3 曲线的交点学案 苏教版选修2

高中数学 第2章 圆锥曲线与方程 2.6.2 求曲线的方程 2.6.3 曲线的交点学案 苏教版选修2

2.6.2 求曲线的方程 2.6.3 曲线的交点学习目标 1.了解求曲线方程的步骤,会求简单曲线的方程.2.掌握求两条曲线交点的方法.3.领会运用坐标法研究直线与圆锥曲线的位置关系.知识点一 坐标法的思想思考1 怎样理解建立平面直角坐标系是解析几何的基础?答案 只有建立了平面直角坐标系,才有点的坐标,才能将曲线代数化,进一步用代数法研究几何问题.思考2 依据一个给定的平面图形,选取的坐标系唯一吗? 答案 不唯一,常以得到的曲线方程最简单为标准.梳理 (1)坐标法:借助于坐标系,通过研究方程的性质间接地来研究曲线性质的方法. (2)解析几何研究的主要问题:①通过曲线研究方程:根据已知条件,求出表示曲线的方程. ②通过方程研究曲线:通过曲线的方程,研究曲线的性质. 知识点二 求曲线的方程的步骤 1.建系:建立适当的坐标系.2.设点:设曲线上任意一点M 的坐标为(x ,y ). 3.列式:列出符合条件p (M )的方程f (x ,y )=0. 4.化简:化方程f (x ,y )=0为最简形式.5.证明:证明以化简后的方程的解为坐标的点都在曲线上. 知识点三 曲线的交点已知曲线C 1:f 1(x ,y )=0和C 2:f 2(x ,y )=0.(1)P 0(x 0,y 0)是C 1和C 2的公共点⇔⎩⎪⎨⎪⎧f 1(x 0,y 0)=0.f 2(x 0,y 0)=0,(2)求两曲线的交点,就是求方程组⎩⎪⎨⎪⎧f 1(x ,y )=0,f 2(x ,y )=0的实数解.(3)方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点.1.x 2+y 2=1(x >0)表示的曲线是单位圆.(×)2.若点M (x ,y )的坐标是方程f (x ,y )=0的解,则点M 在曲线f (x ,y )=0上.(√)3.方程y =x 与方程y =x 2x表示同一曲线.(×)4.曲线xy =2与直线y =x 的交点是(2,2).(×)类型一 直接法求曲线的方程例1 一个动点P 到直线x =8的距离是它到点A (2,0)的距离的2倍.求动点P 的轨迹方程. 解 设P (x ,y ),则|8-x |=2PA . 则|8-x |=2(x -2)2+(y -0)2, 化简,得3x 2+4y 2=48,故动点P 的轨迹方程为3x 2+4y 2=48. 引申探究若本例中的直线改为“y =8”,求动点P 的轨迹方程. 解 设P (x ,y ),则P 到直线y =8的距离d =|y -8|, 又PA =(x -2)2+(y -0)2, 故|y -8|=2(x -2)2+(y -0)2, 化简,得4x 2+3y 2-16x +16y -48=0.故动点P 的轨迹方程为4x 2+3y 2-16x +16y -48=0. 反思与感悟 直接法求动点轨迹的关键及方法 (1)关键:①建立恰当的平面直角坐标系; ②找出所求动点满足的几何条件.(2)方法:求曲线的方程遵循求曲线方程的五个步骤,在实际求解时可简化为三大步骤:建系、设点;根据动点满足的几何条件列式;对所求的方程化简、证明. 特别提醒:直接法求动点轨迹方程的突破点是将几何条件代数化.跟踪训练1 已知两点M (-1,0),N (1,0),且点P 使MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列.求点P 的轨迹方程. 解 设点P (x ,y ),由M (-1,0),N (1,0), 得PM →=-MP →=(-1-x ,-y ),PN →=-NP →=(1-x ,-y ), MN →=-NM →=(2,0).∴MP →·MN →=2(x +1),PM →·PN →=x 2+y 2-1,NM →·NP →=2(1-x ).于是,MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列等价于 ⎩⎪⎨⎪⎧x 2+y 2-1=12[2(x +1)+2(1-x )],2(1-x )-2(x +1)<0,即⎩⎪⎨⎪⎧x 2+y 2=3,x >0.∴点P 的轨迹方程为x 2+y 2=3(x >0). 类型二 相关点法求解曲线的方程例2 动点M 在曲线x 2+y 2=1上移动,M 和定点B (3,0)连线的中点为P ,求P 点的轨迹方程. 解 设P (x ,y ),M (x 0,y 0),因为P 为MB 的中点,所以⎩⎪⎨⎪⎧x =x 0+32,y =y2,即⎩⎪⎨⎪⎧x 0=2x -3,y 0=2y ,又因为M 在曲线x 2+y 2=1上, 所以(2x -3)2+4y 2=1.所以P 点的轨迹方程为(2x -3)2+4y 2=1. 反思与感悟 相关点法求解轨迹方程的步骤 (1)设动点P (x ,y ),相关动点M (x 0,y 0).(2)利用条件求出两动点坐标之间的关系⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y ).(3)代入相关动点的轨迹方程. (4)化简、整理,得所求轨迹方程.跟踪训练2 已知△ABC 的两顶点A ,B 的坐标分别为A (0,0),B (6,0),顶点C 在曲线y =x 2+3上运动,求△ABC 重心的轨迹方程.解 设G (x ,y )为△ABC 的重心,顶点C 的坐标为(x ′,y ′),则由重心坐标公式,得⎩⎪⎨⎪⎧x =0+6+x ′3,y =0+0+y ′3,所以⎩⎪⎨⎪⎧x ′=3x -6,y ′=3y .因为顶点C (x ′,y ′)在曲线y =x 2+3上, 所以3y =(3x -6)2+3, 整理,得y =3(x -2)2+1.故ΔABC 重心的轨迹方程为y =3(x -2)2+1. 类型三 根据曲线的方程求两曲线的交点例3 过点M (1,2)的直线与曲线y =ax(a ≠0)有两个不同的交点,且这两个交点的纵坐标之和为a ,求a 的取值范围.解 当过M 点的直线斜率为零或斜率不存在时, 不可能与曲线有两个公共点. 设直线方程为y -2=k (x -1)(k ≠0),联立曲线方程,得⎩⎪⎨⎪⎧y -2=k (x -1),y =ax,消去x ,得y 2-(2-k )y -ka =0.①当此方程有两个不同的根,即方程组有两个不同的解时,直线与曲线有两个不同的交点. ∴Δ=(2-k )2+4ka >0. 设方程①的两根分别为y 1,y 2, 由根与系数的关系,得y 1+y 2=2-k . 又∵y 1+y 2=a ,∴k =2-a , 代入Δ>0中,得a 2+4a (2-a )>0, 解得0<a <83.又∵k ≠0,∴2-a ≠0,即a ≠2.∴a 的取值范围是(0,2)∪⎝ ⎛⎭⎪⎫2,83.反思与感悟 结合曲线方程的定义,两曲线的交点的坐标即为两曲线的方程构成的方程组的解,所以可以把求两曲线交点坐标的问题转化为解方程组的问题,讨论交点的个数问题转化为讨论方程组解的个数问题.若两曲线C 1和C 2的方程分别为F (x ,y )=0和G (x ,y )=0,则它们的交点坐标由方程组⎩⎪⎨⎪⎧F (x ,y )=0,G (x ,y )=0的解来确定.跟踪训练3 已知直线y =2x +b 与曲线xy =2相交于A ,B 两点,若AB =5,求实数b 的值. 解 设A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎪⎨⎪⎧y =2x +b ,xy =2,消去y ,整理得2x 2+bx -2=0.①∵x 1,x 2是关于x 的方程①的两根, ∴x 1+x 2=-b2,x 1x 2=-1. 又AB =(x 1-x 2)2+(y 1-y 2)2=1+k2(x 1+x 2)2-4x 1x 2,其中k =2,代入则有AB =1+22·b 2+162=5,∴b 2=4,则b =±2.故所求b 的值为±2.1.直线y =x +4与双曲线x 2-y 2=1的交点坐标为________.答案 ⎝ ⎛⎭⎪⎫-178,158 解析 由⎩⎪⎨⎪⎧y =x +4,x 2-y 2=1得x 2-(x +4)2-1=0,即⎩⎪⎨⎪⎧x =-178,y =158.2.已知斜率为2的直线l 经过椭圆x 25+y 24=1的右焦点F 2,则直线l 与椭圆的交点坐标为________.答案 (0,-2),⎝ ⎛⎭⎪⎫53,43 解析 因F 2(1,0),l 方程为y =2x -2.由方程组⎩⎪⎨⎪⎧y =2x -2,x 25+y24=1,解得⎩⎪⎨⎪⎧x =0,y =-2或⎩⎪⎨⎪⎧x =53,y =43,故所得交点坐标为(0,-2),⎝ ⎛⎭⎪⎫53,43.3.直线x a +y2-a=1与x ,y 轴交点的中点的轨迹方程是________________.答案 x +y -1=0(x ≠0,x ≠1) 解析 设直线x a +y2-a=1与x ,y 轴交点为A (a,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1.∵a ≠0,a ≠2,∴x ≠0,x ≠1.4.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ′所引的切线长相等,则动点P 的轨迹方程是________. 答案 x =32解析 设动点P (x ,y ),则x 2+y 2-2=(x -4)2+y 2-6, 化简整理得x =32.5.M 为直线l :2x -y +3=0上的一动点,A (4,2)为一定点,又点P 在直线AM 上运动,且AP →=3PM →,求动点P 的轨迹方程.解 设点M ,P 的坐标分别为M (x 0,y 0),P (x ,y ),由题设及向量共线条件可得⎩⎪⎨⎪⎧4x =4+3x 0,4y =3y 0+2,所以⎩⎪⎨⎪⎧x 0=4x -43,y 0=4y -23,因为点M (x 0,y 0)在直线2x -y +3=0上,所以2×4x -43-4y -23+3=0,即8x -4y +3=0,从而点P 的轨迹方程为8x -4y +3=0.求解轨迹方程常用方法:(1)直接法:直接根据题目中给定的条件求解方程.(2)定义法:依据有关曲线的性质建立等量关系,从而确定其轨迹方程.(3)代入法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法或代入法.(4)待定系数法:根据条件能知道曲线的类型,可先根据曲线方程的一般形式设出方程,再根据条件确定待定的系数.一、填空题1.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是________. 答案 (x -2)2+(y +1)2=1解析 设中点的坐标为(x ,y ),则相应圆x 2+y 2=4上的点的坐标为(2x -4,2y +2), 所以(2x -4)2+(2y +2)2=4, 即(x -2)2+(y +1)2=1.2.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 答案π3或5π3解析 由(cos α-2)2+sin 2α=3,得cos α=12.又因为0≤α<2π, 所以α=π3或α=5π3.3.已知直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围为________. 答案 [1,2)解析 在同一直角坐标系内作出y =x +b 与y =1-x 2的图象,如图所示,可得b 的范围为1≤b < 2.4.直线y =mx +1与椭圆x 2+4y 2=1有且只有一个交点,则m 2的值为________. 答案 34解析 因为直线与椭圆只有一个交点,由⎩⎪⎨⎪⎧y =mx +1,x 2+4y 2=1,消去y 得(1+4m 2)x 2+8mx +3=0,所以由Δ=(8m )2-12(1+4m 2)=16m 2-12=0, 解得m 2=34.5.已知定点A (0,1),直线l 1:y =-1,记过点A 且与直线l 1相切的圆的圆心为点C .则动点C 的轨迹E 的方程为________. 答案 x 2=4y解析 设动点C (x ,y ),根据题意可知,点C 到点A 的距离与到直线l 1:y =-1的距离相等,所以x 2+(y -1)2=|y +1|, 两边平方整理得x 2=4y .6.已知点A (-1,0),B (1,0),且MA →·MB →=0,则动点M 的轨迹方程是________. 答案 x 2+y 2=1解析 设动点M (x ,y ),则MA →=(-1-x ,-y ),MB →=(1-x ,-y ).由MA →·MB →=0,得(-1-x )(1-x )+(-y )·(-y )=0, 即x 2+y 2=1.7.已知点F (1,0),直线l :x =-1,P 为平面上的一动点,过点P 作l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →.则动点P 的轨迹C 的方程是________. 答案 y 2=4x解析 设点P (x ,y ),则Q (-1,y ). 由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),所以2(x +1)=-2(x -1)+y 2, 化简得y 2=4x .8.已知两点A (2,0),B (-2,0),点P 为平面内一动点,过点P 作y 轴的垂线,垂足为Q ,且PA →·PB →=2PQ →2,则动点P 的轨迹方程为________. 答案 y 2-x 2=2解析 设动点P 的坐标为(x ,y ), 则点Q 的坐标为(0,y ), PQ →=(-x,0),PA →=(2-x ,-y ), PB →=(-2-x ,-y ),PA →·PB →=x 2-2+y 2.由PA →·PB →=2PQ →2,得x 2-2+y 2=2x 2, 所以所求动点P 的轨迹方程为y 2-x 2=2.9.已知直线x -y -1=0与抛物线y =ax 2相切,则a =________. 答案 14解析 由⎩⎪⎨⎪⎧x -y -1=0,y =ax 2,消去y 得方程ax 2-x +1=0.令Δ=1-4a =0,得a =14.10.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.过F 1作倾斜角为30°的直线与椭圆的一个交点P ,且PF 2⊥x 轴,则此椭圆的离心率e 为________. 答案33解析 由题意得PF 2=b 2a ,PF 1=2b2a,由椭圆定义得3b 2a=2a,3b 2=3a 2-3c 2=2a 2,则此椭圆的离心率e 为33. 11.已知过抛物线y 2=6x 焦点的弦长为12,则该弦所在直线的倾斜角是________. 答案 45°或135°解析 由y 2=6x 得焦点坐标为⎝ ⎛⎭⎪⎫32,0,设直线方程y =k ⎝ ⎛⎭⎪⎫x -32, 由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -32,y 2=6x ,得k 2x 2-(6+3k 2)x +94k 2=0,设直线与抛物线的交点为A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=6+3k2k2,∵弦长为12,∴6+3k2k2+3=12,∴k =±1,∴直线的倾斜角为45°或135°.二、解答题12.在平面直角坐标系中,已知点F (0,2),一条曲线在x 轴的上方,它上面的每一点到F 的距离减去到x 轴的距离的差都是2,求这条曲线的方程. 解 设点M (x ,y )是所求曲线上任意一点, 因为曲线在x 轴的上方,所以y >0.过点M 作MB ⊥x 轴,垂足是点B ,则MF -MB =2, 即x 2+(y -2)2-y =2, 整理得x 2+(y -2)2=(y +2)2, 化简得y =18x 2,所以所求曲线的方程是y =18x 2(x ≠0).13.已知线段AB ,B 点的坐标为(6,0),A 点在曲线y =x 2+3上运动,求线段AB 的中点M 的轨迹方程.解 设线段AB 的中点M 的坐标为(x ,y ),点A (x 1,y 1),则⎩⎪⎨⎪⎧x =x 1+62,y =y 12,得⎩⎪⎨⎪⎧ x 1=2x -6,y 1=2y . 由题知点A (x 1,y 1)在曲线y =x 2+3上, 所以2y =(2x -6)2+3,所以线段AB 的中点M 的轨迹方程为y =2(x -3)2+32. 三、探究与拓展14.过点P (0,1)的直线与曲线|x |-1=1-(1-y )2相交于A ,B 两点,则线段AB 长度的取值范围是____________.答案 [22,4]解析 曲线|x |-1=1-(1-y )2可化为x ≥1,(x -1)2+(y -1)2=1,或x <-1,(x +1)2+(y -1)2=1,图象如图所示,线段AB 长度的取值范围是[22,4].15.已知直角坐标平面上点Q (2,0)和圆O :x 2+y 2=1,M 为直角坐标平面内一动点,过点M 作圆O 的切线,切点为N ,若MN 和MQ 的比值等于常数λ(λ>0),求动点M 的轨迹方程,并说明它表示什么曲线.解 连结ON ,OM ,则ON ⊥MN ,设M (x ,y ).∵圆的半径是1,∴MN 2=OM 2-ON 2=OM 2-1.由题意,MN MQ=λ(λ>0),∴MN =λMQ ,即x 2+y 2-1=λ(x -2)2+y 2,整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0.∵λ>0,∴当λ=1时,方程化为x =54, 该方程表示一条直线;当λ≠1时,方程化为⎝ ⎛⎭⎪⎫x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2, 该方程表示以⎝ ⎛⎭⎪⎫2λ2λ2-1,0为圆心,以1+3λ2|λ2-1|为半径的圆.。

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6.3 曲线的交点[学习目标] 1.掌握直线与曲线的交点的求解方程.2.会求曲线与曲线的交点问题.3.会解决有关曲线的交点的实际应用.知识点一 直线与曲线的交点求解直线与曲线的交点问题时通常将直线方程与曲线方程联立起来后得到一个二次方程.利用二次方程的判别式确定交点的个数. Δ>0⇔两个交点 Δ=0⇔一个交点 Δ<0⇔无交点知识点二 曲线与曲线的交点(1)判断曲线与曲线的交点个数,通常将两曲线方程联立起来解方程组得交点坐标. (2)可以将两条曲线画在同一坐标系内确定两曲线的交点个数. 思考1.直线与椭圆有几个交点?答案 两个交点、一个交点和无交点. 2.直线与双曲线和抛物线何时仅有一个交点?答案 直线与双曲线和抛物线相切或直线与双曲线渐近线平行以及直线与抛物线对称轴平行时仅有一个交点.题型一 直线与曲线的交点问题例1 k 为何值时,直线y =kx +2和曲线2x 2+3y 2=6有两个公共点?有一个公共点?没有公共点?解 依题意得方程组⎩⎪⎨⎪⎧y =kx +2, ①2x 2+3y 2=6,②①代入②整理得(2+3k 2)x 2+12kx +6=0. ∵Δ=(12k )2-4×6(2+3k 2)=24(3k 2-2), ∴当3k 2-2>0,即k >63或k <-63时,直线与曲线有两个公共点;当3k 2-2=0,即k =±63时,直线与曲线仅有一个公共点; 当3k 2-2<0,即-63<k <63时,直线与曲线没有公共点. 反思与感悟 直线与圆锥曲线的公共点问题,往往解由直线方程与圆锥曲线的方程组成的方程组并消去x (或y )后,得到一个形式上为一元二次的方程,这个方程是否为二次方程要看二次项的系数是否为零(有时需讨论),是二次方程时还要判断“Δ”与“0”的大小关系. 跟踪训练1 直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 分别相切、相交、相离?解 将直线l 和抛物线C 的方程联立⎩⎪⎨⎪⎧ y =kx +1,y 2=4x ,①②①式代入②式,并整理,得k 2x 2+(2k -4)x +1=0. (1)当k ≠0时,是一元二次方程, ∴Δ=(2k -4)2-4k 2=16(1-k ). 当Δ=0,即k =1时,l 与C 相切. 当Δ>0,即k <1时,l 与C 相交. 当Δ<0,即k >1时,l 与C 相离.(2)当k =0时,直线l :y =1与曲线C :y 2=4x 相交.综上所述,当k <1时,l 与C 相交,当k =1时,l 与C 相切,当k >1时,l 与C 相离. 题型二 弦长问题例2 顶点在原点,焦点在y 轴上的抛物线被直线x -2y -1=0截得的弦长为15,求抛物线方程.解 设抛物线方程为x 2=ay (a ≠0),由方程组⎩⎪⎨⎪⎧x 2=ay ,x -2y -1=0.消去y 得:2x 2-ax +a =0,∵直线与抛物线有两个交点, ∴Δ=(-a )2-4×2×a >0,即a <0或a >8. 设两交点坐标为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=a 2,x 1x 2=a 2,y 1-y 2=12(x 1-x 2),弦长为AB =x 1-x 22+y 1-y 22=54x 1-x 22=54x 1+x 22-4x 1x 2]=14a 2-8a .∵AB =15, ∴14a 2-8a =15,即a 2-8a -48=0,解得a =-4或a =12. ∴所求抛物线方程为x 2=-4y 或x 2=12y .反思与感悟 求直线被双曲线截得的弦长,一般利用弦长公式AB =1+k 2|x 1-x 2|=1+1k 2|y 1-y 2|及公式|x 1-x 2|=b 2-4ac|a |较为简单. 跟踪训练2 已知直线y =2x +b 与曲线xy =2相交于A 、B 两点,若AB =5,求实数b 的值. 解 设A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎪⎨⎪⎧y =2x +b ,xy =2,消去y ,整理得2x 2+bx -2=0.①∵x 1、x 2是关于x 的方程①的两根, ∴x 1+x 2=-b2,x 1x 2=-1. 又AB =1+k2x 1+x 22-4x 1x 2,其中k =2,代入则有AB =1+22·b 2+162=5,∴b 2=4,则b =±2.故所求b 的值为±2.题型三 与弦的中点有关的问题例3 抛物线y 2=8x 上有一点P (2,4),以点P 为一个顶点,作抛物线的内接△PQR ,使得△PQR 的重心恰好是抛物线的焦点,求QR 所在的直线的方程. 解 抛物线y 2=8x 的焦点为F (2,0).∵F 为△PQR 的重心,∴QR 的中点为M (2,-2),如图所示.设Q (x 1,y 1)、R (x 2,y 2),则有⎩⎪⎨⎪⎧y 21=8x 1, ①y 22=8x 2,②①-②,得y 21-y 22=8(x 1-x 2). 又y 1+y 2=-4, ∴直线QR 的斜率为k =y 1-y 2x 1-x 2=8y 1+y 2=8-4=-2. ∴QR 所在直线的方程为y +2=-2(x -2), 即2x +y -2=0.反思与感悟 本题设出Q 、R 的坐标,得出y 21=8x 1,y 22=8x 2,再作差的解法称为点差法,点差法是解决圆锥曲线的中点弦问题的有效方法,应熟练掌握它.跟踪训练3 直线l 与抛物线y 2=4x 交于A 、B 两点,AB 中点坐标为(3,2),求直线l 的方程.解 设A (x 1,y 1)、B (x 2,y 2),则y 21=4x 1,y 22=4x 2,相减,得(y 1-y 2)(y 1+y 2)=4(x 1-x 2), 又因为y 1+y 2=4,所以k AB =y 1-y 2x 1-x 2=1. 所以直线l 的方程为y -2=x -3,即x -y -1=0.1.以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同的点,顺次连结这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________. 答案3-1解析 2a =c +3c ,e =ca=3-1.2.已知两条直线2x -y +m =0与x -y -1=0的交点在曲线x 2+y 2=1上,则m 的值为________. 答案 -1或-2解析 由⎩⎪⎨⎪⎧2x -y +m =0,x -y -1=0得交点为(-m -1,-m -2)将交点代入方程x 2+y 2=1中得(-m -1)2+(-m -2)2=1, 化简得:m 2+3m +2=0,∴m =-1或m =-2.3.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2.过F 1作倾斜角为30°的直线与椭圆的一个交点P ,且PF 2⊥x 轴,则此椭圆的离心率e 为________. 答案33解析 由题意得PF 2=b 2a ,PF 1=2b2a,由椭圆定义得3b 2a=2a,3b 2=3a 2-3c 2=2a 2,则此椭圆的离心率e 为33. 4.双曲线的焦点在y 轴上,且它的一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,离心率e =53,则此双曲线的方程是____________.答案y 236-x 264=1 解析 焦点坐标为(0,10), 故c =10,a =6,b =8.5.抛物线x 2=-4y 与过焦点且垂直于对称轴的直线交于A ,B 两点,则AB =________. 答案 4解析 由抛物线方程x 2=-4y 得p =2,且焦点坐标为(0,-1),故A ,B 两点的纵坐标都为-1,从而AB =|y 1|+|y 2|+p =1+1+2=4.1.解方程组⎩⎪⎨⎪⎧Ax +By +C =0,f x ,y =0时,若消去y ,得到关于x 的方程ax 2+bx +c =0,这时,要考虑a =0和a ≠0两种情况,对双曲线和抛物线而言,一个公共点的情况要考虑全面,除a ≠0,Δ=0外,当直线与双曲线的渐近线平行时,只有一个交点;当直线与抛物线的对称轴平行时,只有一个交点(Δ=0不是直线和抛物线只有一个公共点的充要条件). 2.求解与弦长有关的问题,一般用“根与系数的关系”来处理,即联立方程组⎩⎪⎨⎪⎧Ax +By +C =0,f x ,y =0消去y ,得ax 2+bx +c =0(a ≠0),设其两根为x 1,x 2,则P 1P 2=1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2]=+k2b 2a 2-4ca. 3.求解与弦的中点有关的问题,除可用“根与系数的关系”外,还可以用“平方差法”(设而不求).即设P 1(x 1,y 1)、P 2(x 2,y 2)是圆锥曲线mx 2+ny 2=1上两点,P 0(x 0,y 0)是弦P 1P 2的中点,则由mx 21+ny 21=1,mx 22+ny 22=1相减,得m (x 1+x 2)(x 1-x 2)+n (y 1+y 2)(y 1-y 2)=0,从而kP 1P 2=y 1-y 2x 1-x 2=-mx 0ny 0.。

相关文档
最新文档