高中数学必修一典型题目复习1

合集下载

【人教A版】高中数学必修一第一、二章复习题(含答案)

【人教A版】高中数学必修一第一、二章复习题(含答案)

人教A 版必修一第一、二章阶段性复习试题一、选择题1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则u C A =( )A. {}2,4,6B. {}1,3,6,7C. {}1,3,5,7D. ∅ 2.下列函数中,在区间(0,)+∞上是增函数的是( )A. 21y x =-+B.23y x =-+C. 3log y x =D.1()2x y =3.函数f (x 3log (4)x -的定义域是( )A. ∅ B .()1,4 C. [)1,4 D. (-∞,1) [4,+∞]4.下列四组函数中表示同一函数的是( )(A )f (x )=x ,g (x )=2)x ( (B )f (x )=x 2,g (x )=xx 3(C )f (x )=2x ,g (x )=|x| (D )f (x )=0,g (x )=4x -+x 4-5.若==x x 则,25102( ) A 、51lgB 、5lgC 、5lg 2D 、51lg 2 6.函数223,[0,3]y x x x =-++∈的值域是( )A.(,4]-∞ B [4,)+∞ C.[0,3] D.[0,4]7.⎩⎨⎧>≤=0,log 0,3)(2x x x x f x 则)]41([f f =( )A 、9B 、91C 、1D 、 3 8.已知()bx ax x f +=2是定义在[]a a 2,1-上的偶函数,那么b a +的值是( ) A.31-B.31C.21D.21- 9.三个数为0.233log 0.2,3,0.2a b c ===,则,,a b c 的大小关系为( ) A.a c b >> B.a b c << C. a c b << D. a b c >> 10.已知42()f x ax bx x m =+-+,(2)1f =,则(2)f -=( ) A.5 B.0 C. 3 D. -211.设奇函数()x f 在()0,∞-上为减函数,且()02=f ,则()()023>--xx f x f 的解集为( )A.()()+∞⋃-,20,2B.()()2,02,⋃-∞-C.()()∞+⋃-∞-.22.D.()()2,00,2⋃- 12. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是( ) A.0<m ≤4 B.0≤m ≤1 C.m ≥4 D.0≤m ≤4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.幂函数()f x 的图象过点,则()f x 的解析式_____________ 14. 已知()x f 是在R 上的奇函数,当0<x 时,()xx f ⎪⎭⎫⎝⎛=31,那么___________21=⎪⎭⎫⎝⎛f 15.设.__________,12154==+==m ba mb a 则且,. 16.设函数()f x x x bx c =++,给出下列4个命题:①0,0b c =>时,方程()0f x =只有一个实数根;②0c =时,()y f x =是奇函数;③()y f x =的图象关于点()0,c 对称;④方程()0f x =至多有2个不相等的实数根.上述命题中的所有正确命题的序号是 . 三、解答题 17.化简求值(1)10.500.25325277()()()16988----+(2)2(lg 2)lg 2lg50lg 25+•+18. 已知集合A ={x |2-a ≤x ≤2+a },B ={x |x ≤1,或x ≥4}.(1)当a =3时,求A ∩B ;(2)若A ∩B =∅,求实数a 的取值范围.19. 高一(1)班某个研究性学习小组进行市场调查,某生活用品在过去100天的销售量和价格均为时间t 的函数,且销售量近似地满足()()N t t t t g ∈≤≤+-=,1001110.前40天的价格为()()4018≤≤+=t t t f ,后60天的价格为()()10041695.0≤≤+-=t t t f . ⑴试写出该种生活用品的日销售额S 与时间t 的函数关系式; ⑴试问在过去100天中是否存在最高销售额,是哪天?20.已知f (x )=log 2(1+x )+log 2(1-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明; (3)求f ⎝⎛⎭⎪⎫22的值.21. (本小题满分12分)已知函数y =M 。

期末复习综合测试题(1)-【新教材】人教A版(2019)高中数学必修第一册

期末复习综合测试题(1)-【新教材】人教A版(2019)高中数学必修第一册

模块一测试题一一.选择题(共10小题)1.设集合2{|10}A x x =-=,则( ) A .A ∅∈B .1A ∈C .{1}A -∈D .{1-,1}A ∈2.命题“[1x ∀∈,2],220x a -”为真命题的一个充分不必要条件是( ) A .1a <B .2aC .3aD .4a3.若命题“[1x ∀∈,4]时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4-,3]-B .(,4)-∞-C .[4-,)+∞D .[4-,0]4.已知函数22()4(0)f x x ax a a =-+>的两个零点分别为1x ,2x ,则1212ax x x x ++的最小值为( ) A .8B .6C .4D .25.已知动点(,)a b 的轨迹为直线:124x yl +=在第一象限内的部分,则ab 的最大值为( ) A .1 B .2 C.D .46.设函数()f x 的图象与2x a y +=的图象关于直线y x =-对称,若2020m n +=,(2)(2)2m n f f -+-=,则(a = ) A .1011 B .1009C .1009-D .1011-7.已知(2πθ∈-,0),且3cos2cos()02πθθ++=,则sin()(4πθ+= ) ABCD8.已知函数()sin()cos()(06f x x x πωϕωϕω=++++>,0)3πϕ-<<,若点11(12π,0)为函数()f x 的对称中心,直线6x π=为函数()f x 的对称轴,并且函数()f x 在区间4(3π,3)2π上单调,则(2)(f ωϕ= )A .1-B .3C .12 D .12-二.多选题(共4小题)9.设集合{|4}x M y y e ==-+,{|[(2)(3)]}N x y lg x x ==+-,则下列关系正确的是( )A .R RM N ⊆B .N M ⊆C .M N =∅D .RN M ⊆10.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得AC a =,BC b =,过点C 作CD AB ⊥交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下面不能由OD CD 直接证明的不等式为( )A (0,0)2a baba b +>> B 2(0,0)ababa b a b>>+C .222(0,0)a bab a b +>>D .22(0,0)22a b a b a b ++>> 11.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x 时,2()2f x x x =+,则可作为方程()(1)f x f x =-实根的有( )A 13-- B .12C 13-+D 33+ 12.给出下列四个结论,其中正确的结论是( ) A .sin()sin παα+=-成立的条件是角α是锐角B .若1cos()()3n n Z πα-=∈,则1cos 3α=C .若()2Z πα≠∈,则1tan()2tan παα-+=D .若sin cos 1αα+=,则sin cos 1n n αα+= 三.填空题(共4小题)13.对于正数a ,a a a 可以用有理数指数幂的形式表示为 .14.若函数12|1|log (1),1021,0x x x y x m---<⎧⎪=⎨⎪-⎩的值域为[1-,1],则实数m 的取值范围为 .15.已知22log log 16sincos1212a b ππ+=⋅,则a b +的最小值为 .16.用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ,则a 的最大值为 .四.解答题(共8小题)17.某居民小区欲在一块空地上建一面积为21200m 的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:)m ,问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?18.已知a ,(0,)b ∈+∞,且24a 2b =.(Ⅰ)求21a b+的最小值; (Ⅱ)若存在a ,(0,)b ∈+∞,使得不等式21|1|3x a b-++成立,求实数x 的取值范围.19.已知函数212log (1)&0()log (1)&0x x f x x x +⎧⎪=⎨-<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>;(3)若关于x 的方程23[()]()04f x af x a +-+-=有两个不相等的正根,求实数a 取值范围.20.已知函数()sin (cos )f x x x x =+. (1)求()3f π的值及函数()f x 的单调增区间;(2)若[12x π∀∈,]2π,不等式()2m f x m <<+恒成立,求实数m 的取值集合.21.已知函数()sin()(0f x A x B A ωϕ=++>,0ω>,||)2πϕ<在一个周期内的最高点和最低点分别为(2,1),(8,3)-. (1)求函数()f x 的表达式;(2)求函数()f x 在区间[0,6]的最大值和最小值;(3)将()y f x =图象上的点的横坐标变为原来的6tπ倍(0)t >,纵坐标不变,再向上平移1个单位得到()y g x =的图象.若函数()y g x =在[0,]π内恰有4个零点,求t 的取值范围.22.已知函数()4cos sin()1()6f x x x x R π=-+∈,将函数()y f x =的图象向左平移6π个单位,得到函数()y g x =的图象.(1)求()3f π的值;(2)求函数()y g x =的解析式;(3)若0()2x f =0()g x .模块一测试题一参考答案与试题解析一.选择题(共10小题)1.设集合2{|10}A x x =-=,则( ) A .A ∅∈B .1A ∈C .{1}A -∈D .{1-,1}A ∈【分析】根据题意,用列举法表示集合A ,据此判断各选项,即可得答案. 【解答】解:根据题意,2{|10}{1A x x =-==-,1}, 对于A ,A ∅⊆,A 错误, 对于B ,1A ∈,B 正确, 对于C ,{1}A -⊆,C 错误, 对于D ,{1-,1}A =,D 错误, 故选:B .【点评】本题考查元素与集合的关系,涉及集合的表示方法,属于基础题. 2.命题“[1x ∀∈,2],220x a -”为真命题的一个充分不必要条件是( ) A .1a <B .2aC .3aD .4a【分析】求出函数恒成立的充要条件,根据集合的包含关系判断即可. 【解答】解:若[1x ∀∈,2],220x a -恒成立,则2(2)2min a x =,故命题“[1x ∀∈,2],220x a -”为真命题的充要条件是2a , 而(-∞,1)(⊆-∞,2],故命题“[1x ∀∈,2],220x a -”为真命题的一个充分不必要条件是1a <, 故选:A .【点评】本题考查了充分必要条件,考查集合的包含关系以及函数恒成立问题,是一道基础题.3.若命题“[1x ∀∈,4]时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4-,3]-B .(,4)-∞-C .[4-,)+∞D .[4-,0]【分析】根据全称命题是假命题,得到命题的否定是真命题,利用参数分离法进行求解即可. 【解答】解:若命题“[1x ∀∈,4]时,240x x m --≠”是假命题,则命题“[1x ∃∈,4]时,240x x m --=”是真命题 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x - 则40m -, 故选:D .【点评】本题主要考查命题真假的应用,利用全称命题的否定是特称命题转化为特称命题是解决本题的关键.难度中等.4.已知函数22()4(0)f x x ax a a =-+>的两个零点分别为1x ,2x ,则1212ax x x x ++的最小值为( )A .8B .6C .4D .2【分析】由韦达定理求出124x x a +=,212x x a =,再根据基本不等式的性质求出代数式的最小值即可.【解答】解:由题意得:124x x a +=,212x x a =,故1212114244a x x a a x x a a ++=+⋅=, 当且仅当12a =时“=”成立, 故选:C .【点评】本题考查了二次函数的性质,考查基本不等式的性质,是一道基础题. 5.已知动点(,)a b 的轨迹为直线:124x yl +=在第一象限内的部分,则ab 的最大值为( ) A .1 B .2 C .D .4【分析】直接利用基本不等式的应用求出结果. 【解答】解:动点(,)a b 的轨迹为直线:124x yl +=在第一象限内的部分, 所以124a b+=, 由基本不等式122424a b a b=+,解得2ab , 当且仅当1242a b ==时,等号成立,故ab 的最大值为2. 故选:B .【点评】本题考查的知识要点:基本不等号式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.6.设函数()f x 的图象与2x a y +=的图象关于直线y x =-对称,若2020m n +=,(2)(2)2m n f f -+-=,则(a = ) A .1011B .1009C .1009-D .1011-【分析】在函数()y f x =的图象上取点(,)x y ,则关于直线y x =-对称点为(,)y x --,代入2x a y +=,结合题目条件可得答案.【解答】解:因为函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,令(2)m f p -=,(2)n f q -=,则2p q +=;故(p -,2)m ,(q -,2)n 在2x a y +=的图象上,所以22m p a -+=,22n q a -+=,即m p an q a =-+⎧⎨=-+⎩,两式相加得()2m n p q a +=-++, 所以2202022022a m n p q =+++=+=, 解得1011a =, 故选:A .【点评】本题考查图象的对称性,考查学生分析解决问题的能力,属于中档题. 7.已知(2πθ∈-,0),且3cos2cos()02πθθ++=,则sin()(4πθ+= )A B C D 【分析】由已知结合二倍角公式可先求sin θ,进而可求cos θ,然后结合两角和的正弦公式可求.【解答】解:因为(2πθ∈-,0),且3cos2cos()02πθθ++=,所以cos2sin 0θθ+=, 即22sin sin 10θθ-++=,解得,sin 1θ=(舍)或1sin 2θ=-,所以cos θ=则sin()cos )4πθθθ+=+=故选:A .【点评】本题主要考查了诱导公式,同角平方关系,和差角公式在三角求值中的应用,属于基础题.8.已知函数()sin()cos()(06f x x x πωϕωϕω=++++>,0)3πϕ-<<,若点11(12π,0)为函数()f x 的对称中心,直线6x π=为函数()f x 的对称轴,并且函数()f x 在区间4(3π,3)2π上单调,则(2)(f ωϕ= )A .1- BC .12 D .12-【分析】利用两角和差和辅助角公式化简函数函数()sin()cos()sin()63f x x x x ππωϕωϕωϕ=++++=++,再利用三角函数的单调性、周期性和对称性可得2(21)3ω=+,N ∈.66l ππϕωπ=-+,I Z ∈.又因为03πϕ-<<,且06ω<.解得解得:26ωπϕ=⎧⎪⎨=-⎪⎩,即4(33ππϕ++,3)(3236πππωϕπ++=-,3)6ππ+符合单调性条件,所以函数()sin(2)6f x x π=+,即可得21(2)()32f f πωϕ=-=.【解答】解:函数()sin()cos()sin()63f x x x x ππωϕωϕωϕ=++++=++,并且函数()f x 在区间4(3π,3)2π上单调,因此62T ππω=,所以06ω<. 又因为点11(12π,0)为函数()f x 的对称中心,直线6x π=为函数()f x 的对称轴,因此113126442T Tπππ-==+,N ∈, 所以2321T ππω==+, 解得2(21)3ω=+,N ∈.将6x π=代入函数()f x 时函数有最值,即632m πππωϕπ++=+,m Z ∈,即66m ππϕωπ=-+,m Z ∈.又因为03πϕ-<<,且06ω<.解得:26ωπϕ=⎧⎪⎨=-⎪⎩,即4(33ππϕ++,3)(3236πππωϕπ++=-,3)6ππ+符合单调性条件, 所以函数()sin(2)6f x x π=+,则21(2)()32f f πωϕ=-=,故选:C .【点评】本题考查三角函数的图象与性质、三角恒等变换、二倍角公式,考查推理论证能力和运算求解能力,考查逻辑推理、直观想象、数学运算核心素养. 二.多选题(共4小题)9.设集合{|4}x M y y e ==-+,{|[(2)(3)]}N x y lg x x ==+-,则下列关系正确的是( )A .R RM N ⊆B .N M ⊆C .M N =∅D .RN M ⊆【分析】由指数函数的性质求出函数的值域即集合A ,由对数函数的性质即真数大于0,解一元二次不等式得到集合B ,判断两个集合的关系,结合选项可得正确答案. 【解答】解:集合{|4}{|4}(,4)x M y y e y y ==-+=<=-∞,集合{|[(2)(3)]}{|(2)(3)0}{|(2)(3)0}(2N x y lg x x x x x x x x ==+-=+->=+-<=-,3),N M ∴⊆,即RM RN C C ⊆,故选:AB .【点评】本题考查了集合间的关系,以及指数函数和对数函数的性质,属于基础题. 10.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得AC a =,BC b =,过点C 作CD AB ⊥交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下面不能由OD CD 直接证明的不等式为( )A .(0,0)2a baba b +>> B .2(0,0)ababa b a b>>+C .222(0,0)a bab a b +>>D .22(0,0)22a b a b a b ++>> 【分析】由题意得,1()2OD a b =+,然后结合射影定理可得,2CD AC BC ab =⋅=,从而可判断.【解答】解:因为AC a =,BC b =, 所以1()2OD a b =+,由题意得,90ADB ∠=︒,由射影定理可得,2CD AC BC ab =⋅=,由OD CD ,得1()2a b ab +,当且仅当a b =时取等号,A 正确,B ,C ,D 不正确.故选:BCD .【点评】本题主要考查了直角三角形的射影定理,属于基础题.11.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x 时,2()2f x x x =+,则可作为方程()(1)f x f x =-实根的有( )AB .12CD【分析】由已知求得函数解析式,得到(1)f x -,进一步写出分段函数()()(1)g x f x f x =--,求解方程()0g x =得答案. 【解答】解:()()0f x f x -+=,()f x ∴为定义在R 上的奇函数,当0x 时,2()2f x x x =+,设0x >,则0x -<,得2()2()f x x x f x -=-=-,即2()2f x x x =-+.222,0()2,0x x x f x x x x ⎧+∴=⎨-+>⎩,则221,1(1)2,1x x f x x x x ⎧-+<-=⎨-+⎩,令22263,1()()(1)21,01221,0x x x g x f x f x x x x x x ⎧-+-⎪=--=-<<⎨⎪+-⎩,当()0g x =时,解得x =或12x =或x =. 故选:ABD .【点评】本题考查函数的奇偶性的应用,考查函数与方程思想,考查逻辑思维能力与运算求解能力,是中档题.12.给出下列四个结论,其中正确的结论是( )A .sin()sin παα+=-成立的条件是角α是锐角B .若1cos()()3n n Z πα-=∈,则1cos 3α=C .若()2Z πα≠∈,则1tan()2tan παα-+=D .若sin cos 1αα+=,则sin cos 1n n αα+=【分析】由诱导公式二即可判断A ;分类讨论,利用诱导公式即可判断B ;利用同角三角函数基本关系式即可判断C ;将已知等式两边平方,可得sin 0α=,或cos 0α=,分类讨论即可判断D .【解答】解:由诱导公式二,可得R α∈时,sin()sin παα+=-,故A 错误; 当2n =,Z ∈时,cos()cos()cos n πααα-=-=,此时1cos 3α=, 当21n =+,Z ∈时,cos()cos[(21)]cos()cos n παπαπαα-=+-=-=-,此时1cos 3α=-,故B 错误;若2πα≠,Z ∈,则sin()cos 12tan()2sin tan cos()2παπααπααα++===--+,故C 正确;将sin cos 1αα+=,两边平方,可得sin cos 0αα=,所以sin 0α=,或cos 0α=, 若sin 0α=,则cos 1α=,此时22sin cos 1αα+=;若cos 0α=,则sin 1α=,此时22sin cos 1αα+=,故sin cos 1n n αα+=,故D 正确. 故选:CD .【点评】本题主要考查了诱导公式,同角三角函数基本关系式的应用,考查了函数思想和分类讨论思想,属于中档题. 三.填空题(共4小题)13.对于正数a可以用有理数指数幂的形式表示为 78a .【分析】根据指数幂的运算法则即可求出.【解答】解:原式7111311317182222224242(())(())()()a a a a a a a a a =⋅==⋅==.故答案为:78a .【点评】本题考查了指数幂的运算法则,属于基础题.14.若函数12|1|log (1),1021,0x x x y x m---<⎧⎪=⎨⎪-⎩的值域为[1-,1],则实数m 的取值范围为 [1,2] .【分析】可求出10x -<时,10y -<,然后根据原函数的值域为[1-,1]可得出0x m 时,0|1|1x -,01y ,这样即可求出m 的范围.【解答】解:10x -<时,112x <-,121(1)0log x --<,且原函数的值域为[1-,1],0x m ∴时,0|1|1x -,即02x , 12m ∴,m ∴的取值范围为:[1,2].故答案为:[1,2].【点评】本题考查了对数函数和指数函数的单调性,函数值域的定义及求法,考查了计算能力,属于中档题.15.已知22log log 16sincos1212a b ππ+=⋅,则a b +的最小值为 8 .【分析】由已知结合对数的运算性质及二倍角公式进行化简可求ab ,然后结合基本不等式即可求解.【解答】解:因为22log log 16sincos8sin412126a b πππ+=⋅==,所以2log 4ab =, 故16ab =,则28a b ab +=,当且仅当4a b ==时取等号,a b +的最小值8. 故答案为:8.【点评】本题主要考查了对数的运算性质,二倍角公式及基本不等式,属于基础题. 16.用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ,则a 的最大值为98π. . 【分析】分a 在不同区间进行讨论,得出符合条件的a 取值范围,即可求得a 的最大值.【解答】解:当[0a ∈,]2π时,2[0a ∈,]π,[0,]sin a M a =,[,2]1a a M =,由[0,][,2]2a a a M M ,得sin 2a,此时不成立;当[2a π∈,]π时,2[a π∈,2]π,[0,]1a M =,[,2]sin a a M a =,由[0,][,2]2a a a M M ,得12sin a ,即2sin a ,所以34a ππ;当[a π∈,3]2π时,2[2a π∈,3]π,[0,]1a M =,[,2]sin 2a a M a =或1, 由[0,][,2]2a a a M M ,得12sin 2a ,即2sin 2a且222a ππ+,解得98a ππ; 当3[2a π∈,)+∞时,2[3a π∈,)+∞,[0,]1a M =,[,2]1a a M =,不合题意. 综上,a 得最大值为98π. 故答案为:98π. 【点评】本题主要考查三角函数的最值的求法,考查分类讨论的数学思想,考查计算能力,属于中档题.四.解答题(共8小题)17.某居民小区欲在一块空地上建一面积为21200m的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m,东西的人行通道宽4m,如图所示(图中单位:)m,问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少?【分析】设矩形车场南北侧边长为xm,则其东西侧边长为1200mx,人行道占地面积为12007200(6)(8)1200848S x xx x=++-=++,然后结合基本不等式即可求解.【解答】解:设矩形车场南北侧边长为xm,则其东西侧边长为1200mx,人行道占地面积为120072007200(6)(8)1200848284896S x x xx x x=++-=++⋅=,当且仅当72008xx=,即30()x m=时取等号,296()minS m=,此时120040()mx=,所以矩形停车场的南北侧边长为30m,则其东西侧边长为40m,才能使人行通道占地面积最小,最小面积是2528m.【点评】本题主要考查了基本不等式在实际问题中的应用,体现了转化思想的应用.18.已知a,(0,)b∈+∞,且24a2b=.(Ⅰ)求21a b+的最小值;(Ⅱ)若存在a,(0,)b∈+∞,使得不等式21|1|3xa b-++成立,求实数x的取值范围.【分析】()I由已知结合指数的运算性质可得,21a b+=,然后结合2121()(2)a ba b a b+=++,展开后利用基本不等式可求,()II 存在a ,(0,)b ∈+∞,使得21|1|3x a b-++成立,则结合()I 得|1|34x -+成立,解不等式可求.【解答】解:因为a ,(0,)b ∈+∞,且24a 222b a b +==, 所以21a b +=,212144()()(2)4428b a b I a b a b a b a b a +=++=+++=, 当且仅当4b a a b =且21a b +=,即14b =,12a =时取等号,故21a b+的最小值8, ()II 由21()I a b+的最小值4,又存在a ,(0,)b ∈+∞,使得21|1|3x a b-++成立, 所以|1|34x -+>, 所以|1|1x ->, 解得,2x >或0x <, 故x 的范围{|2x x >或0}x <.【点评】本题主要考查了利用基本不等式求解最值及不等式的存在性问题与最值的相互转化关系的应用,属于中档题.19.已知函数212log (1)&0()log (1)&0x x f x x x +⎧⎪=⎨-<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>;(3)若关于x 的方程23[()]()04f x af x a +-+-=有两个不相等的正根,求实数a 取值范围.【分析】(1)利用函数奇偶性的定义判断函数的奇偶性;(2)证明函数2log (1)y x =+在[0,)+∞上是严格增函数,结合函数的奇偶性可得12(1)y log x =-在(,0)-∞上也是严格增函数,从而()y f x =在R 上是严格增函数,由120x x +>,即可证明12()()0f x f x +>;(3)由(1)知,()y f x =是R 上的奇函数,故原方程可化为23[()]()04f x af x a -+-=,把原方程有两个不等正根转化为关于a 的不等式组求解. 【解答】解:(1)2(0)log (10)0f =+=.当0x >时,0x -<,有122()[1()](1)()f x log x log x f x -=--=-+=-,即()()f x f x -=-.当0x <时,0x ->,有212()[1()](1)()f x log x log x f x -=+-=--=-,即()()f x f x -=-.综上,函数()f x 是R 上的奇函数;证明:(2)函数2log y x =是(0,)+∞上的严格增函数,函数1u x =+在R 上也是严格增函数,故函数2log (1)y x =+在[0,)+∞上是严格增函数. 由(1)知,函数()y f x =在R 上为奇函数,由奇函数的单调性可知,12(1)y log x =-在(,0)-∞上也是严格增函数,从而()y f x =在R 上是严格增函数. 由120x x +>,得12x x >-,122()()()f x f x f x ∴>-=-,即12()()0f x f x +>;解:(3)由(1)知,()y f x =是R 上的奇函数,故原方程可化为23[()]()04f x af x a -+-=. 令()f x t =,则当0x >时,()0t f x =>,于是,原方程有两个不等正根等价于: 关于t 的方程23()04t at a -+-=有两个不等的正根.即234()04034a a a a ⎧=-->⎪⎪>⎨⎪⎪->⎩⇔1,3034a a a a ⎧⎪⎪>⎨⎪⎪>⎩或⇔314a <<或3a >. 因此,实数a 的取值范围是3(4,1)(3⋃,)+∞.【点评】本题考查函数奇偶性的判定及应用,考查函数的单调性,考查函数零点与方程根的关系,考查化归与转化思想,是中档题.20.已知函数()sin (cos )f x x x x =+. (1)求()3f π的值及函数()f x 的单调增区间;(2)若[12x π∀∈,]2π,不等式()2m f x m <<+恒成立,求实数m 的取值集合.【分析】(1)利用三角函数恒等变换的应用化简函数解析式,代入计算可求()3f π的值,结合正弦函数的单调性列出不等式解出单调区间;(2)求出()f x 在[12π,]2π上的值域,根据题意列出不等式组即可解出m 的范围.【解答】解:(1)211cos2()sin (cos )sin cos sin 2sin(2)223x f x x x x x x x x x π-====-,()sin(2)sin 3333f ππππ∴=⨯-==, 令222232x πππππ-+-+,解得51212xππππ-++,Z ∈.()f x ∴的单调递增区间是[12ππ-+,5]12ππ+,Z ∈. (2)[12x π∈,]2π,可得2[36x ππ-∈-,2]3π,∴当232x ππ-=时,()f x 取得最大值1,当236x ππ-=-时,()f x 取得最小值12-. ()2m f x m <<+恒成立,∴1221m m ⎧<-⎪⎨⎪+>⎩,解得112m -<<-.∴实数m 的取值范围是1(2-,1)-.【点评】本题考查了三角函数的恒等变换,三角函数的单调性,三角函数的值域,考查了转化思想和函数思想,属于中档题.21.已知函数()sin()(0f x A x B A ωϕ=++>,0ω>,||)2πϕ<在一个周期内的最高点和最低点分别为(2,1),(8,3)-. (1)求函数()f x 的表达式;(2)求函数()f x 在区间[0,6]的最大值和最小值;(3)将()y f x =图象上的点的横坐标变为原来的6tπ倍(0)t >,纵坐标不变,再向上平移1个单位得到()y g x =的图象.若函数()y g x =在[0,]π内恰有4个零点,求t 的取值范围. 【分析】(1)由最值求出A 、B ,由周期求ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)由题意利用正弦函数的定义域和值域,得出结论.(3)利用函数sin()y A x ωϕ=+的图象变换规律,求得()g x 的解析式,再利用正弦函数的性值,求得t 的取值范围.【解答】解:(1)由题意可得,1A B +=,3A B -+=-,故2A =,1B =-.12822πω⋅=-,6πω∴=.根据五点法作图,262ππϕ⨯+=,6πϕ∴=,()2sin()166f x x ππ=+-. (2)[0x ∈,6],∴7[]6666x ππππ+∈, 故当662x πππ+=时,()f x 取得最大值为211-=;当7666x πππ+=时,()f x 取得最小值为12()122⨯--=-. (3)将()y f x =图象上的点的横坐标变为原来的6t π倍(0)t >,纵坐标不变, 可得62sin()12sin()1666t y x tx ππππ=⨯+-=+-的图象; 再向上平移1个单位得到()2sin()6y g x tx π==+的图象. 当[0x ∈,]π,[66tx ππ+∈,]6t ππ+, 若函数()y g x =在[0,]π内恰有4个零点,则456t ππππ+<, 求得232966t <. 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的图象和性质,属于中档题.22.已知函数()4cos sin()1()6f x x x x R π=-+∈,将函数()y f x =的图象向左平移6π个单位,得到函数()y g x =的图象.(1)求()3f π的值; (2)求函数()yg x =的解析式;(3)若0()2x f =0()g x . 【分析】(1)由题意利用三角恒等变换化简()f x 的解析式,可得()3f π的值.(2)由题意利用函数sin()y A x ωϕ=+的图象变换规律,得出结论.(3)由题意求得0sin()6x π-的值,再利用诱导公式、二倍角公式,求得0()g x 的值. 【解答】解:(1)函数2()4cos sin()1cos 2cos 12cos22sin(2)66f x x x x x x x x x ππ=-+=-+=-=-, 故()2sin 232f ππ==. (2)将函数()2sin(2)6y f x x π==- 的图象向左平移6π个单位, 得到函数()2sin(2)6y g x x π==+的图象,(3)若00()2sin()26x f x π==-,则0sin()6x π-= 000()2sin(2)2cos(2)2cos(63g x x x ππ∴=+=-=2002)2[12sin ()]36x x ππ-=⨯-- 32[12]14=-⨯=-. 【点评】本题主要考查三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,属于中档题.。

(完整word版)高中数学必修一典型题目复习1

(完整word版)高中数学必修一典型题目复习1

高中数学必修一函数核心练习题怎样学好高中数学?增强运算,注意书写的规范,增强逻辑思想训练,学会总结,学会找定理定义的重点字,比较题型细微的差别,一段时间的训练,会让你更为深刻全面的掌握知识。

一、会合及其运算1.已知会合A y y x 2 1 ,B y y x 1 ,则A B( ).(A) 0,1,2( B)0,1 , 1,2(C)x x1(D)R2.设会合 A{4,2a1, a 2 }, B{ 9, a5,1a}, 若 A B{ 9} ,务实数 a 的值。

3.已知 A{ x / a 2x2a3}, B{ x / 2 x3},若 A B ,务实数a的取值范围4.已知会合 A{ x | x24x120}, B{ x | x2kx k0} .若A B B ,求 k 的取值范围二、映照与函数的观点1.已知映照f : A B, A B R ,对应法例 f : y x 22x,对于实数 k B在会合 A 中不存在原象,则k 的取值范围是2.M { x | 0 x 2 }, N { y | 0 y 2 },给出以下列图中 4 个图形,此中能表示会合到会合N的函M数关系有.1 x1(x0),3.设函数f (x)2若 f (a) a.则实数a的取值范围是.1( x0).x三、函数的单一性与奇偶性1.求证:函数 f ( x)x 1(1,) 上是单一增函数在 xx2.已知函数 y f x 在 (, ) 上是减函数,则 yf | x 2 | 的单一递减区间是()A. ( , )B. [ 2,)C. [2,)D. (, 2]3.已知函数 f ( x) ax 2(1 3a) x a 在区间 [1,) 是递加的,则 a 的取值范围是4.设函数 fx 在 (0,2) 上是增函数,函数f x2 是偶函数,则f 1 、 f5、 f 7 的大小关系是22___________ .5.已知定义域为 ( -1, 1) 的奇函数 f x 又是减函数,且 f a 3f (9 a 2 )0 , 则 a 的取值范围是三、求函数的分析式1. 已知二次函数 f (x) ,知足 f (2) 1, f ( 1) 1 ,且 f ( x) 的最大值是 8,试求函数分析式。

高中数学必修一专题复习--详细整理附带习题【人教版】

高中数学必修一专题复习--详细整理附带习题【人教版】

高中数学必修一专题复习--详细整理附带
习题【人教版】
本文档是针对高中数学必修一的专题复,详细整理了各个知识点,并附带了相应的题。

以下是各个专题的内容概要:
1. 函数
- 函数及其表示方法
- 常用函数的性质和图像
- 函数的运算与初等函数的复合
- 函数的单调性和奇偶性
- 函数的解析式及其应用
2. 三角函数
- 三角函数的概念和基本性质
- 三角函数的图像和性质
- 三角函数的和差化积公式
- 三角函数的倍角公式和半角公式
- 三角函数的解析式及其应用
3. 数列与数学归纳法
- 等差数列和等差数列的前n项和
- 等比数列和等比数列的前n项和
- 数学归纳法的基本原理和应用
4. 平面向量
- 平面向量的定义和运算
- 平面向量的数量积和向量积
- 平面向量的坐标表示和平面向量的夹角
- 平面向量的共线与垂直
5. 解析几何基础
- 直线和线段的表示和性质
- 平面和面积的表示和性质
- 二次曲线和椭圆、双曲线的表示和性质
为了帮助同学们更好地复习,本文档附带了大量的习题。

复习时,可以先阅读相关知识点的介绍,然后尝试做相应的习题巩固所学内容。

希望本文档能对同学们的高中数学必修一复习有所帮助!。

数学必修一复习题及答案

数学必修一复习题及答案

数学必修一复习题及答案一、选择题1. 下列哪个选项不是实数?A. πB. -3C. √2D. i2. 已知函数f(x) = 2x - 1,求f(3)的值。

A. 4B. 5C. 6D. 73. 集合{1, 2, 3}与{3, 4, 5}的交集是什么?A. {1, 2}B. {3}C. {1, 3}D. {4, 5}4. 如果a > 0且a ≠ 1,那么函数y = log_a x的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 9B. 11C. 13D. 15二、填空题6. 函数y = 3x^2 + 2x - 5的顶点坐标是______。

7. 已知等比数列的首项为2,公比为3,求第4项的值是______。

8. 根据题目所给条件,若a + b = 5,a - b = 3,求a和b的值,a = ______,b = ______。

9. 将函数y = sin(x)的图像向左平移π/4个单位,新的函数表达式为______。

10. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,根据勾股定理,三角形ABC是______三角形。

三、解答题11. 证明:如果一个数列是等差数列,那么它的前n项和S_n可以表示为S_n = n/2 * (a_1 + a_n)。

12. 解不等式:2x^2 - 5x + 3 ≤ 0。

13. 已知函数f(x) = x^3 - 3x^2 + 2x,求导数f'(x),并找出函数的极值点。

14. 已知圆的方程为(x - 3)^2 + (y - 4)^2 = 25,求圆心和半径。

15. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]四、答案1. D2. B3. B4. A5. C6. (-1/3, -43/9)7. 548. a = 4, b = 19. y = sin(x + π/4)10. 直角11. 证明略12. x ≤ 3/2 或x ≥ 113. f'(x) = 3x^2 - 6x + 2,极值点为x = 1, x = 2/314. 圆心(3, 4),半径515. 解得 x = 2, y = 3本复习题涵盖了数学必修一的主要内容,包括实数、函数、集合、数列、不等式、导数、圆的方程和方程组等,旨在帮助学生全面复习并掌握相关知识点。

高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。

c>bc c.若。

>b,则。

+c>b+cl I B.若α>b,则-〉-a D D.着。

>b,则。

2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。

+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。

÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。

在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。

【期末复习必备】人教版高中数学必修一知识点与典型习题(含全部四个部分)(知识点+典例+答案))

【期末复习必备】人教版高中数学必修一知识点与典型习题(含全部四个部分)(知识点+典例+答案))

中山一中2015-2016高一上学期期末复习人教数学必修一第一部分 集合1.集合与元素的关系1.已知集合{}23,,02+-=m m m A 且A ∈2,则实数m 的值为( )A .3B .2C .0或3D .0,2,3均可2.已知实数{}21,3,a a ∈,则实数a 的值为( )A .1B .1或3C .0或3D .0或12.集合与集合的关系1.满足条件{}{},,a A a b c ⊆⊆的所有集合A 的个数是 ( ) A .1个 B .2个 C .3个 D .4个2.【教材12】已知集合{}1,2A =,集合B 满足{}1,2A B = ,则集合B 有_______个. A .1个 B .2个 C .3个 D .4个3.设集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 4.设集合{}|35A x x =<<,{}|12B x a x a =-≤≤+,且A B ⊆,则实数a 的取值范围是( )A .34a <≤B .34a ≤<C .34a ≤≤D .∅3.集合的交并补运算基本策略:有限集——列举法;无限集——画数轴 1.设集合}7,5,3,1{=U ,}5,1{=M ,则=M C U _________ 2.设全集U ={1,2,3,4},集合S ={1,3},T ={4},则等于( )A .{2,4}B .{4}C .ΦD .{1,3,4}3.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则A B = ( )A .{}|2x x ≥-B .{}|22x x -<<C .{}|22x x -≤<D .{}|2x x <4.设集合}421{,,=A ,集合},,|{A b A a b a x xB ∈∈+==,则集合B 中有( )个元素 A .4 B .5C .6D .75.设a ,b 都是非零实数,y =a a +b b +ab ab可能取的值组成的集合是________. 4.不等式的解集 (1)一元二次不等式1.不等式21x >的解集为_________________2.不等式22320x x -->的解集为_________________ (2)分数不等式(除化为乘,注意分母不为0)1.不等式101xx +>-解集为__________________ 2.不等式121xx+>-解集为__________________ (3)指数不等式(利用单调性) 1.不等式3121x +>解集为__________________2.不等式2339x x-+>解集为__________________3.若213211()(),22a a +-<则实数a 的取值范围是____________ (4)对数不等式(利用单调性,注意真数>0)1.已知集合{}|lg(2)A x y x ==-,集合{}|22B x x =-≤≤,则A B = ________2.已知集合{}|10xM x e =-≥,{}3|log (1)1N x x =-≥,则M N = _____________3.已知集合1{2},{lg 0}2x A x B x x =>=>,则()R A B = ð____________ 5.含参数集合问题1.已知集合}012|{2=+-=x ax x A 有且只有一个元素,则a 的值的是 . 2.含有三个实数的集合既可表示成a {,ab ,}1,又可表示成2{a ,b a +,}0,则20162015b a += .3.已知集合}121{+≤≤+=a x a x P ,集合}52{≤≤-=x x Q(1)若3a =,求集合()R C P Q ;(2)若P Q ⊆,求实数a 的取值范围第二部分 函数1.定义域 值域(最值) 1.函数()()3log 32f x x x =++-的定义域为____________________ 2.函数22()log (23)f x x x =+-的定义域是( )(A) [3,1]- (B) (3,1)- (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞ 3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),(f x x g x x==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程 1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得),(1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y = C .1()2x y = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________ 2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞C .)2,0(D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数B .)()(x g x f -是奇函数C .)()(x g x f +是偶函数D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

高中数学必修1复习题

高中数学必修1复习题

高中数学必修1复习题高中数学必修1复习题在高中数学的学习过程中,必修1是一个非常重要的阶段。

它为我们打下了坚实的数学基础,为我们后续学习更高级的数学知识奠定了基础。

在这个阶段,我们学习了许多重要的数学概念和方法,例如函数、方程、不等式等等。

为了巩固我们的学习成果,我们需要进行大量的复习和练习。

下面,我将给大家介绍一些高中数学必修1的复习题。

一、函数与方程1. 求解方程:2x + 5 = 11解答:我们可以通过移项的方式来求解这个方程。

首先,将5移动到方程的右边,得到2x = 11 - 5 = 6。

然后,再将2移到方程的右边,得到x = 6 / 2 = 3。

所以方程的解为x = 3。

2. 求函数的定义域和值域:f(x) = √(x + 2)解答:对于函数的定义域,我们需要注意到根号下面的表达式不能小于0,即x + 2 ≥ 0。

解这个不等式可以得到x ≥ -2。

所以函数的定义域为[-2, +∞)。

对于函数的值域,我们可以看到根号下面的表达式始终大于等于0,所以函数的值域为[0, +∞)。

二、三角函数1. 求解三角方程:sin(x) = 1/2解答:我们可以通过查表或者使用计算器来求解这个方程。

根据常用角的正弦值表,我们可以知道sin(30°) = 1/2。

所以方程的解为x = 30°。

2. 计算三角函数的值:cos(45°)解答:我们可以通过查表或者使用计算器来计算这个三角函数的值。

根据常用角的余弦值表,我们可以知道cos(45°) = √2 / 2。

三、数列与数学归纳法1. 求等差数列的通项公式:a1 = 3, d = 4解答:对于等差数列,我们可以使用通项公式an = a1 + (n - 1)d来求解。

代入已知条件,我们可以得到an = 3 + (n - 1)4 = 4n - 1。

2. 判断数列是否为等差数列:1, 4, 7, 10, 13, ...解答:我们可以观察数列中相邻两项的差值是否相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一函数核心练习题
如何学好高中数学?加强运算,注意书写的规范,加强逻辑思维训练,学会总结,学会找定理定义的关键字,比较题型细微的差异,一段时间的训练,会让你更加深刻全面的掌握知识。

一、集合及其运算
1.已知集合{}
{}
1,12+==+==x y y B x y y A ,则=B A ( ). (A) {}2,1,0 (B )()(){}2,1,1,0 (C){1
≥x x } (D)R
2.设集合},1,5,9{},,12,4{2
a a B a a A --=--=若}9{=B A ,求实数a 的值。

3.已知}32/{},322/{<<-=-<<-=x x B a x a x A ,若B A ⊆,求实数a 的取值范围
4. 已知集合}0|{},0124|{2
2
=-+==-+=k kx x x B x x x A .若B B A = ,求k 的取值范围
二、映射与函数的概念
1.已知映射B A f →: ,R B A == ,对应法则x x y f 2:2
+-= ,对于实数 B k ∈在集合A 中不存在原象,则k 的取值范围是
2.}y |y {N },x |x {M 2020≤≤=≤≤=,给出如下图中4个图形,其中能表示集合M 到集合N 的函数关系有 .
3.设函数.)().0(1),0(12
1
)(a a f x x
x x x f >⎪⎪⎩⎪⎪⎨
⎧<≥-=若则实数a 的取值范围是 . 三、函数的单调性与奇偶性 1.求证:函数x
x x f 1
)(+=在),1(+∞∈x 上是单调增函数
2.已知函数()x f y =在),(+∞-∞上是减函数,则()|2|+=x f y 的单调递减区间是( )
.A ),(+∞-∞ .B ),2[+∞-
.C ),2[+∞ .D ]2,(--∞
3.已知函数a x a ax x f +-+=)31()(2
在区间),1[+∞是递增的,则a 的取值范围是
4.设函数()x f 在)2,0(上是增函数,函数()2+x f 是偶函数,则()1f 、⎪⎭⎫ ⎝⎛25f 、⎪⎭
⎫ ⎝⎛27f 的大小关系是
.___________
5.已知定义域为(-1,1)的奇函数()x f 又是减函数,且()0)9(32
<-+-a f a f ,则a 的取值范围是
三、求函数的解析式
1.已知二次函数)(x f ,满足1)1(,1)2(-=--=f f ,且)(x f 的最大值是8,试求函数解析式。

2. 设函数b a b
ax x
x f ,()(+=
为常数,且)0≠ab ,满足1)2(=f ,方程x x f =)(有唯一解,求)(x f 的解析式,并求出)]3([-f f 的值.
3.若函数bx x a x f 1)1()(2++=,且2)1(=f ,2
5
)2(=f
⑴求b a ,的值,写出)(x f 的表达式 ⑵用定义证明)(x f 在),1[+∞上是增函数
4.已知定义域为R 的函数a
b
x f x x ++-=+122)(是奇函数
(1)求b a ,的值;(2)若对任意的R t ∈,不等式0)2()2(2
2<-+-k t f t t f 恒成立,求k 的取值范围
5.(1)已知函数)(x f 为奇函数,且在0≤x 时,x x x f +=2
)(, 求当0>x 时)(x f 的解析式。

(2)已知函数)(x f 为偶函数,且在0≥x 时f(x)=x 2
-x, 求当0<x 时)(x f 的解析式。

6.已知函数
)(x f 为奇函数,)(x g 为偶函数,且1)()(+=+x x g x f ,求
)(x f = .)(x g = .
四、二次函数的应用
1.若函数432
--=x x y 的定义域为[0,m ], 值域为⎥⎦

⎢⎣⎡--
4425,,则m 的取值范围是 . 2. 函数12)(2
++=ax x x f 在]2,1[-的最大值为4,求实数a 的取值范围
3. 求实数m 的范围,使关于x 的方程062)1(22
=++-+m x m x 有两实根,且都比1大.
4.c bx x x f ++=2
)(满足)()1(x f x f -=+,则)0(),2(),2(f f f -的大小关系是 5.若不等式04)2(2)2(2
<--+-x a x a 对一切∈x R 恒成立,则a 的取值范围是______. 五、指数函数与对数函数的应用
1.若1
22+-=x x a
y 是奇函数,则a 的值是.___________
2.若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x
、三、四象限,则一定有( ) A .010><<b a 且 B .01>>b a 且 C .010<<<b a 且 D .01<>b a 且 2.函数0()(2
≠+
=x x
a x x f ,常数)a ∈R .
(1)当2=a 时,解不等式12)1()(->--x x f x f ; (2)讨论函数)(x f 的奇偶性,并说明理由.
六、抽象函数
1.)(x f 在其定义域内恒有)()(2)()(y f x f y x f y x f =-++(*),且0)0(≠f
(1)求)0(f (2)求证)(x f 为偶函数
2.已知)(x f 是定义在),0(+∞上的增函数,且满足)()()(y f x f y x f +=⋅,1)2(=f . (1)求证:3)8(=f ;(2)解关于x 的不等式3)2()(>--x f x f .。

相关文档
最新文档