爬杆机器人
爬杆机器人说明书

目录设计任务书 1 摘要 5 引言 6 第一章总体方案设计 6 第二章结构设计 7 2.1动力缸的选择 7 2.1.1爬杆气缸(伸缩缸)的选择 7 2.1.2 夹紧缸的选择 7 2.2 杆夹持机构的设计 8 2.2.1导向机构的设计 8 2.2.2夹紧缸连接板的设计 9 2.2.3 夹紧块设计 9 2.3 其他部分设计 10 2.3.1伸缩缸连接板的设计 10 2.3.2固定电磁阀的连接板的设计 10 2.3.3 电磁阀的选用 11 2.3.4传感器的选用 11 第三章控制系统设计 14 3.1气动原理图的设计 14 3.2 PLC控制系统的硬件设计 16 3.3 PLC控制系统的程序设计 183.3.1 顺序控制设计法的基本思路 18 3.3.2 用顺序控制设计法编程 19 结论23致谢24 参考文献25附录A 英文翻译附录B综述附录C 调研报告附录D 装配图及主要零件图附录E PLC程序江苏大学毕业设计(论文)任务书机械工程学院机电0701班班级白清文学生设计(论文)题目小型气动爬杆机器人设计课题来源江苏大学工业中心起讫日期2011 年03月14日至2011年06 月24 日共15 周指导教师(签名)系(教研室)主任(签名)毕业设计(论文)进度计划:引言小型气动爬杆机器人属于机电气结合类的综合实验及训练装置。
根据设计任务,这个爬杆机器人应该能模拟人的运动,通过“机械手”、“机械脚”的抓放动作和身体伸缩动作,实现沿杆方向的前后双向移动,运动速度可调而爬杆高度或距离可以控制。
整个设计过程就是做出一个完整的“爬杆机器人”的操作实验台而设计出图、购料、加工、组装、调试完成的过程。
这个实验台最初的设计目的也是从一个实用目的出发的,工业机械手的效用是代替人从事繁重的工作和危险的工作,所以,爬杆机器人最初的设计思想也是想到人有一些危险或难以到达的地方需要探测或勘察时,可以用爬杆机器人代替,另外,这个爬杆机器人也有一定的额外负重,这些因素在设计时都应考虑。
爬杆机器人课程设计

爬杆机器人 课程设计一、课程目标知识目标:1. 学生能理解爬杆机器人的基本构造和原理,掌握相关的物理和机械知识。
2. 学生能描述爬杆机器人的功能和应用,了解其在现实生活中的重要性。
3. 学生能解释爬杆机器人设计中涉及的科学概念,如力、运动、能量等。
技能目标:1. 学生能运用所学的知识,设计并制作一个简单的爬杆机器人。
2. 学生能在团队中合作,进行问题分析、方案设计和实验操作。
3. 学生能通过实际操作,掌握基本的编程和控制技巧,使爬杆机器人完成特定任务。
情感态度价值观目标:1. 学生能培养对科学技术的兴趣和好奇心,激发创新意识和探索精神。
2. 学生能在设计和制作过程中,体会到团队合作的力量,增强沟通与协作能力。
3. 学生能认识到科技对社会进步的推动作用,培养热爱科学、服务社会的情感。
课程性质:本课程为实践性较强的综合课程,结合物理、机械、编程等多学科知识,注重培养学生的动手能力、创新能力和团队协作能力。
学生特点:六年级学生具有较强的观察力、动手能力和好奇心,对新鲜事物充满兴趣,但注意力集中时间较短,需要激发学习兴趣和参与度。
教学要求:教师应注重理论与实践相结合,采用启发式教学,引导学生主动探索,提高学生的实践操作能力和解决问题的能力。
同时,关注学生的个体差异,给予个性化指导,确保课程目标的实现。
通过课程学习,学生能够将所学知识转化为具体的学习成果,为后续学习奠定基础。
二、教学内容本课程以《科学》教材中“机械世界”单元为基础,结合以下内容进行教学:1. 爬杆机器人原理介绍:讲解爬杆机器人的基本构造、运动原理和功能应用,涉及教材中“简单机械”和“力的作用”等章节内容。
2. 爬杆机器人设计制作:a. 材料选择:介绍爬杆机器人制作所需的材料,如塑料、木材、金属等,与教材中“材料分类”章节相关。
b. 结构设计:引导学生学习爬杆机器人的结构设计,包括传动系统、控制系统等,涉及教材中“机械结构”章节内容。
c. 编程控制:教授爬杆机器人的基本编程方法,使学生在实际操作中掌握编程技巧,与教材中“计算机编程”章节相关。
爬杆机器人的自锁原理

爬杆机器人的自锁原理爬杆机器人的自锁原理指的是在停止电机运动时,能够使机器人保持固定位置而不下滑的一种机械装置或设计。
这种自锁原理的主要目的是为了满足爬杆机器人在工作中的稳定性和安全性需求。
一般而言,爬杆机器人的自锁原理可分为几个方面来进行解析和说明。
首先,爬杆机器人的自锁原理可以通过惰性锁实现。
所谓惰性锁,指的是利用杆件与锁爪之间的斜面作用,通过自锁机构使得机械系统在停止电机驱动时,仍然能够保持固定的位置。
其原理是在斜面上施加的力可以将锁爪向内部移动,从而实现松开锁爪的目的。
当杆件停止运动时,惰性锁会自动锁住杆件,使得爬杆机器人能够稳定停留在一定的位置上。
其次,爬杆机器人的自锁原理还可以通过齿轮自锁机构来实现。
齿轮自锁机构是利用斜面型轮齿的作用实现自锁的一种机械装置。
当电机停止转动时,齿轮会自动进入自锁状态,从而避免杆件下滑。
齿轮自锁机构通常由锁爪、轮齿、推力弹簧等组成。
推力弹簧的作用是将锁爪与轮齿紧密连接,当齿轮转动时,锁爪会向外移动。
而当电机停止转动时,推力弹簧的作用会使得锁爪自动卡在轮齿上,从而实现自锁的效果。
另外,爬杆机器人的自锁原理还可以通过离合器自锁机构来实现。
离合器自锁机构是将电机和爬杆机构连接起来的装置。
当电机停止转动时,离合器会自动进入自锁状态,从而在不需要额外电源的情况下锁定杆件。
这种自锁原理的优点是结构简单,操作方便。
离合器自锁机构通常由离合器齿圈、离合器凸轮、扭簧等组成。
当电机停止转动时,扭簧的作用会使得离合器凸轮自动锁定住离合器齿圈,从而实现自锁的效果。
总之,爬杆机器人的自锁原理是通过各种机构和装置实现的,其中包括惰性锁、齿轮自锁机构和离合器自锁机构等。
这些自锁原理的设计和应用可以使爬杆机器人在停止电机驱动时,保持固定位置而不下滑,提高机器人的工作稳定性和安全性。
这些自锁原理的应用也是爬杆机器人能够顺利完成各种高空作业任务的关键因素之一。
爬杆机器人

1 绪论1.1 背景“机器人学的进步和应用是本世纪自动控制最有说服力的成就,是当代最高意义的自动化”。
这是宋健院士对机器人在上个世纪所取得的成就的精辟概括。
同时机器人技术也是20世纪人类最伟大的发明之一,自60年代初问世以来,经历40余年的发展已取得长足的进步。
走向成熟的工业机器人,各种用途的特种机器人的实用化,昭示着机器人技术灿烂的明天。
所以我们必须走进它,了解它。
近年来,在我国大学,机器人作为机械电子学、计算机技术、人工智能等的典型载体被广泛地用来作为工科本科生的讲授课程之一;在中学,模型机器人则逐渐成为素质教育,技能实践的选题之一,各种机器人比赛正方兴未艾。
进入21世纪,人们也愈来愈亲身感受到机器人深入产业、深入生活、深入社会的坚实步伐。
这些都说明了机器人技术离我们越来越近了。
但大家是否可以给耳熟能详的机器人一个准确的定义呢?有人认为机器人无所不能,有人认为机器人必须像人。
那么,何为机器人?虽然很难给机器人下准确的定义,但是通常的理解就是:机器人是一种在计算机控制下的可编程的自动机器,根据所处的环境和作业的需要,它具有至少一项或多项拟人功能,如抓取功能或移动功能,或两者兼而有之,另外还可能程度不等地具有某些环境感知功能(如视觉、力觉、触觉、接近觉等)以及语音功能乃至逻辑思维、判断决策功能等,从而使它能在要求的环境中代替人进行作业。
如今进入二十一世纪,随着科技的迅速发展,现代化进程的日益加快,机器人的创新与研究越来越成为一个国家科技力量的具体体现,越来越多的机器人已成为各个领域重要的组成部分,因此机器人的发展也日益成熟,为人们的生活提供了更多的方便与快捷。
在世界经济快速发展的前提下,我国国民经济也有着飞速的增长,人民生活水平日益提高,伴随着城市和乡村矗立起无数的高层建筑和无数的高高的杆类,如电线杆、路灯杆等等。
这些杆类长年累月的暴露在空气中,很容易受到腐蚀和污染,不仅影响着城市的美观,而且缩短了它们的寿命,也大大提高的它的危险性,对人们造成诸多不便与危险。
爬杆机器人运动原理及动力学研究的开题报告

爬杆机器人运动原理及动力学研究的开题报告一、选题的背景意义随着机器人技术的不断发展,越来越多的机器人应用于工业、军事、医疗等领域。
其中爬杆机器人是一种具有特殊功能和特点的机器人,可以在直立杆、倾斜杆、曲线杆等多种杆状环境中实现机器人运动,具有较高的适应性和实用性。
然而,爬杆机器人的动力学问题是一个重要的问题,影响着机器人的运动性能和稳定性,而针对这个问题的研究还比较薄弱,因此有必要对爬杆机器人的运动原理和动力学问题进行深入研究,为机器人的设计与控制提供理论基础和技术支持。
二、研究内容爬杆机器人的运动原理和动力学问题是一个涉及机器人力学、控制等多学科交叉的问题,本文将从以下几个方面展开研究:1、分析爬杆机器人的运动原理与结构,建立机器人运动模型。
2、分析机器人在杆上运动的动力学特性,包括运动稳定性、杆面摩擦力、杆面反弹力等因素的影响。
3、研究机器人的控制策略,设计合理的控制算法,提高机器人的运动性能和稳定性。
三、研究方法和技术路线本文将采用分析理论、数值模拟、模型实验等多种方法,建立机器人运动模型和控制算法,进行仿真分析和实验验证,实现对爬杆机器人运动原理和动力学问题的深入研究。
具体的技术路线如下:1、理论分析:分析机器人的运动原理和结构特点,建立机器人运动模型,并对机器人运动的动力学方程进行推导和分析。
2、数值模拟:采用多体动力学软件ADAMS进行模拟计算,模拟机器人在杆上的运动,分析机器人的运动稳定性和摩擦力等因素的影响。
3、模型实验:通过在实验室制造机器人样机,开展相关实验研究,验证理论和模拟结果的有效性和可行性。
四、研究预期结果与意义本文的研究将有助于深入掌握爬杆机器人的运动原理和动力学问题,提高机器人的运动性能和稳定性,具有重要的理论和实用价值。
具体的预期研究结果如下:1、建立爬杆机器人的运动模型,分析机器人运动的动力学特性和影响因素。
2、设计合理的控制算法,提高机器人的运动性能和稳定性。
管道攀爬机器人结构设计及行走动力特性分析

虽然串联机器人动力学特性及结构优化设计已经取得了许多重要成果,但仍 然存在许多研究方向值得进一步探索。例如,如何建立更加精确、高效的动力学 模型,以满足实时控制的需求;如何将新型优化算法应用于结构优化设计中,以 获得更好的优化效果;如何提高机器人的柔性和自适应性,以适应更加复杂和动 态的环境等。
此外,随着和机器学习技术的快速发展,这些技术也开始被应用于串联机器 人的设计和控制中。例如,通过机器学习方法,可以实现对机器人的自适应控制、 故障诊断和维护等。这为串联机器人的进一步发展提供了新的机遇和挑战。
因此,在未来的研究中,可以综合考虑这两种方法,设计一种混合式的控制 策略,以实现机器人在不同条件下的稳定攀爬。此外,还可以进一步研究机器人 感知和决策等方面的技术,以提高机器人在复杂环境中的自主能力。
感谢观看
控制算法
管道攀爬机器人的控制算法包括位姿估计、轨迹跟踪等。位姿估计是指对机 器人在管道中的位置和姿态进行估计,通过对传感器数据的处理和分析来实现。 轨迹跟踪是指根据位姿估计结果,控制机器人按照预设的轨迹行走,通过对电机 进行控制来实现。
在控制算法的设计过程中,需要考虑机器人的作业效率和安全性。为了提高 作业效率,需要缩短位姿估计的时间,提高轨迹跟踪的精度。为了确保安全性, 需要加入防抖动和异常情况处理等功能,以避免机器人在行走过程中出现问题。
爬杆机器人是一种能够在垂直杆上自主攀爬的机器人,这种机器人在电力线 路巡检、救援、建筑等领域有广泛的应用前景。然而,要实现机器人的自主攀爬, 需要解决一系列的关键问题,包括对环境的感知、运动规划、控制策略等方面。 在本次演示中,我们将重点探讨爬杆机器人的攀爬控制。
机器人攀爬控制是实现自主攀爬的关键技术之一。在攀爬过程中,机器人需 要通过对环境的感知,获取关于杆子位置、姿态等信息,再根据这些信息调整自 身的运动状态,实现稳定的攀爬。在这个过程中,控制算法起着至关重要的作用。
浅谈爬杆机器人原理

浅谈爬杆机器人原理本文选取了国内自主研制的几类爬杆机器人作以比较。
得出大都采用凸轮夹紧机构,由于凸轮的不可伸缩性,一个爬行器只能爬行直径的等直径杆件。
爬行机器人体积小重量轻易于操作和维修。
由于目前对于爬杆机器人的研究探索的初步阶段的局限性,因此在今后还有很大的发展空间。
为今后爬杆机器人的发展。
奠定一定的基础。
标签:机器人;爬杆1研制背景及意义随着我国国民经济的飞速发展,人民生活不断提高,城镇中矗立起无数的高层城市建筑,各类即实用又美观的电线杆、路灯杆、桥上斜拉钢索、广告牌立柱,壁面通常多采用油漆、电镀、玻璃钢结构,通常其又长又高,环境危险,由于常年裸露在大气之中,长时间的风吹日晒,会影响到它的美观,同时复杂的空气成分也會对金属杆件腐蚀和破坏,使他们快速生锈缩短寿命。
传统的清理办法有人工清理和使用化学药剂,不仅费时费力有污染,而且效率低下,耗资巨大,爬杆机器人在广泛的需求下孕育而生。
2案例分析因此本文选取了国内自主研制的几类爬杆机器人作以比较:清华大学学生研发的自重式锁紧机构,框架由两根连在一起的运动杆及运动杆两端的自重锁紧机构构成,由电机驱动。
垂直爬行时自重和运动方向相反,靠机构自重和反向推力使钢球被锁紧机构中倾斜的滑块和爬杆紧密夹紧在一起,从而达到锁紧目的。
该结构简单,可以垂直爬行范围变化较小的变直径杆,缺点是只适合向上爬行运动,反向爬行自重与运动方向一致,无法进行自锁。
该机构改进后由微型气缸推动钢球解锁,能够在垂直杆进行往复运动,但需要加上一套气动控制设备,目前要实现变直径杆的爬行和返回只能依靠气动蠕行式爬行器来解决,上升和下降的需要气压调节,造价较大,因此该方法还处于理论研究阶段。
上海交通大学机器人研究所研究开发的斜拉桥缆索涂装维护用气动蠕动式爬缆机器,可在有斜度的缆索上爬行,具有实用性,能够完成检测,清洁缆索等功能。
机器结构简单,由爬升结构加装相应的作业模块,爬升机构分为上下两部分,两部分之间用提升气缸和两组导向轴副相连接,可相对移动一个行程的距离。
爬行机器人的工作原理

爬行机器人的工作原理
爬行机器人是一种多功能的机械设备,运用它们可以在水下、陆地或空气中搜集信息、完成检查任务和其他少数特殊任务。
它们也可以被用作人员或物品携带机器人。
爬行机器人由底部移动系统、控制系统和传感器系统组成,其中连接的各个零件之间通过电缆链接。
通过机器人的底部移动装置,它可以以多种不同的形式运动,包括弹性轮、有限状态机、滚筒和其他类型的运动装置。
爬行机器人的控制系统可以使机器人实现有效的运动运行,并控制它的传感器系统来收集信息和检查环境。
传感器系统是爬行机器人能够完成任务的关键部分,它包括视觉传感器、距离传感器、温度传感器和湿度传感器等,允许机器人获取它所需要的信息,并根据获取的信息做出及时的反应。
在特殊情况下,在爬行机器人的模型中,还会安装有针对性的传感器,例如气体传感器、汽水分析仪等,用于特定的任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原理方案一:
• 此爬行机构是简单的
曲柄滑块机构,其中 电机与曲柄固连,驱 动装置运动。上下四 个自锁套是实现上爬 的关键机构。
• 当自锁套有向上运动
趋势时,锥套. 趋势时,锥套.钢球与 圆杆之间会形成可靠 的自锁,使装置不下 滑,而上行时自锁 解 除。
爬杆机构(
1.上自锁套 1.上自锁套 2.电机 2.电机 3.曲柄 3.曲柄 4.圆杆 4.圆杆 5.连杆 5.连杆 6.下自锁套 6.下自锁套
方案 二
设计题目 :爬杆机械人
设计小组成员:
绘图:赵元亮 杨庚 李孝龙 Ppt:张学敏 杨陶敏
一 工作原理 及工艺过程
• 方案一模仿尺蠖 (“尺蠖之屈,以求伸也”) 尺蠖之屈,以求伸也” •
向上爬行动作;方案二模仿猴子爬树 功能分解为:爬杆功能=上行功能+ 功能分解为:爬杆功能=上行功能+自锁功能
二 设计要求 保证机器人能顺利完成爬 杆的功能
三 设计方案的构思及分析
(各功能的实现方案及选择)
功能分解:爬杆(上行+自锁) 功能分解:爬杆(上行+
1 2 3
上 A 曲柄滑 B 曲柄滑 块 块+轮系 行
C 凸轮+滑 凸轮+ 块
自 D 对称重 E 非对称摩 锁 力自锁套 擦自锁套 可组合成六种不同的方案可供选择 方案一A+D和方案二B+E为较好方 方案一A+D和方案二B+E为较好方 案
• • • •
1.电机 1.电机 2.齿轮 2.齿轮 3.曲柄导杆 3.曲柄导杆 4.自锁套 4.自锁套
自锁机构 1钢球 钢球 2表面摩 表面摩 擦系数比 较大的介 质
机构俯视图
曲柄导杆运动原理图
4.方案分析与评价 4.方案分析与评价
优点 方案 一 缺点 设计巧妙,用最精简 无法完成大载荷的爬杆 的结构实现了爬杆的 运动;且各零件的尺寸 功能,且能实现各种 要大小适宜 灵活的动作,较适合 制作为玩具 能够实现变速功能, 结构较复杂 运动平稳,承载能力 较大
自锁套结构图
• 1.钢球 1.钢球 • 2.圆杆 2.圆杆
爬杆运动示意简图(一)
• 图a .为初始状态,上 .为初始状态,上
下自锁套处于最远极 限位置同时锁紧
爬杆运动示意简图(二)
• 图 b状态曲柄逆时针
方向转动,上自锁套 锁紧,下自锁套松开, 被曲柄连杆带动上爬。
爬杆运动示意简图(三)
• 图c状态曲柄已越过最
高点,下自锁套锁紧, 上自锁套松开,被曲 柄带动上爬,如此周 而复始,实现自动爬 行。
方案二原理
• 电动机驱动齿轮转动,齿轮将运动传递给
导杆,导杆带动滑块移动。当导杆拉滑块 时,上滑块锁紧下滑快上移;导杆推滑块 时下滑快锁紧上滑块上移,以实现整体的 上移。 • 背部的挡板使机器上移时不会发生旋转
机构运动简图: