复变函数与积分变换—复变函数6.3

合集下载

复变函数与积分变换

复变函数与积分变换


x2
2x ( y 1)2
0
于是有 2x 0

x2 y2 1 0
x 2 y 2 1 2x
x0

x2 y2 1
(x 1)2 y 2 2
它表示在圆 (x 1)2 y 2 2 外且属于左半平面的所有点的集合
定理一
lim f (z) A a ib
zz0
lim u(x, y) a
x x0 y y0
lim v(x, y) b
x x0 y y0
定理二 lim [ f (z) g(z)] lim f (z) lim g(z)
zz0
zz0
zz0
lim [ f (z)g(z)] lim f (z) lim g(z)
例: 指出不等式
0 arg z i
zi 4
中点z的轨迹所在范围。
解: z i x2 y2 1 i 2x z i x2 ( y 1)2 x2 ( y 1)2
因为 0 arg z i , 所以
zi 4
x2 y2 1 x2 ( y 1)2
i
复变函数
设 D 是复平面内的一个集合,对于 D 中的每一个z,按 照一定的规律,在另一个复平面有一个或多个复数w的值 与之对应,则称w为定义在 D 上的复变函数,记做
w f (z) (z D)
注:定义集合D所在的复平面称作z平面,函数值集合f D所在的复平面称作w平 面
单值函数 f(z): 对于D中的每个z,有且仅有一个w与之对应。
4
arg(z i) 表示实轴方向与由点i 到 z 的向量之间交角
的主值,因此满足方程的点的全体是自 i 点出发且与实轴

复变-积分变换课件第一章 第3节 二元实函数与复变函数

复变-积分变换课件第一章 第3节 二元实函数与复变函数

Re( z ) 当 z 0 时的极限 例2 证明函数 f ( z ) z 不存在.

令 z x iy, 则 f ( z )
u( x , y )
x , 2 2 x y
x , v ( x , y ) 0, 2 2 x y
当 z 沿直线 y kx 趋于零时, x x lim u( x , y ) lim 2 lim 2 2 2 x 0 x 0 x 0 x y x ( kx ) y kx y kx
例3 证:argz在原点及负实轴上不连续
y

t 0 t R t 0 t R
对z0=0,

o
lim arg( it ) / 2
x
lim arg( it ) / 2
arg z 不存在,故在z=0不连续 极限 lim z0
例3 证:argz在原点及负实轴上不连续
z z0 z z0
(1) lim[ f ( z ) g ( z )] A B;
z z0 z z0
(2) lim[ f ( z ) g ( z )] AB; f (z) A (3) lim ( B 0). z z0 g ( z ) B
与实变函数的极限运算法则类似.
z z0
说明 该定理将求复变函数 f ( z ) u( x , y ) iv ( x , y )
x x0 y y0
lim u( x , y ) u0 ,
x x0 y y0
lim v ( x , y ) v0 .
的极限问题, 转化为求两个二元实变 函数 u( x , y ) 和 v ( x , y ) 的极限问题.
{z x iy | 2 y xy c2 }

复变函数与积分变换重点公式归纳

复变函数与积分变换重点公式归纳

复变函数与积分变换第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。

二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。

掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。

1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。

4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数)1(1sin 2z iz Ln iz Arc w -+== 反余弦函数 )1(1cos 2-+==z z Ln iz Arc w性质与对数函数的性质相同。

复变函数与积分变换拉普拉斯变换的性质

复变函数与积分变换拉普拉斯变换的性质

时移性质
频移性质
微分性质
积分变换具有时移性质,即 对于函数在时间上的平移, 其积分变换结果也相应平移。
积分变换具有频移性质,即 对于函数在频率上的平移, 其积分变换结果也相应平移。
积分变换具有微分性质,即 对于函数的导数或微分,其 积分变换结果等于原函数积 分变换结果的导数或微分。
积分变换的应用
信号处理
实数
在复数中,如果虚部为0,则该数为实数。
虚数
在复数中,如果实部为0,则该数为虚数。
复数的运算
加法
按照实部和虚部分别相加。
减法
按照实部和虚部分别相减。
乘法
按照分配律和 $i^2 = -1$ 进行计算。
除法
通常通过与其共轭复数相乘进行计算。
复变函数的定义
01
复变函数
将复数作为自变量和因变量的函 数,即 $f(z)$,其中 $z = a + bi$。
THANKS FOR WATCHING
感谢您的观看
积分变换在信号处理中有着广泛的应用,如傅里叶变 换用于信号频谱分析和滤波器设计。
控制工程
拉普拉斯变换在控制工程中用于分析线性时不变系统 的传递函数和稳定性。
图像处理
积分变换在图像处理中用于图像压缩、去噪和增强等 操作。
05 拉普拉斯变换与积分变换 的关系
拉普拉斯变换与积分变换的联系
拉普拉斯变换是积分变换的一种, 它将时域函数转换为复平面上的
时移性质
若f(t)的拉普拉斯变换为F(s),则f(at)的拉 普拉斯变换为1/|a|F(s/a)。
微分性质
若f(t)的拉普拉斯变换为F(s),则f'(t)的拉普 拉斯变换为sF(s)。
频移性质

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πisin πi 662=+=z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数第二章 1-2

复变函数第二章 1-2
二、连续性 定义 6.2 若 lim f ( z ) = f (z0 ) , 则称 f ( z ) 在 z0 点连续 ; z→ z
0
lim u( x , y ) = u0 , lim v ( x , y ) = v0 .
x→ x0 y → y0
若 f ( z ) 在区域 D 内处处连续 , 则称 f ( z ) 在
z = z0
z → 0
f ( z0 + z ) f ( z0 ) . z
(1)
注: (1)式中的极限与 z0 + z → z0 ( z → 0)的方式无关 , 即: 无论 z0 + z 以何种方式趋于 z0 ,
f ( z0 + z ) f ( z0 ) 都趋于同一个数 . z
该极限称为 f ( z ) 在 z0 点的导数 , 记作
1 , 其中 z = ( w ) 和 w = f ( z ) 是互为反函 ′( w ) 数的单值函数 , 且 ′( w ) ≠ 0
注:w = f ( z ) 在 z0 点可导与在 z0 点可微是等价的 .
3
§2.1 解析函数的概念 —— 解析函数
二、解析函数 定义 1.2 若 f ( z ) 在 z0 及 z0 的某个邻域内处处可导 , 则 称 f ( z ) 在 z0 点解析 ; 若 f ( z ) 在区域 D 内的每 个点都解析 , 则称 f ( z ) 在区域 D 内解析 , 或称
lim arg z = π , lim arg z = π .
x= x0 y →0 + x= x0 y→ 0
z z + 在 z = 0 点是否有极限? 否 . z z Re( z ) 在 z = 0 点是否有极限? 否 . z

数学一大纲更新解析复变函数与积分变换内容概述

数学一大纲更新解析复变函数与积分变换内容概述近年来,数学一考试大纲进行了一次重要的更新。

其中,复变函数与积分变换成为了考试的重要内容。

本文将对这一部分内容进行深入解析,为考生提供全面的了解和学习指导。

一、复变函数的基本概念与性质复变函数是指自变量和函数值都是复数的函数。

相比于实变函数,复变函数的研究更加复杂和丰富。

在数学一大纲的更新中,复变函数的基本概念与性质成为了重要的考点。

(这里可以逐步介绍复变函数的定义、极限、连续性、导数等基本概念,以及相关的性质和定理。

可以用例题来帮助解释,加深理解。

)二、复变函数的解析复变函数的解析是复变函数理论的核心内容之一。

全纯函数的概念及其性质是解析理论的重要内容。

(这里可以逐步介绍全纯函数的定义、Cauchy-Riemann方程等相关概念和定理。

可以用例题来帮助解释,加深理解。

)三、积分变换的基本概念与性质积分变换是数学中一种重要的工具。

通过积分变换,我们可以将函数从一个域转化到另一个域,从而简化问题的求解过程。

在数学一大纲的更新中,积分变换成为了重要的考点。

(这里可以逐步介绍积分变换的基本概念、拉普拉斯变换、傅里叶变换等常见的积分变换方法以及它们的性质和定理。

可以用例题来帮助解释,加深理解。

)四、复变函数的应用复变函数在科学和工程领域中具有广泛的应用。

它既是求解数学问题的有力工具,也是研究现实问题的重要手段。

(这里可以逐步介绍复变函数在电路分析、流体力学、信号处理等领域中的应用。

可以用例题或实际问题来展示其应用价值。

)总结:通过本文的解析,我们了解到复变函数与积分变换作为数学一大纲更新的重要内容,对数学一考试具有重要的意义。

同时,我们也了解到复变函数与积分变换的基本概念、性质和应用领域,为考生提供了全面的学习指导。

通过深入研究和理解复变函数与积分变换的知识,考生可以更好地应对数学一考试中与此相关的题目和问题。

希望本文能够对大家的学习和备考提供帮助。

祝各位考生取得优异的成绩!。

复变函数与积分变换复习重点总结

复变函数与积分变换复习重点总结一、复变函数基本概念1.复数的定义与运算规则。

复数由实部和虚部构成,在复平面上表示为点,加减乘除等运算遵循分配律。

2.复平面及相关概念。

复平面是复数集合在直角坐标系上的表示,实部和虚部在坐标轴上的投影分别对应x轴和y轴,共轭复数、模、幅角等概念。

3.复变函数的定义与性质。

复变函数表示为z的其中一种函数,具有实变量函数的性质,例如连续性、可微性等。

二、整函数1.整函数的定义与性质。

整函数指复变函数在全复平面都解析,可以用无穷级数表示为幂级数形式。

2.全纯函数与调和函数。

全纯函数是整函数的一种特殊情况,对应于实变量函数的解析函数,调和函数满足拉普拉斯方程。

3.零点与奇点。

零点是整函数取值为0的点,奇点是整函数在一些点上无定义或有定义但不解析的点。

4.极限定理与唯一性定理。

解析函数具有一致性和唯一性,即零点有稠密性,且相同函数在相同域上必然一致。

三、留数定理1.留数的概念与计算方法。

留数是复变函数在奇点处的残余,可以通过留数公式计算得到,留数与曲线积分的关系。

2. 留数定理与积分公式。

留数定理为计算曲线闭合积分提供了便捷的方法,包括留数定理、Cauchy积分公式、Cauchy积分定理等。

3.洛朗展开与留数计算。

洛朗展开将复变函数表示为一部分主要项和无穷级数项的形式,通过计算主要项的留数可以快速得到积分结果。

四、解析函数与幂级数展开1.解析函数的定义与性质。

解析函数是在一些域上解析的复变函数,具有在其定义域上处处可微的特点,可以表示为幂级数形式。

2.幂级数展开与泰勒级数。

将解析函数表示为幂级数展开的形式,其中泰勒级数是幂级数的一种特殊情况,可以用于近似计算。

3.余项估计与收敛半径。

余项估计用于估计幂级数展开的误差范围,收敛半径表示幂级数展开的有效范围。

4.解析函数的四则运算与复合函数。

解析函数具有基本的四则运算和复合运算规则,可通过幂级数展开来计算。

五、积分变换1.积分变换的基本概念与性质。

第3章复变函数与积分变换


常用此式作积分估计。 常用此式作积分估计。
结束
的直线段, 例4:设C 为从原点到点3 + 4i 的直线段,试估计 : 1 dz 模的一个上界。 模的一个上界。 积分 ∫C C的方程为 的方程为z=(3+4i)t (0≤t ≤1)由估值不等式: 由估值不等式: 由估值不等式 解: 的方程为
z −i

C
关 和方向有 。
特例: (1 特例: ) 若 C表示连接点 a , b的任一曲线 , 则
∫ dz = b − a
C
b2 − a 2 ∫Czdz = 2
( 2 ) 若 C表示闭曲线 , 则
∫ dz = 0, ∫ zdz = 0
C C
结束
3、积分存在的条件及其计算法
定理3.1.1(复变函数积分与实函数积分的关系) (复变函数积分与实函数积分的关系) 定理 沿有向曲线C可积的 函数 f ( z ) = u( x , y ) + iv ( x , y ) 沿有向曲线 可积的 充要条件是 充要条件是(4)式右端的两个对坐标的曲线积分 ) 都存在
β
z′(t ) ≠ 0,α < t < β
= ∫ [u( x(t ), y(t )) + iv( x(t ), y(t ))] [ x′(t ) + iy′(t )]dt
β β α
= ∫ f (z(t ))z′(t )dt
α
结束
如果 C是由 C1 , C 2 ,L , C n 等光滑曲线段一次相互 连接所组成的按段光滑曲线,那么定义: 连接所组成的按段光滑曲线,那么定义:
C ֠ (1)若闭曲线
记作 f (z)dz ∫
C
b C a
(2)C : t ∈[a, b], f (z) = u(t ), 则 f (z)dz = ∫ u(t )dt ∫

复变函数与积分变换课后习题答案(北京邮电大学出版社)

复变函数与积分变换课后答案(北京邮电大学出版社)复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案1 / 37习题一1.用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解:()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① : ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明:z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos i sin 332=+=+z2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根.πi 4e ⎫=⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2.∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档