八年级数学分式实际应用解答题提优训练
人教版八年级上册课时练:第15章《分式》实际应用选择题提优(二)

八年级上册课时练:第15章《分式》实际应用选择题提优(二)1.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A 地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h2.学校最近新配备了一批图书需要甲乙两人进行整理,若甲单独整理完成需要4小时完工;若甲乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要()A.4小时B.6小时C.8小时D.10小时3.10月23日新闻网报道,河北2019年各地取暖标准出炉,衡水、邢台等地取暖费标准不变.慧慧家在衡水,欣欣家在邢台,慧慧家的建筑面积与欣欣家的相同,慧慧家和欣欣家2019年所交的取暖费分别为1995元和1890元,如邢台居民每平方米取暖费的价钱比衡水的便宜1元,则衡水居民每平米米取暖费的价钱为()A.20元B.19元C.18元D.17元4.小红国庆节到离家5千米远的文化宫参加演出,他骑自行车前往文化宫比乘汽车多用10分钟,已知乘汽车的速度是骑自行车的2倍,那么他骑自行车的速度为每小时()A.10千米B.15千米C.20千米D.25千米5.一项工程,甲单独做ah完成,乙单独做bh完成,甲、乙两人一起完成这项工程所需的时间为()A.h B.(a+b)h C.h D.h6.某工程需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为()天.A.3 B.4 C.5 D.67.一项工程需在规定日期完成,如果甲队独做,就要超规定日期1天,如果乙队单独做,要超过规定日期4天,现在由甲、乙两队共做3天,剩下工程由乙队单独做,刚好在规定日期完成,则规定日期为()A.6天B.8天C.10天D.7.5天8.甲、乙两列火车长分别是150米和200米,它们相向行驶在平行的轨道上,已知甲车上某位乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口经过的时间是()A.5秒B.7.5秒C.8.5秒D.10秒9.植树节时,某班平均每人植树6株,如果只由女同学完成,每人应植树15株;如果只由男同学完成,每人植树的株数应为()A.9 B.10 C.12 D.1410.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书()A.20本B.25本C.30本D.35本11.一个分数的分母比分子大7,如果把分子加上17,分母减去4,那么所得的分数等于原来分数的倒数,原分数是()A.B.C.D.12.轮船顺流航行40千米由A地到达B地,然后又返回A地,已知水流速度为每小时2千米,设轮船在静水中的速度为每小时x千米,则轮船往返共用的时间为()A.小时B.小时C.小时D.小时13.“退耕还林还草”是我国西部地区实施的一项重要生态工程,某地规划退耕面积共69 000公顷,退耕还林与退耕还草的面积比为5:3,设退耕还林的面积为x公顷,下列所列方程哪一个是不正确的?()A.=B.69000﹣x=xC.=D.=14.地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天施工效率比原计划提高1倍,结果提前4天开通了列车.设原计划每天修x米,所列方程正确的是()A.+4=B.=﹣4C.=﹣4 D.﹣4=15.八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,则骑车同学的速度为()A.10千米/时B.15千米/时C.20千米/时D.30千米/时16.某项工程,甲、乙两队合作需要m天完成,甲队单独做需要n天完成(n>m),那么乙队单独完成需要的时间是()天.A.n﹣m B.C.D.17.电视机、摄像机等电器的电路中有许许多多的元件,它们都具有电阻.如图所示,当两个电阻R1、R2并联时,总电阻满足,若R1=2R2,R=10Ω,则R1,R2的值分别为()A.30Ω,15ΩB.C.15Ω,30ΩD.18.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元19.甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A与B,若仍从原地出发,互换彼此的目的地,则甲在乙到达A之后50分钟到达B,甲乙的速度之比为()A.2:3 B.3:5 C.3:2 D.3:420.“某学校改造过程中整修门口1500m的道路,但是在实际施工时,……,求实际每天整修道路多少米?”在这个题目中,若设实际每天整修道路xm,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多修5m,结果延期10天完成B.每天比原计划多修5m,结果提前10天完成C.每天比原计划少修5m,结果延期10天完成D.每天比原计划少修5m,结果提前10天完成21.一项工程由甲、乙两队合做共需4天完成,如果甲队单独做共需6天完成,那么由乙单独一天能完成这件工程的()A.B.C.D.22.某内陆城市未来落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,那么汽车原来的平均速度为()km/h.A.70 B.65 C.75 D.8023.一个水塘里放养了鲤鱼和草鱼,草鱼的数量占总数的,现又放进了130条鲤鱼,这时草鱼的数量占总数的,则这个水塘里草鱼的数量是()A.350 B.358 C.377 D.38424.某顾客第一次在商店买若干个小商品花去5元;第二次再去买该小商品时,发现每一件(12个)降价0.8元,他第二次购买该小商品的数量是第一次的2倍,第二次共花去2元,该顾客第一次买的小商品是()个.A.5 B.20 C.40 D.6025.王芳和张敏在某工厂制作手机配件,已知王芳做200个手机配件所用的时间与张敏做180个手机配件所用的时间相同,已知王芳每天比张敏多做10个手机配件,则张敏每天可做手机配件()A.60个B.80个C.90个D.100个参考答案1.解:设甲的速度是x千米/小时,乙的速度是1.5x千米/小时,﹣1+=,x=40,经检验x=40是分式方程的解.答:甲的速度40千米/小时.故选:A.2.解:设乙单独整理完成需要x小时,根据题意得:+=1,解得:x=8,经检验,x=8是原方程的解.故选:C.3.解:设衡水居民每平米米取暖费的价钱为x元,则邢台居民每平方米取暖费的价钱为(x ﹣1)元,根据题意得:,解方程得:x=19,经检验:x=19是原分式方程的解,答:衡水居民每平米米取暖费的价钱为19元,故选:B.4.解:设小红骑自行车的速度是x米/分钟,则乘汽车的速度是2x米/分钟,由题意得﹣=10,解得:x=250,经检验,x=250是原分式方程的解.即:小红骑自行车的速度是250米/分钟.250米/分钟=15千米/小时.故选:B.5.解:设甲、乙两人一起完成这项工程所需的时间为xh,则有,解得x=,∴甲、乙两人一起完成这项工程所需的时间为h.故选:D.6.解:设规定的时间为x天,则乙完成需要(x+3)天,由题意得,+=1,解得:x=6,经检验,x=6是原分式方程的解,且符合题意.答:规定的时间为6天.故选:D.7.解:设工作总量为1,规定日期为x天,则若单独做,甲队需x+1天,乙队需x+4天,根据题意列方程得3(+)+=1,解方程可得x=8,经检验x=8是分式方程的解,故选:B.8.解:设乙车上的乘客看见甲车在他窗口外经过的时间是x秒.由题意,有=,解得x=7.5.经检验,x=7.5是原方程的解.即乙车上的乘客看见甲车在他窗口外经过的时间是7.5秒.故选:B.9.解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:+=,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.10.解:由题意列方程,得=,解得x=20,经检验x=20是方程的解.故选:A.11.解:设原来分数的分子为x,则分母为(x+7),分子加上17,分母减去4,所得的分式为:,根据互为倒数的两数之积为1可得,×=1,解得x=3,∴原分数为.故选:D.12.解:设轮船在静水中的速度为每小时x千米,根据题意得:+=.故选:D.13.解:退耕还林的面积为x公顷,则退耕还草的面积为(69000﹣x)公顷,故=,A正确;故69000﹣x=x÷=x,B错误;故=,C正确;根据第二个等量关系可得D正确;故选:B.14.解:原来所用的时间为:,实际所用的时间为:.故所列方程为:=﹣4.故选:B.15.解:设骑车同学的速度为x千米/时,则汽车速度为2x千米/时.列方程为:.解这个方程得:x=15.经检验,x=15是原方程的解.答:骑车同学的速度15千米/小时.故选:B.16.解:设工作总量为1,乙队单独完成需要的时间是x天,那么乙的工作效率为,甲的工作效率为,两队合作m天完成.那么可得:.解得:x=.故选:B.17.解:设R2=x,则R1=2R2=2x,∵,R=10Ω,∴=+,解得:x=15,经检验,x=15是原方程的解,∴R1=30Ω,R2=15Ω.故选:A.18.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.19.解:设甲的速度为v1千米/时,乙的速度为v2千米/时,根据题意知,从出发地点到A的路程为v1千米,到B的路程为v2千米,从而有方程:,化简得:,解得:,﹣是负数,应该舍去故选:A.20.解:设实际每天整修道路xm,则(x﹣5)m表示:实际施工时,每天比原计划多修5m,∵方程,其中表示原计划施工所需时间,表示实际施工所需时间,∴原方程所选用的等量关系为实际施工比原计划提前10天完成.故选:B.21.解:设乙队单独做共需x天完成,依题意,得:4(+)=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴乙单独一天能完成这件工程的.故选:D.22.解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70,经检验:x=70是原方程的解.即汽车原来的平均速度70km/h.故选:A.23.解:这个水塘里草鱼的数量是x,可得:,解得:x=350,经检验x=350是原方程的解,故选:A.24.解:设该顾客第一次买的小商品是x个,根据题意可得:﹣=,解得:x=60,经检验x=60是原方程的解.答:该顾客第一次买的小商品是60个.故选:D.25.解:设张敏每天可做手机配件x个,则王芳每天可做手机配件(x+10)个,根据题意得:=,解得:x=90,经检验,x=90是原方程的根.故选:C.。
人教版八年级上册课时练:第15章《分式》实际应用提优(五)【有答案】

《分式》实际应用提优(五)1.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?2.春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?3.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?4.2020年1月份,为抗击新型冠状病毒,某药店计划购进一批甲、乙两种型号的口罩,已知一袋甲种口罩的进价与一袋乙种口罩的进价和为40元,用90元购进甲种口罩的袋数与用150元购进乙种口罩的袋数相同.(1)求每袋甲种、乙种口罩的进价分别是多少元?(2)该药店计划购进甲、乙两种口罩共480袋,其中甲种口罩的袋数少于乙种口罩袋数的,药店决定此次进货的总资金不超过10000元,求商场共有几种进货方案?5.某超市用4000元购进某种服装销售,由于销售状况良好,超市又调拨9000元资金购进该种服装,但这次的进价比第一次的进价降低了10%,购进的数量是第一次的2倍还多25件,问这种服装的第一次进价是每件多少元?6.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.7.据报道,四川雅安发生7.0级地震后,在对灾区的救援中,不少企业都为赈灾救援提供了便利.某公司获悉雅安急需某药品,就用320000元购进了一批这种药品,运到雅安后很快用完,某公司又用680000元购进第二批这种药品,所购数量是第一批购进数量的2倍,但每件药品进价多了10元.(1)该公司两次共购进这种药品多少件?(2)若一件药品一天可以满足15人使用,那么这些药品可以在30天内至多满足多少人使用?8.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价7元售出150本时,出现滞销,便以定价的5折售完剩余的书.(1)每本书第一次的批发价是多少钱?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?9.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?10.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?。
【精选】八年级上册分式解答题(提升篇)(Word版 含解析)

一、八年级数学分式解答题压轴题(难)1.已知:12x M +=,21xN x =+. (1)当x >0时,判断M N -与0的关系,并说明理由;(2)设2y N M=+. ①当3y =时,求x 的值;②若x 是整数,求y 的正整数值.【答案】(1)见解析;(2)①1;②4或3或1 【解析】 【分析】(1)作差后,根据分式方程的加减法法则计算即可; (2)①把M 、N 代入整理得到y ,解分式方程即可; ②把y 变形为:221y x =++,由于x 为整数,y 为整数,则1x +可以取±1,±2,然后一一检验即可. 【详解】(1)当0x >时,M -N ≥0.理由如下:M -N =()()21122121x x xx x -+-=++ .∵x >0,∴(x -1)2≥0,2(x +1)>0,∴()()21021x x -≥+,∴M -N ≥0.(2)依题意,得:4224111x x y x x x +=+=+++. ①当3y =,即2431x x +=+时,解得:1x =.经检验,1x =是原分式方程的解,∴当y =3时,x 的值是1.②2422222111x x y x x x +++===++++ . ∵x y ,是整数,∴21x +是整数,∴1x +可以取±1,±2.当x +1=1,即0x =时,22401y =+=> ;当x +1=﹣1时,即2x =-时,2201y =-=(舍去); 当x +1=2时,即1x =时,22302y =+=> ;当x +1=-2时,即3x =-时,22102y =+=>-() ; 综上所述:当x 为整数时,y 的正整数值是4或3或1. 【点睛】本题考查了分式的加减法及解方式方程.确定x +1的取值是解答(2)②的关键.2.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma,+2020ma a ;(3)两组一起收割完这块麦田需要2241n nn --小时. 【解析】 【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间. 【详解】解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0, ∴原分式方程的解为x =4, ∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨,根据题意得:20m m y y a+=+解得;y =20ma ,经检验:y =20ma是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a+; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n nn --小时.【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.3.阅读下面的解题过程:已知2113x x =+,求241x x +的值。
人教版八年级上册课时练:第15章《分式》实际应用解答题提优(四)

八年级上册课时练:第15章《分式》实际应用解答题提优(四)1.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?2.某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的1.5倍,用900元单独购买甲图书比用900元单独购买乙图书要少30本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买甲乙两种图书共80本,且用于购买图书的总经费不超过900元,那么该图书馆最多可以购买多少本甲图书?3.某工程队承建一所希望学校,在施工过程中,由于改进了工作方法,工作效率提高了20%,因此比原定工期提前1个月完工.这个工程队原计划用几个月的时间建成这所希望学校?4.我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?5.某厂为抗击疫情,要在规定时间内加工1500万只口罩.在加工了300万只口罩后,厂家把工作效率提高到原来的1.5倍,结果提前4天完成任务,求该厂原来每天加工多少万只口罩?6.科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.7.2020年由于新冠肺炎爆发,为预防疫情专家提出了“勤洗手,戴口罩”的措施,口罩在市场上供不应求,生产口罩的主要材料是熔喷布.已知1吨熔喷布可以生产105万只医用一次性口罩,或者60万只KN95口罩.某生产熔喷布的企业要求在规定时间内完成100吨熔喷布的订单,为提高产量,现对生产车间进行改造,改造后每天比改造前多生产4吨熔喷布,结果在规定时间内多生产了40吨熔喷布.(1)现有一批熔喷布,若全部用来生产医用一次性口罩则可以生产420万只,则这批熔喷布全部用来生产KN95口罩则可以生产万只;(2)求该企业改造后熔喷布的日产量和企业要求规定的天数.8.长春市某街道开展爱心捐赠活动,并决定赠送一批阅读图书,用于贫困学生的课外学习.据了解,科普书的单价比文学书的单价多8元,用12000元购买科普书与用8000元购买文学书的本数相同,求这两类书籍的单价各是多少元.9.老街文化节开幕前,工艺师接到200个风筝的定制任务,他以原计划的效率制作了1天后,将工作效率提高了50%,结果比预定计划提前1天完成.求他原计划每天制作多少个风筝.10.京张高铁是世界上首条智能化高速铁路,起点是北京北,终点是张家口南.建成后的京张高铁铁路运行里程由原来的196km缩短为174km,运行时间缩短为原来的,平均速度比原来快150千米/小时.求建成后的京张高铁从北京北至张家口南的运行时间.参考答案1.解:设这项工程的规定时间是x天,根据题意得=1.经检验x=30是方程的解.答:这项工程的规定时间是30天.2.解:(1)设乙图书每本价格为x元,则甲图书每本价格是1.5x元,由题意可得:,解得:x=10,经检验得:x=10是原方程的根,则1.5x=15,答:乙图书每本价格为10元,甲图书每本价格是15元;(2)设图书馆可以购买y本甲图书,由题意可得:15x+10(80﹣x)≤900,解得:x≤20,答:图书馆最多可以购买20本甲图书.3.解:设工程队原计划用x个月的时间建成这所希望学校,根据题意,得解这个方程,得x=6经检验,x=6是原分式方程的根答:这个工程队原计划用6个月建成这所希望学校.4.解:设二班单独整理这批实验器材需要x分钟,根据题意可得:15×(+)+15×=1,经检验得:x=60是原方程的根,答:二班单独整理这批实验器材需要60分钟.5.解:设该厂原来每天加工x万只口罩,则提高工作效率后每天加工1.5x万只口罩,依题意,得:﹣=4,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:该厂原来每天加工100万只口罩.6.解:设该建筑集团原来每天铺设高架桥x米,则采用新的铺设技术后每天铺设高架桥2x 米,依题意,得:+=9,解得:x=300,经检验,x=300是原方程的解,且符合题意.答:该建筑集团原来每天铺设高架桥300米.7.解:(1)×60=240万只,故答案为:240;(2)设:企业规定的天数为x天,由题意可得:,解得:x=10,经检验x=10是原方程的解,且符合题意,∴改造后熔喷布的日产量为=14吨,答:企业改造后熔喷布的日产量为14吨,企业要求规定的天数为10天.8.解:设文学书每本x元,则科普书每本(x+8)元,依题意列方程得=,解得x=16,经检验,x=16是原方程的根,且符合题意,x+8=24,答:文学书每本16元,科普书每本24元.9.解:设原计划每天制作x个风筝,可得:=1,解得:x=50,经检验x=50是原方程的解,答:原计划每天制作50件风筝.10.解:设建成后的京张高铁从北京北至张家口南的运行时间为x小时,依题意,得:﹣=150,解得:x=,经检验:x=是原方程的解,且符合题意.答:建成后的京张高铁从北京北至张家口南的运行时间为小时.。
人教版八年级上册课时练第十五章分式实际应用解答题提优

人教版八上课时练:第十五章《分式》实际应用解答题提优(一)1.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a米道路,乙工程队每天可以改造b米道路,(其中a≠b).现在有两种施工改造方案:方案一:前米的道路由甲工程队改造,后米的道路由乙工程队改造;方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造.根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.2.中国北京已获得2022年第24届冬季奥林匹克运动会举办权,北京也将创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市.张家口也成为本届冬奥会的协办城市,为此,中国设计了第一条采用我国自主研发的北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁,作为2022年北京冬奥会重要交通保障设施.已知北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.3.新型冠状病毒肺炎疫情发生后,全社会的积极参与疫情防控工作下,才有了我们的平安复学.为了能在复学前将一批防疫物资送达校园,某运输公司组织了甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱防疫物资,且甲种货车装运900箱防疫物资所用车辆与乙种货车装运600箱防疫物资所用的车辆相等,求甲、乙两种货车每辆车可装多少箱防疫物资?4.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度是多少?(2)李明能否在联欢会开始前赶到学校?5.某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?6.为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍.求八年级捐书人数是多少?7.为了响应国家对本次新型冠状病毒肺炎防疫工作的号召,某口罩生产厂家承担了生产2100万个口罩的任务,甲车间单独生产了700万个口罩后,由于任务紧急,要求乙车间与甲车间同时生产,结果比原计划提前10天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天生产口罩各多少万个?8.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树,由于青年团员的支援,每日比原计划多种20棵,结果在时间相同的情况下多种了240棵树,原计划每天种植多少棵树?9.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,苏州某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.求甲、乙两厂房每天各生产多少箱口罩.10.为了“迎国庆,向祖国母亲献礼”,某建筑公司承建了修筑一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费126000元;如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.(1)甲、乙两队单独完成此项工程,各需多少天?(2)为了尽快完成这项工程任务,甲、乙两队通过技术革新提高了速度,同时,甲队每天的施工费提高了a%,乙队每天的施工费提高了2a%,已知两队合作12天后,由甲队再单独做2天就完成了这项工程任务,且所需施工费比计划少了21200元.①分别求出甲、乙两队每天的施工费用;②求a的值.参考答案1.解:(1)设乙工程队每天改造道路的长度为x米,则甲工程队每天改造道路的长度为(x+30)米,根据题意,得:,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+30=180.答:甲工程队每天改造道路的长度为180米,乙工程队每天改造道路的长度为150米.(2)方案一所用时间为+=.设方案二所用时间为=.﹣==.∵a≠b,∴>0,∴﹣>0,∴方案二所用的时间少.2.解:设普通快车的平均行驶速度为x千米/时,则京张高铁列车的平均行驶速度为1.5x千米/时.根据题意得:,解得:x=180,经检验,x=80是所列分式方程的解,且符合题意.则1.5x=1.5×180=270.答:京张高铁列车的平均行驶速度为270千米/时.3.解:设乙种货车每辆车可装x箱防疫物资,则甲种货车每辆车可装(x+20)箱防疫物资,由题意得:,解得:x=40;经检验x=40是原方程的解,且符合题意.答:乙种货车每辆车可装40箱防疫物资,则甲种货车每辆车可装60箱防疫物资.4.解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.依题意,得:﹣=20,解得:x=70,经检验,x=70是原方程的解,且符合题意.答:李明步行的速度是70米/分.(2)++2=42(分钟),∵42<48,∴李明能在联欢会开始前赶到学校.5.解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.6.解:设八年级捐书人数是x人,则七年级捐书人数是(x ﹣150)人,依题意有×1.5=,解得x=450,经检验,x=450是原方程的解.故八年级捐书人数是450人.7.解:设甲车间每天生产口罩x万个,则乙车间每天生产口罩1.5x万个,根据题意得:,解得:x=84,经检验,x=84是原方程的根,1.5x=1.5×84=126.答:甲车间每天生产口罩84万个,乙车间每天生产口罩126万个.8.解:设原计划每天种植x棵树,则实际每天种(x+20)棵树,由题意可得:,解得:x=80,经检验,x=80是原方程的解,并符合题意,答:原计划每天种植80棵树.9.解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x 箱口罩,依题意,得:﹣=5,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.答:甲厂房每天生产1200箱口罩,乙厂房每天生产600箱口罩.10.解:(1)设甲公司单独完成此项工程需x天,根据题意可得:,解得:x=30,检验,知x=30符合题意,∴1.5x=45,答:甲公司单独完成此项工程需30天,乙公司单独完成此项工程需45天;(2)①设甲公司技术革新前每天的施工费用是y元,那么乙公司技术革新前每天的施工费用是(y﹣1000)元,则由题意可得:(y+y﹣1000)×18=126000,解得:y=4000,∴y﹣1000=3000,答:技术革新前,甲公司每天的施工费用是4000元,乙公司每天的施工费用是3000元;②4000×14×(1+a%)+3000×12×(1+2a%)=126000﹣21200,解得:a=10.答:a的值是10.。
人教版八年级上册 第15章《分式》实际应用提优(一)【有答案】

第15章《分式》实际应用提优(一)1.锦潭社区计划对某区域进行绿化,经投标,由甲、乙两个工程队一起来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.5倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用2天.(1)求甲、乙两工程队每天各能完成的绿化面积.(2)若计划绿化的区域面积是1900m2,甲队每天绿化费用是0.5万元,乙队每天绿化费用为0.3万元.①当甲、乙各施工几天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元.②按要求甲队至少施工10天,乙队最多施工22天,当甲乙各施工几天,刚好完成绿化任务,又使得总费用最少(施工天数不能是小数),并求最少总费用.2.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)3.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,购买A种消毒液花费了2500元,购买B种消毒液花费了2000元,且购买A种消毒液数量是购买B种消毒液数量的2倍,已知购买一桶B种消毒液比购买一桶A种消毒液多花30元.(1)求购买一桶A种、一桶B种消毒液各需多少元?(2)为了践行“把人民群众生命安全和身体健康摆在第一位”的要求,加强学校防控工作,保障师生健康安全,学校准备再次购买一批防控物资,其中A、B两种消毒液准备购买共50桶,恰逢商场对两种消毒液的售价进行调整,A种消毒液售价比第一次购买时提高了8%,B种消毒液按第一次购买时售价的9折出售,如果学校此次购买A、B两种消毒液的总费用不超过3260元,那么学校此次最多可购买多少桶B种消毒液?4.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?5.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1﹣5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%.今年1﹣5月份每辆车的销售价格是多少万元?6.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)7.近期受疫情影响,需要居家学习,某中学为方便教师线上直播授课,计划给教师配备电脑手写板.信息城现有甲、乙两种手写板,若每台甲种手写板的价格比每台乙种手写板的价格少300元,且用6000元购买甲种手写板的数量与用7500元购买乙种手写板的数量相同.(1)求每台甲种手写板和乙种手写板的价格;(2)若学校计划到信息城购买50台手写板,购买甲种手写板的数量不少于乙种手写板数量的2倍,信息城给出的优惠方案:一次性购买不少于10台乙种手写板,则乙种手写板的价格按原价七五折优惠,否则按原价购买.请你帮学校设计一种最省钱的购买方案.8.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?9.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.10.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.解:(1)设乙队每天能完成绿化面积xm2,则甲队每天能完成绿化面积1.5xm2,由题意得:﹣=2,解得:x=50,经检验,x=50是该方程的根,1.5x=1.5×50=75(m2),∴甲、乙两工程队每天各能完成的绿化面积分别是75m2、50m2;(2)①设甲队施工a天,则乙队施工天刚好完成绿化任务,由题意得:0.5a+0.3×=12.2,解得:a=16,∴==14(天),∴甲队施工16天,乙队施工14天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元;②设甲队施工m(m≥10)天,则乙队施工天刚好完成绿化任务,由题意得:≤22,解得:m≥10,总费用y=0.5m+0.3×=,∵>0,∴y的值随m值的增大而增大,∵m是正整数,且两队施工的天数都是正整数,∴m=12时,总费用y为最小值,最小值是:=12(万元),。
人教版八年级上册同步训练:第15章《分式》实际应用解答题提优二

人教版八年级上册同步训练:第15章《分式》实际应用解答题提优二1.科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.2.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg,甲型机器人搬运800kg所用时间与乙型机器人搬运600kg所用时间相等.问乙型机器人每小时搬运多少kg产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg产品,可列方程为.小惠同学设甲型机器人搬运800kg所用时间为y小时,可列方程为.(2)请你按照(1)中小华同学的解题思路,写出完整的解答过程.3.为解决偏远山区的学生饮水问题,某中学学生会号召同学们自愿捐款.已知七年级捐款总额为4800元,八年级捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款数相等,请问七、八年级捐款的人数分别为多少?4.我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要1.1万元,乙工程队要0.8万元,工程小组根据甲、乙两队标书的测算,有三种方案:(A)甲队单独完成这个工程,刚好如期完成;(B)乙队单独完成这个工程要比规定时间多用5天;(C)**********,剩下的工程由乙队单独做,也正好如期完成.方案C中“星号”部分被损毁了.已知,一个同学设规定的工期为x天,根据题意列出方程:(1)请将方案(C)中“星号”部分补充出来;(2)你认为哪个方案节省工程款,请说明你的理由.5.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,有如下方案:Ⅰ、甲队单独完成这项工程刚好如期完成;Ⅱ、乙队单独完成这项工程要比规定日期多6天;Ⅲ、若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.(1)设甲队单独完成这项工程需要x天.工程总量所用时间(天)工程效率甲队乙队(2)根据题意及表中所得到的信息列出方程.6.2019年4月4日,珊瑚中学组织七年级学生乘车前往距学校130km的大观参观.学校租用30座和48座两种客车运送学生.(1)一部分学生乘48座客车先行,出发0.5小时后,另一部分学生乘30座的客车前往,结果他们同时到达大观.已知30座客车的速度是48座客车速度的1.3倍,求48座客车的速度.解:设48座客车的速度为xkm/h:填写表格:s v t48座客车x30座客车 1.3x列出方程:,解:,答:.(2)若学校单独租用50座客车m辆,则有2人没有座位,则全校七年级学生人数可表示为人.7.题目:为了美化环境,某地政府计划对辖区内60km2的土地进付绿化,为了尽快完成任务,实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.甲同学所列的方程为﹣=2乙同学所列的方程为=1.5×(1)甲同学所列方程中的x表示.乙同学所列方程中的y表示.(2)任选甲、乙两同学的其中一个方法解答这个题目.8.一条小船顺流航行50km后,又立即返回原地.如果船在静水中的速度为akm/h,水流的速度为8km/h,那么顺流航行比逆流航行少用多少小时?9.某服装销售商场A品牌服装销售价为160元,B品牌服装销售价为140元,每件A品牌服装比每件B品牌服装进价多30元,商场用1500元购进A品牌服装的数量与用1200元购进B品牌服装数量相等.(1)求A,B两种品牌服装每件进价分别是多少?(2)现商场购进两种品牌服装共100件,设购进A品牌服装x件,两种品牌服装销售总利润为y元,要求购进B品牌服装数量不超过A品牌服装数量的2倍,总利润不低于1640元,请写出合理的方案;(3)实际进货时,厂家对A品牌出厂价下调k(0<k<15)元,而商家保持两种品牌服装售价不变,请根据(2)中条件,设计出使100件服装销售总利润最大的进货方案.10.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?参考答案1.解:设该建筑集团原来每天铺设高架桥x米,则采用新的铺设技术后每天铺设高架桥2x米,依题意,得:+=9,解得:x=300,经检验,x=300是原方程的解,且符合题意.答:该建筑集团原来每天铺设高架桥300米.2.解:(1)小华同学设乙型机器人每小时搬运xkg产品,可列方程为:=;小惠同学设甲型机器人搬运800kg所用时间为y小时,可列方程为:=+10;故答案为:=;=+10;(2)设乙型机器人每小时搬运xkg产品,根据题意可得:=,解得:x=30,经检验得:x=30是原方程的解,且符合题意,答:乙型机器人每小时搬运30kg产品.3.解:设七年级捐款的人数为x人,则八年级捐款的人数为(x+20)人,由题意得:=,解得x=480,经检验,x=480是原分式方程的解,x+20=500(人),答:七年级捐款的人数为480人,八年级捐款的人数为500人.4.解:(1)根据题意及所列的方程可知被损毁的部分为:甲、乙两队合作4天;故答案为:甲、乙两队合作4天;(2)设规定的工期为x天,根据题意列出方程:,解得:x=20.经检验:x=20是原分式方程的解.这三种施工方案需要的工程款为:(A)1.1×20=22(万元);(B)0.8×(20+5)=20(万元);(C)4×1.1+20×0.8=20.4(万元).综上所述,B方案可以节省工程款.5.解:(1)由题意可得,把工作总量看作单位1,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要(x+6)天,则甲的工作效率为,乙队的工作效率为,故答案为:1,x,;1,x+6,;(2)根据题意及表中所得到的信息列出方程是:()×3+(x﹣3)×=1,故答案为:()×3+(x﹣3)×=1.6.解:填写表格:s v t48座客车130 x30座客车130 1.3x列出方程:﹣0.5=,解:x=60,经检验:x=60是原方程的解,答:48座客车的速度为60km/h.(2)全校七年级学生人数可表示为(50m+2)人;故答案为:130,,130,,﹣0.5=,x=60,经检验:x =60是原方程的解,48座客车的速度为60km/h,(50m+2).7.解:(1)由题意可得,甲同学所列方程中的x表示原计划平均每月的绿化面积,乙同学所列方程中的y表示实际完成这项工程需要的月数,故答案为:原计划平均每月的绿化面积;实际完成这项工程需要的月数;(2)按甲同学的作法解答,﹣=2,方程两边同乘以1.5x,得90﹣60=3x,解得,x=10,经检验,x=10是原分式方程的解,答:原计划平均每月的绿化面积是10km2.8.解:依题意有﹣==小时.答:顺流航行比逆流航行少用小时.9.解:(1)设A品牌服装每件进价为a元,则B品牌服装每件进价为(a﹣30)元,由题意得:=,解得:a=150,经检验:a=150是原分式方程的解,a﹣30=150﹣30=120.答:A品牌服装每件进价为150元,则B品牌服装每件进价为120元;(2)依题意得:,解得:33≤x≤36,(7分)∵x是整数,∴x可取34、35、36,即共有3种进货方案.具体如下:①A品牌服装34件,B品牌服装66件;②A品牌服装35件,B品牌服装65件;③A品牌服装36件,B品牌服装64件.(3)当厂家对A品牌出厂价下调k(0<k<15)元,则y=(160﹣150+k)x+(140﹣120)(100﹣x)=(k﹣10)x+2000,①当k﹣10>0时,即10<k<15时,y随x的增大而增大;∴当x=36时,y最大,②当k﹣10=0时,即k=10,y=2000;③当k﹣10<0时,即0<k<10时,y随x的增大而减小;∴当x=34时,y最大,答:当10<k<15时,购进品牌服装36件,B品牌服装64件,总利润最大;当k=10时,所有方案的利润均为2000元;当0<k<10时,购进品牌服装34件,B品牌服装64件,总利润最大.10.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.。
初二分式方程提优专题

word 格式-可编辑-感谢下载支持 分式方程提优专题增根问题:1、关于x 的分式方程2133x m x x -=--会产生增根.求增根及m 的值2、若关于x 的分式方程311x a x x --=-会产生增根,求a 的值.无解问题:1、若关于x 的方程 2213m xx x +-=- 无解,则m 的值为( )A .-1.5B .1C .-1.5或2 D.-0.5或-1.52、当a 为何值时,关于x 的分式方程311x ax x --=-无解。
3、当m 为何值时,关于x 的方程223242mxx x x +=--+无解?有解问题:word 格式-可编辑-感谢下载支持 a2x x - = - 3 1 1 1、(2015•齐齐哈尔,第7题3分)关于x 的分式方程 =有解,则字母a 的取值范围是( )A . a=5或a=0B . a ≠0C . a ≠5D . a ≠5且a ≠0 2、关于x 的分式方程2133x mx x -=--有解.求m 的取值。
3、当m 为何值时,关于x 的方程223242mx x x x +=--+有解?4、已知关于x 的分式方程211a x +=+的解是非正数,则a 的取值范围是 () A .a ≤一1 B .a ≤一1且a ≠一2 C .a ≤1且a ≠2D .a ≤1 5、已知关于x 的方程3221x nx +=+的解是负数,则n 的取值范围为 .6、若方程的解为正数,求a 的取值范围.7、当a 为何值时, )1)(2(21221+-+=+----x x ax x x x x 的解是负数?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学分式实际应用解答题提优训练
1.某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?
2.近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.
3.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买A、B两种防疫物资,A种防疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,
有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).
4.某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?
5.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.
6.某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?
7.某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,
则该校最多可再购买多少副围棋?
8.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?
(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
9.“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.
(1)求原来生产防护服的工人有多少人?
(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?
10.为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍.求八年级捐书人数是多少?
参考答案
1.解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据题意,得:
﹣=4,
解得:x=45,
经检验,x=45是原分式方程的解,
则2x=2×45=90.
答:实际平均每年绿化升级改造的面积是90万平方米.
2.解:设走路线A的平均速度为xkm/h,则走路线B的平均速度为(1+50%)xkm/h,依题意,得:﹣=,
解得:x=50,
经检验,x=50是原方程的解,且符合题意,
∴(1+50%)x=75.
答:走路线B的平均速度为75km/h.
3.解:(1)设甲公司有x人,则乙公司有(x+30)人,
依题意,得:×=,
解得:x=150,
经检验,x=150是原方程的解,且符合题意,
∴x+30=180.
答:甲公司有150人,乙公司有180人.
(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,
依题意,得:15000m+12000n=100000+140000,
∴m=16﹣n.
又∵n≥10,且m,n均为正整数,
∴,,
∴有2种购买方案,方案1:购买8箱A种防疫物资,10箱B种防疫物资;方案2:购买4箱A种防疫物资,15箱B种防疫物资.
4.解:设计划每天生产x顶帐篷,则实际每天生产帐篷(1+25%)x顶,依题意得:﹣10=.
解得x=200.
经检验x=200是所列方程的解,且符合题意.
答:计划每天生产200顶帐篷.
5.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,
根据题意得:=,
解得:x=12,
经检验,x=12是原方程的解,且符合题意,
答:乙每小时做12个零件.
6.解:设原计划每天修建盲道xm,
则﹣=2,
解得x=300,
经检验,x=300是所列方程的解,
答:原计划每天修建盲道300米.
7.解:(1)设每副围棋x元,则每副象棋(x﹣8)元,
根据题意,得=.
解得x=18.
经检验x=18是所列方程的根.
所以x﹣8=10.
答:每副围棋18元,则每副象棋10元;
(2)设购买围棋m副,则购买象棋(40﹣m)副,
根据题意,得18m+10(40﹣m)≤600.
解得m≤25.
故m最大值是25.
答:该校最多可再购买25副围棋.
8.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)
平方米,
根据题意得:,
解得:x=3,
经检验x=3是原方程的解,
所以3+2=5,
答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;
(2)设建A摊位a个,则建B摊位(90﹣a)个,
由题意得:90﹣a≥3a,
解得a≤22.5,
∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,
∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,
此时最大费用为:22×40×5+30×(90﹣22)×3=10520,
答:建造这90个摊位的最大费用是10520元.
9.解:(1)设原来生产防护服的工人有x人,
由题意得,=,
解得:x=20.
经检验,x=20是原方程的解.
答:原来生产防护服的工人有20人;
(2)设还需要生产y天才能完成任务.
=5(套),
即每人每小时生产5套防护服.
由题意得,10×650+20×5×10y≥14500,
解得y≥8.
答:至少还需要生产8天才能完成任务.
10.解:设八年级捐书人数是x人,则七年级捐书人数是(x﹣150)人,依题意有
×1.5=,
解得x=450,
经检验,x=450是原方程的解.故八年级捐书人数是450人.。