2016-17江苏省中考数学模拟试卷(含答案)
2016年中考数学模拟试卷(含答案解析) (3)

2016年中考模拟试卷(二)数 学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|-2|的值是( ▲ )A .2B .﹣2C .12D .-122.已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示这个数为( ▲ )A .8.9×10-5B .8.9×10-4C .8.9×10-3D .8.9×10-23.计算a 3·(-a )2的结果是( ▲ )A .a 5B .-a 5C .a 6D .-a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( ▲ ) A . 5 +1 B . 5 -1C . 5D . 1- 55.已知一次函数y =ax -x -a +1(a 为常数),则其函数图象一定过象限 ( ▲ )A .一、二B .二、三C .三、四D .一、四6. 在△ABC 中, AB =3,AC =2.当∠B 最大时,BC 的长是 ( ▲ ) A .1B .5C .13D .5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置......上)7.计算: ( 13 )﹣2+(3+1)0= ▲ .8.因式分解:a 3-4a = ▲ . 9.计算:3-33= ▲ .10.函数y =x -12中,自变量x 的取值范围是 ▲ . 11.某商场统计了去年1~5月A ,B 两种品牌冰箱的销售情况.A 品牌(台) 15 17 16 13 14B 品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是 ▲ (填“A ”或“B ”).-3 -2 -1 2 1 0 A BECD 3(第4题)12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为 ▲ °.13.已知m 、n 是一元二次方程ax 2–2x +3=0的两个根,若m +n =2,则mn = ▲ .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x 个中国结,可列方程 ▲ .15. 如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为23,则图中阴影部分的面积为▲ .16.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下. ②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线.③当x =2时,y =3. ④方程ax 2+bx +c =﹣2的正根在3与4之间.其中正确的说法为 ▲ .(只需写出序号)三、解答题(本大题共12小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)解不等式:1-2x -13 ≥ 1-x2,并写出它的所有正整数解..... 18.(6分)化简:x -3x -2 ÷( x +2-5x -2).19.(8分)(1)解方程组 ⎩⎨⎧y =x +1,3x -2y =-1;(2)请运用解二元一次方程组的思想方法解方程组⎩⎨⎧x +y =1,x +y 2=3.x … 1- 0 1 3 …y … 3- 1 3 1 …(第11题)12(第15题)20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 ▲ 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 ▲ 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF . (1)求证:ABE AD F '△≌△;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.全国12-35岁的网瘾人群分布条形统计图年龄人数12-17岁30-35岁24-29岁18-23岁500400300200100330420450O30-35岁22%12-17岁24-29岁18-23岁全国12-35岁的网瘾人群分布扇形统计图ADBE CD 'F(第22题)23.(8分)如图,两棵大树AB 、CD ,它们根部的距离AC =4m ,小强沿着正对这两棵树的方向前进. 如果小强的眼睛与地面的距离为1.6m ,小强在P 处时测得B 的仰角为20.3°,当小强前进5m 达到Q 处时,视线恰好经过两棵树的顶端B和D ,此时仰角为36.42°. (1) 求大树AB 的高度; (2) 求大树CD 的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm 的铁丝分成两个部分,分别围成两个正方形. (1)能否使所围的两个正方形的面积和为250cm 2,并说明理由; (2)能否使所围的两个正方形的面积和为180cm 2,并说明理由; (3)怎么分,使围成两个正方形的面积和最小?25. (9分)如图,正比例函数y =2x 的图象与反比例函数y =kx 的图象交于点A 、B ,AB =2 5 , (1)求k 的值;(2)若反比例函数y =kx 的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.26.(9分)如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC =1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(第23题)ABPE DCQFHGxyO AB(第25题)(3)连接OE 交BC 于点F ,若AB =10 ,求OE 的长度.27.(88分)在△ABC 中,用直尺和圆规.....作图(保留作图痕迹). (1)如图①,在AC 上作点D ,使DB +DC =AC .(2)如图②,作△BCE ,使∠BEC =∠BAC ,CE =BE ;(3)如图③,已知线段a ,作△BCF ,使∠BFC =∠A ,BF +CF =a .(图1) A C B(图2) A C B图ACBa(第26题)OEDCBA2016年中考模拟试卷(二) 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案ACABDD二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 7.10 8.a (a +2)(a -2) 9.3-1 10.x ≥ 1 11.A12. 35° 13. 3 14.x +96 = x —7415.123 16.①③④ 三、解答题(本大题共12小题,共计88分) 17. (6分)解:去分母,得:6-2(2x +1)≥3(1-x )……………………………2分去括号,得:6-4x +2≥3-3 x ……………………………3分移项,合并同类项得:-x ≥-5 ……………………………4分 系数化成1得:x ≤5. ……………………………5分 它的所有正整数解1,2,3,4,5. ……………………………6分18.(6分)解:原式=x -3x -2 ÷( x 2-4x -2-5x -2 )……………………………………………………2分=x -3x -2 ÷ x 2-9x -2……………………………………………3分=x -3x -2 × x -2x 2-9 ……………………………………………4分 =x -3x -2 × x -2(x -3)(x +3) ……………………………………………5分 =1x +3……………………………………………6分 19.(8分)解:(1)将①代入②,得 3x -2(x +1)=-1.解这个方程,得x =1. ………………………………………………………1分 将x =1代入①,得y =2 . ……………………………………………………2分所以原方程组的解是⎩⎨⎧x =1,y =2.…………………………………………………3分(2)由①,得x =1-y .③…………………………………………………1分 将③代入②,得1-y +y 2=3. ……………………………………………2分 解这个方程,得y 1=2,y 2=-1. …………………………………………4分 将y 1=2,y 2=-1分别代入③,得x 1=-1,x 2=2.所以原方程组的解是⎩⎨⎧x 1=-1,y 1=2,⎩⎨⎧x 2=2,y 2=-1.……………………………5分20.(8分)解:(1)1500,(图略);(每个2分)) ……………………………4分(2)108° ……………………………6分 (3)万人1000%502000=⨯ ……………………………8分 21.(8分)解:(1)另外1人恰好选中副班长的概率是13;………………………………………3分(2)恰好选中班长和副班长的概率是16.……………………………………………8分(树状图或列表或枚举列出所有等可能结果3分,强调等可能1分,得出概率1分) 22. (8分)(1)三角形全等的条件一个1分,结论1分 …………………4分 (2)四边形AECF 是菱形 …………………5分证明: …………………8分 (证出平行四边形1分,证出邻边相等1分,结论1分 ) 23. (8分)(1)解:在Rt △BEG 中,BG =EG ×tan ∠BEG ……………………1分在Rt △BFG 中,BG =FG ×tan ∠BFG ……………………2分 设FG =x 米,(x +5)0.37=0.74x ,解得x =5, ……………………3分 BG =FG ×tan ∠BFG =0.74×5=3.7 ……………………4分 AB =AG +BG =3.7+1.6=5.3米 ……………………5分 答:大树AB 的高度为5.3米.(2)在Rt △DFG 中,DH =FH ×tan ∠DFG =(5+4)×0.74=6.66米 ………………7分 CD =DH +HC =6.66+1.6=8.26米 ……………………8分 答:大树CD 的高度为8.26米.24. (10分)解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(20-x )cm ,由题意得: x 2+(20-x )2=250 ………2分 解得x 1=5,x 2=15. ………3分 当x =5时,4x =20,4(20-x )=60;当x =15时,4x =60,4(20-x )=20.答:能,长度分别为20cm 与60cm. ………4分(2)x 2+(20-x )2=180整理:x 2-20x +110=0, ………5分 ∵b 2-4ac =400-440=﹣40<0, ………6分 ∴此方程无解,即不能围成两个正方形的面积和为180cm 2 ………7分 (3)设所围面积和为y cm 2,y =x 2+(20-x )2 ………8分=2 x 2-40x +400=2( x -10)2+200 …………………9分 当x =10时,y 最小为200. 4x =40,4(20-x )=40.答:分成40cm 与40cm ,使围成两个正方形的面积和最小为200 cm 2. …10分 25. (9分)解:(1)过点A 作AD ⊥x 轴,垂足为D ,由题意可知点A 与点B 关于点O 中心对称,且AB =2 5 …………………1分 ∴OA =OB = 5 , ………………2分 设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO =90°,由勾股定理得:a 2+(2a )2=( 5 )2………………3分解得a =1 ………………4分∴点A 的坐标为(1,2),把A (1,2)代入y =kx ,解得k =2,………………5分(2) (2,1)(﹣2,﹣1)(4,12)(﹣4,﹣12)………………9分(每个1分)(反比例函数对称性、用相似或勾股定理)26. (9分)(1)连接AD ,∵D 为弧AB 的中点,∴AD =BD , .…………………1分 ∵AB 为直径, ∴∠ADB =90°.…………………2分 ∴∠DAB =∠DBA =45°,∴∠DCB =∠DAB =45°.…………………3分(2)∵BE ⊥CD ,又∵∠ECB =45° ∴∠CBE =45°,∴CE =BE ,∵四边形ACDB 是圆O 的内接四边形,∴∠A +∠BDC =180°,又∵∠BDE +∠B D C =180° ∴∠A =∠BD …………………4分又∵∠ACB =∠BED =90°, ∴△ABC ∽△DBE , …………………5分 ∴DE :AC =BE :BC ,∴D E:B E =AC :BC =1:2,又∵CE =BE ,∴DE :CE =1:2,∴D 为CE 的中点. …………………6分(3)连接CO ,∵CO =BO ,CE =BE , ∴OE 垂直平分BC ,∴F 为OE 中点, 又∵O 为BC 中点,∴OF 为△ABC 的中位线,∴OF =12AC , …………………7分∵∠BEC =90°,EF 为中线,∴EF =12BC , …………………8分在Rt △ACB 中,AC 2+BC 2=AB 2,∵AC :BC =1:2,AB =10 ,∴AC = 2 ,BC =2 2 ,OEDC BAF (第26题)∴OE =OF +EF =1.5 2 …………………9分 27.(8分)(1)作图正确 …………………3分(2)作图正确…………………6分说明:(即△ABC 的外接圆和线段BC 的中垂线的交点)(3)作图正确 (只要做出一个即可)…………………8分 说明:(按照(1)(2)的方法找到点E ,再以点E 为圆心,以EC 或EB 长为半径做圆,再以点B 为圆心,a 长为半径作圆,两圆的交点为点H ,再连接BH ,交△ABC 的外接圆于点F,则点F 为所求。
历年中考数学模拟试题(含答案) (162)

江苏省淮安市2016年初中毕业暨中等学校招生文化统一考试数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列四个数中最大的数是A.-2B.-1C.0D.1 2.下列图形是中心对称图形的是A B C D 3.月球的直径约为3476000米,将3476000用科学记数法表示应为A. 0.3476×107B. 34.76×105C. 3.476×107D. 3.476×106 4.在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3、5、6、2、5、1,这组数据的众数是A.5B.6C.4D.2 5.下列运算正确的是A.236a a =a ⋅ B.()222ab =a b C.()235a=a D.824a a =a ÷6.估计71+的值A.在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间 7.已知a -b=2,则代数式2a -2b -3的值是 A.1 B.2 C.5 D.78.如图,在Rt ΔABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以M 、N 为圆心, 大于12MN 长为半径画弧,两弧交于点P ,作 射线AP 交边BC 于点D ,若CD =4,A B =15, 则ΔABD 的面积为A.15B.30C.45D.60二、填空题(本大题共有10小题,每小题3分,共30分) 9.若分式1x 5-在实数范围内有意义,则x 的取值范围是 . 10.分解因式:m 2-4= .题号 1 2 3 4 5 6 7 8 答案P DBC NMA11.点A (3,-2)关于x 轴对称的点的坐标是 . 12.计算:3a -(2a -b )= .13.一个不透明的袋中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出的球是黄球的概率是 .14.若关于x 的x 2+6x+k=0一元二次方程有两个相等的实数根,则k = . 15.若点A (-2,3)、B (m ,-6)都在反比例函数()ky=k 0x≠的图像上,则m 的值是 .16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 . 17.若一个圆锥的底面圆的半径为2,母线长为6,则该圆锥侧面展开图的圆心角为 ° 18.如图,在Rt ΔABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将ΔCEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 .三、解答题(本大题共有10小题,共96分) 19.(本小题满分10分) (1)计算()3123++-1--(2)解不等式组2x 1x 54x 3x+2++⎧⎨⎩p f20.(本小题满分8分)王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?21.(本小题满分8分)已知,如图,在菱形ABCD 中,点E 、F 分别为边AC 、AD 的中点,连接AE 、CF ,求证:ΔADE ≌ΔCDF22.(本小题满分8分)如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4。
江苏省淮安市淮安区2016年中考数学模拟试卷(一)(含解析)

2016年江苏省淮安市淮安区中考数学模拟试卷(一)一、选择题(本大题共8小题,每小题3分,共计24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上)1.﹣5的倒数是()A.B.C.﹣5 D.52.a2•a3等于()A.3a2B.a5C.a6D.a83.下列事件为必然事件的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚普通的正方体骰子,掷得的点数小于74.如图是一个圆柱体,则它的主视图是()A.B.C.D.5.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)6.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.7.下列各式中与是同类二次根式的是()A.B. C. D.8.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.其中正确命题有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.根据淮安市委、市政府实施“十大工程”的工作部署,全市重点工程计划投资3653000000元,将3653000000用科学记数法表示为______.10.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是______.11.分解因式:x2﹣16=______.12.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为______.13.圆锥底面半径为,母线长为2,它的侧面展开图的面积是______.14.若关于x的一元二次方程kx2+2(k+1)x+k﹣1=0有两个实数根,则k的取值范围是______.15.“校园手机”现象受社会普遍关注,某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了扇形统计图.从调查的学生中,随机抽取一名恰好是持“无所谓”态度的学生的概率是______.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=______.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是______.18.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中作内接正方形A3B3C3D3;…;依次作下去,则第2016个正方形A2016B2016C2016D2016的边长是______.三、解答题(本大题共10小题,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(1)计算:()﹣1+2cos45°﹣(2)化简:÷.20.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.21.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1.(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中点A1所走过的路线长(结果保留π)22.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.23.心理健康是一个人健康的重要标志之一.为了解学生对心理健康知识的掌握程度,某校从800名在校学生中,随机抽取200名进行问卷调查,并按“优秀”、“良好”、“一般”、(1)求频数分布表中a、b、c的值.并补全频数分布直方图;(2)请你估计该校学生对心理健康知识掌握程度达到“优秀”的总人数.24.现有数字﹣1、1、2各若干,随机拿两个数组成点的坐标(两个数可以重复).请用画树状图或列表的方法罗列所有可能情况,并求组成坐标的点是抛物线y=x2+1上的点的概率.25.九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)26.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)27.某班将举行“趣味数学知识竞赛”活动,班长安排小明购买奖品,下面是小明买回奖品时与班长的对话情况:小明:买了两种不同的笔记本共40本,单价分别为5元和8元,我领了300元,现在找回68元.班长:你肯定搞错了!小明:哦!我把自己口袋里的13元一起当作找回的钱款了.班长:这就对了!请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?28.如图①,点A′、B′的坐标分别为(4,0)和(0,﹣8),将△A′B′O绕点O按逆时针方向旋90°转后得△ABO,点A′的对应点是A,点B′的对应点是点B.(1)写出A、B两点的坐标,并求出直线AB的解析式;(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,点D在线段AB上,点D不与A、B重合)如图②,使点B落在x轴上,点B的对应点为点E,设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式(包括自变量x的取值范围);②当x为何值时,S的面积最大?最大值是多少?(3)当4<x<8时,是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.2016年江苏省淮安市淮安区中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共计24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上)1.﹣5的倒数是()A.B.C.﹣5 D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.2.a2•a3等于()A.3a2B.a5C.a6D.a8【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则进行计算即可.【解答】解:原式=a2•a3=a2+3=a5.故选B.3.下列事件为必然事件的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚普通的正方体骰子,掷得的点数小于7【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:打开电视机,它正在播广告是随机事件,A错误;某彩票的中奖机会是1%,买1张一定不会中奖是随机事件,B错误;抛掷一枚硬币,一定正面朝上是随机事件,C错误;投掷一枚普通的正方体骰子,掷得的点数小于7是必然事件,D正确,故选:D.4.如图是一个圆柱体,则它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从物体的正面看,所得到的图形即可.【解答】解:一个直立在水平面上的圆柱体的主视图是长方形,故选A5.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.6.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.【考点】不等式的解集.【分析】由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x ≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:.故选:C.7.下列各式中与是同类二次根式的是()A.B. C. D.【考点】同类二次根式.【分析】根据二次根式的性质,可得最简二次根式,根据被开方数相同的二次根式是同类二次根式,可得答案.【解答】解: =2,A、与2不是同类二次根式,故A错误;B、=4与2不是同类二次根式,故B错误;C、=3与2不是同类二次根式,故C错误;D、=5与2是同类二次根式,故D正确;故选:D.8.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.其中正确命题有()A.1个B.2个C.3个D.4个【考点】反比例函数的性质;二次根式有意义的条件;一元二次方程的解;余角和补角.【分析】分别根据二次根式有意义的条件、补角的定义、一元二次方程的解及反比例函数的性质对各小题进行逐一解答即可.【解答】解:①若式子有意义,则x≥1,故本小题错误;②若∠α=27°,则∠α的补角=180°﹣27°=153°,故本小题正确;③已知x=2是方程x2﹣6x+c=0的一个实数根,则22﹣12+c=0,解得c=8,故本小题正确;④在反比例函数y=中,若x>0时,y随x的增大增大,则k﹣2<0,解得k<2,故本小题错误.故选:B.二、填空题(本大题共10小题,每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.根据淮安市委、市政府实施“十大工程”的工作部署,全市重点工程计划投资3653000000元,将3653000000用科学记数法表示为 3.653×109.【考点】科学记数法—表示较大的数.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.科学记数法形式:a×10n,其中1≤a<10,n为正整数.【解答】解:将3653000000用科学记数法表示为3.653×109.故答案为:3.653×109.10.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是8.5 .【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有8个,按从小到大排列后为:7、7、8、8、9、9、9、10.故中位数是按从小到大排列后第4,第5两个数的平均数作为中位数,故这组数据的中位数是×(8+9)=8.5.故答案为:8.5.11.分解因式:x2﹣16= (x﹣4)(x+4).【考点】因式分解-运用公式法.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣16=(x+4)(x﹣4).12.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出∠ABE,最后根据∠EBC=∠ABC﹣∠ABE代入数据进行计算即可得解.【解答】解:∵AB=AC,∠A=36°,∴∠ABC==×=72°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=72°﹣36°=36°.故答案为:36°.13.圆锥底面半径为,母线长为2,它的侧面展开图的面积是π.【考点】圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:圆锥的侧面展开图的面积是π××2=π.故答案为π.14.若关于x的一元二次方程kx2+2(k+1)x+k﹣1=0有两个实数根,则k的取值范围是k≥﹣,且k≠0.【考点】根的判别式.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵a=k,b=2(k+1),c=k﹣1,∴△=4(k+1)2﹣4×k×(k﹣1)=3k+1≥0,解得:k≥﹣,∵原方程是一元二次方程,∴k≠0.故本题答案为:k≥﹣,且k≠0.15.“校园手机”现象受社会普遍关注,某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了扇形统计图.从调查的学生中,随机抽取一名恰好是持“无所谓”态度的学生的概率是9% .【考点】概率公式;扇形统计图.【分析】根据扇形统计图求出持“无所谓”态度的学生所占的百分比,即可求出持“无所谓”态度的学生的概率.【解答】解:恰好是持“无所谓”态度的学生的概率是1﹣35%﹣56%=9%.故答案为:9%.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA= .【考点】锐角三角函数的定义;勾股定理.【分析】首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是﹣4或6 .【考点】坐标与图形性质.【分析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x﹣1|=5,从而解得x的值.【解答】解:∵点M(1,3)与点N(x,3)之间的距离是5,∴|x﹣1|=5,解得x=﹣4或6.故答案为:﹣4或6.18.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中作内接正方形A3B3C3D3;…;依次作下去,则第2016个正方形A2016B2016C2016D2016的边长是.【考点】正方形的性质;等腰直角三角形.【分析】根据等腰直角三角形和正方形的性质可以得出A n D n+1=D n+1C n+1=C n+1B n=A n B n,再结合AB=1即可得出A n B n=,代入n=2016即可得出结论.【解答】解:∵△OA n B n为等腰直角三角形,∴A n D n+1=D n+1C n+1=C n+1B n=A n B n,∵AB=1,∴A n B n=,∴第2016个正方形A2016B2016C2016D2016的边长是.故答案为:.三、解答题(本大题共10小题,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(1)计算:()﹣1+2cos45°﹣(2)化简:÷.【考点】实数的运算;分式的乘除法;负整数指数幂;特殊角的三角函数值.【分析】(1)原式利用负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+2×﹣2=2﹣;(2)原式=﹣•=﹣1.20.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.【考点】解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.【分析】(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;(2)根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.【解答】解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.(2)由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.21.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1.(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中点A1所走过的路线长(结果保留π)【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据平移的定义画出图形即可.(2)根据旋转的定义画出图形即可,点A1所走过的路线长为圆心角为90°,半径为4的弧长.【解答】解;(1)Rt△ABC向右平移5个单位长度后的Rt△A1B1C1如图所示.(2)将Rt△A1B1C1绕点C1顺时针旋转90°,得到Rt△A2B2C2如图所示.点A1所走过的路线长为=2π.22.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.23.心理健康是一个人健康的重要标志之一.为了解学生对心理健康知识的掌握程度,某校从800名在校学生中,随机抽取200名进行问卷调查,并按“优秀”、“良好”、“一般”、(1)求频数分布表中a、b、c的值.并补全频数分布直方图;(2)请你估计该校学生对心理健康知识掌握程度达到“优秀”的总人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据频数分布直方图60的频率是0.3,计算可得良好的频率为0.5,得出b的频数为30,c的频数为10,(2)根据频数分布表可知优秀学生的频率为0.3,该校有800名学生,即可得出该校学生对心理健康知识掌握程度达到“优秀”的总人数.【解答】解:(1)a=0.5,b=30,c=10,频数分布直方图如图:(2)优秀总人数为800×0.3=240(人).24.现有数字﹣1、1、2各若干,随机拿两个数组成点的坐标(两个数可以重复).请用画树状图或列表的方法罗列所有可能情况,并求组成坐标的点是抛物线y=x2+1上的点的概率.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再根据二次函数图象上点的坐标特征可判断(﹣1,2),(1,2)在抛物线y=x2+1上,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中组成坐标的点是抛物线y=x2+1上的点的结果数为2,所以组成坐标的点是抛物线y=x2+1上的点的概率=.25.九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意得:∠DAB=37°,∠CAB=30°,BC=5m,然后分别在Rt△ABC与Rt△DAB中,利用正切函数求解即可求得答案.【解答】解:根据题意得:∠DAB=37°,∠CAB=30°,BC=5m,在Rt△ABC中,AB===5(m),在Rt△DAB中,BD=AB•tan37°≈5×0.75≈6.495(m),则CD=BD﹣BC=6.495﹣5=1.495(m).答:这棵树一年生长了1.495m.26.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)【考点】扇形面积的计算;切线的判定.【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD∵OA=OD,∠DAB=45°,∴∠ODA=45°∴∠AOD=90°∵CD∥AB∴∠ODC=∠AOD=90°,即OD⊥CD又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O的半径为1,AB是⊙O的直径,∴AB=2,∵BC∥AD,CD∥AB∴四边形ABCD是平行四边形∴CD=AB=2∴S梯形OBCD===;∴图中阴影部分的面积等于S梯形OBCD﹣S扇形OBD=﹣×π×12=﹣.27.某班将举行“趣味数学知识竞赛”活动,班长安排小明购买奖品,下面是小明买回奖品时与班长的对话情况:小明:买了两种不同的笔记本共40本,单价分别为5元和8元,我领了300元,现在找回68元.班长:你肯定搞错了!小明:哦!我把自己口袋里的13元一起当作找回的钱款了.班长:这就对了!请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?【考点】二元一次方程组的应用.【分析】(1)设5元、8元的笔记本分别买x本、y本,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可;(2)根据(1)中求出的5元、8元的笔记本的本数求出应找回的钱数,再与68相比较即可得出结论.【解答】解:(1)设一种笔记本买了x本,另一种笔记本买了y本,根据题意,得:,解得:,答:一种笔记本买了25本,另一种笔记本买了15本;(2)解法一:应找回钱款为300﹣5×25﹣8×15=55≠68,故不能找回68元.解法二:设买m本5元的笔记本,则买(40﹣m)本8元的笔记本,依题意得,5m+8(40﹣m)=300﹣68,解得:m=,∵m是正整数,∴m=不合题意,舍去.∴不能找回68元.解法三:买25本5元笔记本和15本8元的笔记本的价钱总数应为奇数而不是偶数,故不能找回68元.28.如图①,点A′、B′的坐标分别为(4,0)和(0,﹣8),将△A′B′O绕点O按逆时针方向旋90°转后得△ABO,点A′的对应点是A,点B′的对应点是点B.(1)写出A、B两点的坐标,并求出直线AB的解析式;(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,点D在线段AB上,点D不与A、B重合)如图②,使点B落在x轴上,点B的对应点为点E,设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式(包括自变量x的取值范围);②当x为何值时,S的面积最大?最大值是多少?(3)当4<x<8时,是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据旋转的性质可以得到OA=OA′,OB=OB′,则A,B的坐标就可以得到,根据待定系数法就可以求出直线AB的解析式.(2)①OB=8,C点的位置应分两种情况进行讨论,当C在OB的中点或在中点与B之间时,重合部分是△CDE;当C在OB的中点与O之间时,重合部分是梯形,就可以得到函数解析式.②求出S与x之间的函数解析式,根据函数的性质就可以得到面积的最值.(3)分△ADE以点A为直角顶点和△ADE以点E为直角顶点,两种情况进行讨论.根据相似三角形的对应边的比相等,求出OE的长,就可以得到C点的坐标.【解答】解:(1)由旋转得,OA=OA′,OB=OB′,∵点A′、B′的坐标分别为(4,0)和(0,﹣8),∴OA′=4,OB′=8,∴A(0,4),B(8,0),设直线AB的解析式y=kx+b,∴,∴∴直线AB 的解析式y=﹣x+4,(2)①Ⅰ、点E 在原点和x 轴正半轴上时,重叠部分是△CDE .则S △CDE=BC ×CD=(8﹣x )(﹣x+4)=(x ﹣8)2,∵CE=OB=4当E 与O 重合时∴4≤x <8Ⅱ、当E 在x 轴的负半轴上时,设DE 与y 轴交于点F ,则重叠部分为梯形 ∵△OFE ∽△OAB=,∴OF=OE又∵OE=8﹣2x∴OF=4﹣x∴S 四边形CDFO =x{4﹣x+(﹣x+4)=﹣x 2+4x当点C 与点O 重合时,点C 的坐标为(0,0)∴0<x <4综合Ⅰ、Ⅱ得,S=②Ⅰ、当4≤x <8时,s=(x ﹣8)2,∴对称轴是直线x=8,∵抛物线开口向上,∴在4≤x <8中,S 随x 的增大而减小∴当x=4时,S 的最大值=4,Ⅱ、当0<x <4时,s=﹣x 2+4x∴对称轴是直线x=∵抛物线开口向下∴当x=时,S 有最大值为综合①②当x=时,S 有最大值为(3)存在,点C 的坐标为(5,0)①当△ADE 以点A 为直角顶点时,作AE ⊥AB 交x 轴负半轴于点E , ∵△AOE ∽△BOA∴∵AO=4∴EO=2∴点E坐标为(﹣2,0)∴点C的坐标为(3,0)(舍,4<x<8)②当△ADE以点E为直角顶点时同样有△AOE∽△BOA,∴∴∴EO=2∴E(2,0)∴点C的坐标(5,0)综合Ⅰ、Ⅱ知满足条件的坐标有(5,0).。
2017年江苏省中考数学模拟试卷含答案

2017年江苏省徐州市中考数学模拟试卷(1)一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣的绝对值为()A.﹣2 B.﹣C.D.12.(3分)下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x23.(3分)下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.4.(3分)下列调查中,最适宜采用全面调查方式的是()A.对广水市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对广水市初中学生视力情况的调查5.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<17.(3分)在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17 B.14 C.12 D.108.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)计算0﹣2017= .10.(3分)若有意义,则x的取值范围是.11.(3分)全国两会隆重开幕,引起了传媒的极大关注.某网络平台近期共检测到两会对于民生问题相关信息约290 000条,数据290 000用科学记数法表示为.12.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是.13.(3分)一个多边形的每个内都等于135°,则这个多边形是边形.14.(3分)如图是婴儿车的平面示意图,其中AB∥CD,∠1=130°,∠3=40°,那么∠2的度数°.15.(3分)如图,BD是菱形ABCD的对角线,AE⊥BC于点E,交BD于点F,且E 为BC的中点,则cos∠BFE的值是.16.(3分)如图,已知∠AOB=120°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A 2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,则∠AAn An+1等于度.(用含n的代数式表示,n为正整数)17.(3分)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是.18.(3分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为.三、解答题(本题共10小题,共86分.解答时写出必要的文字说明、证明过程或演算步骤)19.(10分)计算:(1)(﹣1)2017﹣+|﹣|.(2)(1+).20.(10分)(1)解方程.(2)解不等式组.21.(7分)周末,我和爸爸、妈妈争夺唯一的一台电脑使用权,决定用游戏确定谁来使用电脑.(1)若使用三张完全相同纸条,其中一张标注为“是”,另外两张空白,则爸爸抓到标注为“是”的概率是.(2)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑.请你请用列表或画树状图的方法计算妈妈使用电脑的概率.22.(7分)某校九年级举办了首届“汉字听写大赛”,全校500名九年级学生全部参加,他们同时听写50个汉字,每正确听写出一个汉字得1分,为了解学生们的成绩,随机抽取了部分学生的成绩,并根据测试成绩绘制出如下两幅不完整的统计表和频数分布直方图:(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.23.(8分)如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D是BC的中点时,求证:四边形ADCE是矩形.24.(8分)如图,在同一直角坐标系中,直线y=x+4与y=﹣3x﹣3相交于A点,分别与x轴交于B、C两点.(1)求△ABC的面积;(2)P、Q分别为直线y=x+4与y=﹣3x﹣3上的点,且P、Q关于原点对称,求P 点的坐标.25.(8分)如图,某单位在其办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE,小明同学站在离办公楼的地面C处测得条幅顶端A的仰角为45°,测得条幅底端E的仰角为30°.求小明同学距离该单位办公楼的水平距离?(结果保留根号)26.(8分)为了落实国务院的指示精神,政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣x+60.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售的最大利润是多少元?(3)如果物价部门规定这种产品的销售价不能高于每千克35元,该农户想要每天获得300元的销售利润,销售价应定为每千克多少元?27.(8分)问题情境:如图1,在等边△ABC中,点P在△ABC内,且PA=3,PB=5,PC=4,求∠APC的度数?小明在解决这个问题时,想到了以下思路:如图2,把△APC绕着点A顺时针旋转,使点C旋转到点B,得到△ADB,连结DP.请你在小明的思路提示下,求出∠APC的度数.思路应用:如图3,△ABC为等边三角形,点P在△ABC外,且PA=6,PC=8,∠APC=30°,求PB的长;思路拓展:如图4,矩形ABCD中,AB=BC,P为矩形ABCD内一点,PA:PB:PC=2:1:2,则∠APB=°.(直接填空)28.(12分)如图,O是平面直角坐标系的原点.在四边形OABC中,AB∥OC,BC ⊥x轴于C,A(1,1),B(3,1),动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.设P点运动的时间为t秒(0<t<2).(1)求经过O、A、B三点的抛物线的解析式;(2)过P作PD⊥OA于D,以点P为圆心,PD为半径作⊙P,⊙P在点P的右侧与x轴交于点Q.①则P点的坐标为,Q点的坐标为;(用含t的代数式表示)②试求t为何值时,⊙P与四边形OABC的两边同时相切;③设△OPD与四边形OABC重叠的面积为S,请直接写出S与t的函数解析式.2017年江苏省徐州市中考数学模拟试卷(1)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)﹣的绝对值为()A.﹣2 B.﹣C.D.1【解答】解:∵|﹣|=,∴﹣的绝对值为.故选:C.2.(3分)下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相乘,故C错误;D、底数不变指数相减,故D错误;故选:B.3.(3分)下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【解答】解:A、此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误;B、此几何体的主视图是矩形,俯视图是矩形,故此选项正确;C、此几何体的主视图是矩形,俯视图是圆,故此选项错误;D、此几何体的主视图是梯形,俯视图是矩形,故此选项错误;故选:B.4.(3分)下列调查中,最适宜采用全面调查方式的是()A.对广水市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对广水市初中学生视力情况的调查【解答】解:对广水市中学生每天学习所用时间的调查适宜采用抽样调查方式;对全国中学生心理健康现状的调查适宜采用抽样调查方式;对某班学生进行6月5日是“世界环境日”知晓情况的调查适宜采用全面调查方式;对广水市初中学生视力情况的调查适宜采用抽样调查方式;故选:C.5.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.6.(3分)对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<1【解答】解:∵双曲线y=,当x>0时,y随x的增大而减小,∴1﹣m>0,解得:m<1.故选D.7.(3分)在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径,如图,直角角尺,∠AOB=90°,将点O放在圆周上,分别确定OA、OB与圆的交点C、D,读得数据OC=8,OD=9,则此圆的直径约为()A.17 B.14 C.12 D.10【解答】解:连接CD,∵∠AOB=90°,∴CD为圆的直径,CD=≈12,故选:C.8.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个B.2个C.3个D.4个【解答】解:①∵小亮到姥姥家用时10﹣8=2(小时),行程24千米,∴v==12km/h故:①正确.②∵妈妈9:30到家,而小亮10:00到家,∴妈妈比小亮提前半小时达到姥姥家,故:②正确.③∵二人在9:00相遇,此时小亮已骑车1小时而妈妈距出发0.5小时,∴妈妈的行程=×0.5=12(千米),小亮的行程==12(千米)∴妈妈在距家12km处追上小亮故:③正确.④∵图象中交点表示二人相遇,此时对应的时间t=9∴应该是9:00妈妈追上小亮的,即:④错误.故:选A二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)计算0﹣2017= ﹣2017 .【解答】解:0+(﹣2017)=﹣2017.故答案为:﹣2017.10.(3分)若有意义,则x的取值范围是x≥2 .【解答】解:由题意得,x﹣2≥0,解得,x≥2,故答案为:x≥2.11.(3分)全国两会隆重开幕,引起了传媒的极大关注.某网络平台近期共检测到两会对于民生问题相关信息约290 000条,数据290 000用科学记数法表示为 2.9×105.【解答】解:数据290 000用科学记数法表示为2.9×105,故答案为:2.9×105.12.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是 6 .【解答】解:数据按从小到大排列后为3,5,5,6,8,9,10,故这组数据的中位数是6.故答案为:6.13.(3分)一个多边形的每个内都等于135°,则这个多边形是八边形.【解答】解:由题意可得:(n﹣2)•180=135n,解得n=8.即这个多边形的边数为八.故答案为:八.14.(3分)如图是婴儿车的平面示意图,其中AB∥CD,∠1=130°,∠3=40°,那么∠2的度数90 °.【解答】解:∵AB ∥CD , ∴∠A=∠3=40°, ∵∠1=130°,∴∠2=∠1﹣∠A=90°, 故答案为:90.15.(3分)如图,BD 是菱形ABCD 的对角线,AE ⊥BC 于点E ,交BD 于点F ,且E为BC 的中点,则cos ∠BFE 的值是.【解答】解:∵E 为BC 的中点,AE ⊥BC , ∴AB=AC ,∵四边形ABCD 是菱形, ∴AB=BC , ∴AB=BC=AC ,∴△ABC 是等边三角形, ∴∠ABC=60°,∴∠ABD=∠CBD=30°,∠BAE=30°, ∴∠BFE=60°,∴cos ∠BFE=.故答案为.16.(3分)如图,已知∠AOB=120°,点A 绕点O 顺时针旋转后的对应点A 1落在射线OB 上,点A 绕点A 1顺时针旋转后的对应点A 2落在射线OB 上,点A 绕点A 2顺时针旋转后的对应点A 3落在射线OB 上,…,连接AA 1,AA 2,AA 3…,依此作法,则∠AA n A n+1等于 180﹣度.(用含n 的代数式表示,n 为正整数)【解答】解:∵点A 绕点O 顺时针旋转后的对应点A 1落在射线OB 上, ∴OA=OA 1,∴∠AA 1O=,∵点A 绕点A 1顺时针旋转后的对应点A 2落在射线OB 上, ∴A 1A=A 1A 2,∴∠AA 2A 1=∠AA 1O=,∵点A 绕点A 2顺时针旋转后的对应点A 3落在射线OB 上, ∴A 2A=A 2A 3,∴∠AA 3A 2=∠AA 2A 1=,∴∠AA n A n ﹣1=,∴∠AA n A n+1=180°﹣.故答案为:180°﹣.17.(3分)如图,直线y=k 1x+b 与双曲线y=交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <+b 的解集是 ﹣5<x <﹣1或x >0 .【解答】解:由k 1x <+b ,得,k 1x ﹣b <,所以,不等式的解集可由双曲线不动,直线向下平移2b 个单位得到,直线向下平移2b 个单位的图象如图所示,交点A′的横坐标为﹣1,交点B′的横坐标为﹣5,当﹣5<x<﹣1或x>0时,双曲线图象在直线图象上方,x<+b的解集是﹣5<x<﹣1或x>0.所以,不等式k1故答案为:﹣5<x<﹣1或x>0.18.(3分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为9π.【解答】解:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,如图所示.∵PE⊥CD,AB∥CD,∴PF⊥AB.又∵AB为⊙P的弦,∴AF=BF,∴DE=CE=CD=AB=3,∴CD边扫过的面积为π(PD2﹣PE2)=π•DE2=9π.故答案为:9π.三、解答题(本题共10小题,共86分.解答时写出必要的文字说明、证明过程或演算步骤)19.(10分)计算:(1)(﹣1)2017﹣+|﹣|.(2)(1+).【解答】解:(1)(﹣1)2017﹣+|﹣|=﹣1﹣3+2=﹣2(2)(1+)=×=20.(10分)(1)解方程.(2)解不等式组.【解答】解:(1),去分母得1+x﹣3=4﹣x,解得x=3,经检验x=3是原方程的增根.所以原方程无解.(2),解不等式①得x>﹣3;解不等式②得x≤1.所以不等式组的解集为﹣3<x ≤1.21.(7分)周末,我和爸爸、妈妈争夺唯一的一台电脑使用权,决定用游戏确定谁来使用电脑.(1)若使用三张完全相同纸条,其中一张标注为“是”,另外两张空白,则爸爸抓到标注为“是”的概率是.(2)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑.请你请用列表或画树状图的方法计算妈妈使用电脑的概率. 【解答】解:(1)爸爸抓到标注为“是”的概率是1÷(1+2)=; (2)列表为:共有4种等可能结果,其中两反的情况1种, 所以P (两反)=. 故答案为:.22.(7分)某校九年级举办了首届“汉字听写大赛”,全校500名九年级学生全部参加,他们同时听写50个汉字,每正确听写出一个汉字得1分,为了解学生们的成绩,随机抽取了部分学生的成绩,并根据测试成绩绘制出如下两幅不完整的统计表和频数分布直方图:(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.【解答】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.23.(8分)如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D是BC的中点时,求证:四边形ADCE是矩形.【解答】(1)证明:∵将线段AB平移至DE,∴AB=DE,AB∥DE.∴∠EDC=∠B∵AB=AC∴∠B=∠ACB,DE=AC∴∠EDC=∠ACB,在△ADC与△ECD中,∴△ADC≌△ECD(SAS),∴AD=EC;(2)∵将线段AB平移至DE,∴AB=DE,AB∥DE.∴四边形ABDE为平行四边形.∴BD=AE,∵点D是BC的中点.∴BD=DC,∴AE=DC,∵AD=EC,∴四边形ADCE为平行四边形.∵AB=AC,点D是BC的中点∴∠ADC=90°,∴四边形ADCE为矩形.24.(8分)如图,在同一直角坐标系中,直线y=x+4与y=﹣3x﹣3相交于A点,分别与x轴交于B、C两点.(1)求△ABC的面积;(2)P、Q分别为直线y=x+4与y=﹣3x﹣3上的点,且P、Q关于原点对称,求P 点的坐标.【解答】解:(1)令y=x+4中y=0,则x=﹣4,∴B(﹣4,0);令y=﹣3x﹣3中y=0,则x=﹣1,∴C(﹣1,0);解方程组,得,∴A(﹣,).=×[﹣1﹣(﹣4)]×=.∴S△ABC(2)∵点P在直线y=x+4上,∴设P(m,m+4),∵P、Q关于原点成中心对称,∴Q(﹣m,﹣m﹣4).∵点Q在直线y=﹣3x﹣3上,∴﹣m﹣4=3m﹣3,解得:m=﹣,∴m+4=,∴点P的坐标为(﹣,).25.(8分)如图,某单位在其办公楼迎街的墙面上垂挂一长为30米的宣传条幅AE,小明同学站在离办公楼的地面C处测得条幅顶端A的仰角为45°,测得条幅底端E的仰角为30°.求小明同学距离该单位办公楼的水平距离?(结果保留根号)【解答】解:过D点作DF⊥AB于F点,在Rt△DEF中,设EF=x,∠EDF=30°则tan30°==,DF=x,在Rt△ADF中,∠EDF=45°,DF=x,tan45°==1,30+x=x,解得:x=15(+1),∴DF=45+15,答:小明同学站在离办公楼约45+15米处进行测量的.26.(8分)为了落实国务院的指示精神,政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣x+60.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售的最大利润是多少元?(3)如果物价部门规定这种产品的销售价不能高于每千克35元,该农户想要每天获得300元的销售利润,销售价应定为每千克多少元?【解答】解:(1)由题意得出:w=(x﹣20)(﹣x+60)=﹣x2+80x﹣1200,故w与x的函数关系式为:w=﹣x2+80x﹣1200;(2)w=﹣x2+80x﹣1200=﹣(x﹣40)2+400,所以当x=40时,w有最大值.w最大值为400.答:该产品销售价定为每千克40元时,每天销售利润最大,最大销售利润400元.(3)当w=300时,可得方程﹣(x﹣40)2+400=300.解得 x1=30,x2=50.因为50>35,所以x=50不符合题意,应舍去.2答:该农户想要每天获得300元的销售利润,销售价应定为每千克30元.27.(8分)问题情境:如图1,在等边△ABC中,点P在△ABC内,且PA=3,PB=5,PC=4,求∠APC的度数?小明在解决这个问题时,想到了以下思路:如图2,把△APC绕着点A顺时针旋转,使点C旋转到点B,得到△AD B,连结DP.请你在小明的思路提示下,求出∠APC的度数.思路应用:如图3,△ABC为等边三角形,点P在△ABC外,且PA=6,PC=8,∠APC=30°,求PB的长;思路拓展:如图4,矩形ABCD中,AB=BC,P为矩形ABCD内一点,PA:PB:PC=2:1:2,则∠APB=150°.(直接填空)【解答】问题情境,解:如图2中,由旋转不变性可知,AD=AP=3,BD=PC=4,∠DAB=∠PAC,∴∠DAP=∠BAC=60°,∴△ADP为等边三角形,∴DP=PA=3,∠ADP=60°.在△BDP中,DP=3,BD=4,PB=5,∵32+42=52,∴∠BDP=90°,∴∠ADB=∠ADP+∠BDP=60°+90°=150°,∴∠APC=150°.思路应用,解:如图,把△APC绕点A顺时针旋转,使点C与点B重合,得到△ADB,连接PD,如图3中,∴△APC≌△ADB,∴∠DAP=60°,AD=AP=6,DB=PC=8,∠PAC=∠DAB,∠ADB=∠APC=30°.∴△DAP是等边三角形,∴PD=6,∠ADP=60°,∴∠PDB=90°,∴PB2=PD2+DB2=62+82=100.∴PB=10.思路拓展,解:如图4中,连接AC.作点P关于AB的对称点P1,点P关于BC的对称点P3,点P关于AC的对称点P2,连接AP1、P1B、P2A、P2C、P3B、P3C.∵∠ABC=90°AB=BC ,∴tan ∠BAC=,∴∠BAC=30°,∠ACB=60°,根据对称性易知∠P 1AP 2=60°,P 1A=P 2A , ∴△P 1AP 2是等边三角形,∴∠AP 1P 2=60°,P 1P 2=P A=2,根据对称性易知P 1、B 、P 3共线,P 1P 3=2,△CP 2P 2的顶角为120°的等腰三角形,可得P 2P 3=2,∴P 1P 22+p 1p 32=p 2p 32, ∴∠p 2p 1p 3=90°,∴∠APB=∠AP 1B=90°+60°=150°. 故答案为150.28.(12分)如图,O 是平面直角坐标系的原点.在四边形OABC 中,AB ∥OC ,BC ⊥x 轴于C ,A (1,1),B (3,1),动点P 从O 点出发,沿x 轴正方向以2个单位/秒的速度运动.设P 点运动的时间为t 秒(0<t <2). (1)求经过O 、A 、B 三点的抛物线的解析式;(2)过P 作PD ⊥OA 于D ,以点P 为圆心,PD 为半径作⊙P ,⊙P 在点P 的右侧与x 轴交于点Q .①则P 点的坐标为 (2t ,0) ,Q 点的坐标为 ((2+)t ,0) ;(用含t 的代数式表示)②试求t 为何值时,⊙P 与四边形OABC 的两边同时相切;③设△OPD与四边形OABC重叠的面积为S,请直接写出S与t的函数解析式.【解答】(1)因为抛物线经过原点O,所以设抛物线解析式为y=ax2+bx.又因为抛物线经过A(1,1),B(3,1),所以有解得,所以抛物线解析式为y=﹣x2+x(2)①由运动知,OP=2t,∴P(2t,0),∵A(1,1),∴∠AOC=45°,∵PD⊥OA,∴PD=OPsin∠AOC=t,∵PD为半径作⊙P,⊙P在点P的右侧与x轴交于点Q,∴PQ=PD=t,∴OQ=OP+PQ=2t+t=(2+)t∴Q((2+)t,0),故答案为(2t,0),((2+)t,0);②当⊙P与AB相切时, t=1,所以t=;当⊙P与BC相切时,即点Q与点C重合,所以(2+)t=3,解得t=.,(3)①当0<t≤1,如图1,重叠部分的面积是S△OPQ过点A作AF⊥x轴于点F,∵A(1,1),在Rt△OAF中,AF=OF=1,∠AOF=45°,在Rt△OPQ中,OP=2t,∠OPQ=∠QOP=45°,∴PQ=OQ=2tcos45°=t,∴S=(t)2=t2,②当1<t≤,如图2,设PQ交AB于点G,作GH⊥x轴于点H,∠OPQ=∠QOP=45°,则四边形OAGP是等腰梯形,PH=GH=AF=1,重叠部分的面积是S梯形OAGP.∴AG=FH=OP﹣PH﹣OF=2t﹣2,∴S=(AG+OP)AF=(2t+2t﹣2)×1=2t﹣1.③当<t<2,如图3,设PQ与AB交于点M,交BC于点N,重叠部分的面积是S五边形OAMNC.因为△PNC和△BMN都是等腰直角三角形,所以重叠部分的面积是S五边形OAMNC =S梯形OABC﹣S△BMN.∵B(3,1),OP=2t,∴CN=PC=OP﹣OC=2t﹣3,∴BM=BN=1﹣(2t﹣3)=4﹣2t,∴S=(2+3)×1﹣(4﹣2t)2=﹣2t2+8t﹣.即:S=.。
2016---2017年新九年级中考数学模拟考试题含参考答案与试题解析

2016---2017年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C 点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE ∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E 关于直线PC 的对称点,是否存在点P ,使点E′落在y 轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m 的代数式分别表示出PE 、EF ,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE 的条件,列出方程求解;当四边形PECE′是菱形不存在时,P 点y 轴上,即可得到点P 坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|, EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15| ①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0, 解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0, 解得:m=或m=. 由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2| ∴|﹣m 2+m+2|=|m|. ①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣; ②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣. 由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时,此时P点横坐标为0,E,C,E'三点重合与y轴上,也符合题意,∴P(0,5)综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)方法二:(1)略.(2)略.(3)若E(不与C重合时)关于直线PC的对称点E′在y轴上,则直线CD与直线CE′关于PC轴对称.∴点D关于直线PC的对称点D′也在y轴上,∴DD′⊥CP,∵y=﹣x+3,∴D(4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt△AHB中,AB=6,∠B=60°,∴AH=AB•sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD为矩形,∴CD=AH=,∵,∴∠CAD=30°,∵EF∥AC,∴∠1=∠CAD=30°;(2)若点G恰好在BC上,如图2,由对折的对称性可知Rt△FGE≌Rt△FDE,∴GE=DE=x,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG是直角三角形,∴∠EGC=30°,∴在Rt△CEG中,EC=EG=x,由DE+EC=CD 得,∴x=;(3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=, ∴DF=x ÷=x , ∴y=S △EGF =S △EDF ===, ∵>0,对称轴为y 轴, ∴当,y 随x 的增大而增大, ∴当x=时,y 最大值=×=; 第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2, ∴NG=GE ﹣NE==, 又∵∠MNG=∠ENC=30°,∠G=90°, ∴MG=NG •tan30°=, ∴= ∴y=S △EGF ﹣S △MNG == ∵,对称轴为直线, ∴当<x ≤时,y 有最大值,且y 随x 的增大而增大, ∴当时,=, 综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。
江苏省苏州市2016年中考数学模拟试卷(一)解析【解析版】

2016年江苏省苏州市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列式子结果为负数的是()A.(﹣3)0B.﹣|﹣3| C.(﹣3)2D.(﹣3)﹣2【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【试题解析】解:A、(﹣3)0=1>0;C、(﹣3)2=9>0;D、(﹣3)﹣2=>0;B、﹣|﹣3|=﹣3<0.【答案】B.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5 D.2.1×10﹣5【考点】科学记数法—表示较小的数.【试题解析】解:一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5;【答案】:D3.下列计算正确的是()A.(2a2)3=8a5B.()2=9 C.3﹣=3 D.﹣a8÷a4=﹣a4【考点】幂的乘方与积的乘方;算术平方根;同底数幂的除法;二次根式的加减法.【试题解析】解:A、(2a2)3=8a6,原式计算错误,故本选项错误;B、()2=3,原式计算错误,故本选项错误;C、3﹣=2,原式计算错误,故本选项错误;D、﹣a8÷a4=﹣a4,原式计算正确,故本选项正确.【答案】D.4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率【考点】全面调查与抽样调查.【试题解析】解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;【答案】:B.5.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【试题解析】解:应该将②涂黑.【答案】B.6.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3【考点】二元一次方程的解.【试题解析】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;【答案】:A.7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【试题解析】解:从上面看,图2的俯视图是正方形,有一条对角线.【答案】C.8.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.【考点】切线的性质;扇形面积的计算.【试题解析】解:连接OD,OE,∵半圆O与△ABC相切于点D、E,∴OD⊥AB,OE⊥AC,∵在△ABC中,∠A=90°,AB=AC=2,∴四边形ADOE是正方形,△OBD和△OCE是等腰直角三角形,∴OD=OE=AD=BD=AE=EC=1,∴∠ABC=∠EOC=45°,∴AB∥OE,∴∠DBF=∠OEF,在△BDF和△EOF中,,∴△BDF ≌△EOF (AAS ),∴S 阴影=S 扇形DOE =×π×12=.【答案】B .9.在△ABC 中,∠ABC=30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A .3个B .4个C .5个D .6个【考点】勾股定理;含30度角的直角三角形.【试题解析】解:如图,过点A 作AD ⊥BC 于D ,∵∠ABC=30°,AB=10,∴AD=AB=5,当AC=5时,可作1个三角形,当AC=7时,可作2个三角形,当AC=9时,可作2个三角形,当AC=11时,可作1个三角形,所以,满足条件的互不全等的三角形共有1+2+2+1=6个.【答案】D .10.二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x 的方程x 2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<n B.d<m<n<e C.d<m<e<n D.m<d<n<e【考点】抛物线与x轴的交点.【试题解析】解:二次函数y=x2+px+q+1图象如图所示:结合图象可知方程x2+px+q﹣5=0的两个实数根即为函数y=x2+px+q+1和y=6的交点,即d<m<n<e,【答案】B.二、填空题(本大题共8小题,每小题3分,共24分)11.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.【考点】函数自变量的取值范围.【试题解析】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.【答案】x≥﹣1且x≠0.12.若点P(a,a﹣2)在第四象限,则a的取值范围是0<a<2.【考点】点的坐标.【试题解析】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.【答案】0<a<2.13.分解因式:4x3﹣4x2y+xy2=x(2x﹣y)2.【考点】提公因式法与公式法的综合运用.【试题解析】解:4x3﹣4x2y+xy2=x(4x2﹣4xy+y2)=x(2x﹣y)2.【答案】x(2x﹣y)2.14.方程x(x﹣2)=﹣(x﹣2)的根是x1=2,x2=﹣1.【考点】解一元二次方程-因式分解法.【试题解析】解:x(x﹣2)=﹣(x﹣2)移项得:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1.【答案】x1=2,x2=﹣1.15.已知点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1=1.【考点】一次函数图象上点的坐标特征.【试题解析】解:∵点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,∴,解得,∴原式=﹣4×﹣1=1.【答案】1.16.某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学一次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为21.【考点】规律型:数字的变化类.【试题解析】解:∵第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…∴这样20个数据分别为:( +1)=2,( +1)=,( +1)=…(+1)=,( +1)=,故这样得到的20个数的积为:2×××…××=21, 【答案】21.17.如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 15°或165° .【考点】旋转的性质;等边三角形的性质;正方形的性质.【试题解析】解:①当正三角形AEF 在正方形ABCD 的内部时,如图1,∵正方形ABCD 与正三角形AEF 的顶点A 重合,当BE=DF 时,在△ABE 与△ADF 中,,∴△ABE ≌△ADF (SSS ),∴∠BAE=∠FAD ,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF 在正方形ABCD 的外部时.∵正方形ABCD 与正三角形AEF 的顶点A 重合,当BE=DF 时,∴AB=AD BE=DF AE=AF ,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°【答案】15°或165°.18.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2016=32015.【考点】切线的性质;一次函数图象上点的坐标特征.【试题解析】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,在RT△OO1A中,∵AO1=1,∠AOO1=30°,∴OO1=2AO1=2,同理:OO2=2BO2,OO3=2CO3,∴3+r2=2r2,∴r2=3,9+r3=2r3,r3=9,∴r1=1,r2=3,r3=9…r n=3n﹣1,∴r2016=32015.【答案】32015.三、解答题(本大题共10小题,共76分)19.计算:﹣2cos30°+()﹣2﹣|1﹣|.【考点】特殊角的三角函数值;绝对值;负整数指数幂;二次根式的性质与化简.【试题解析】解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.【答案】+5.20.化简:÷(x+2﹣)【考点】分式的混合运算.【试题解析】解:÷(x+2﹣)=÷()=•=.【答案】.21.解不等式组:,并求它的整数解的和.【考点】一元一次不等式组的整数解.【试题解析】解:由①得x>﹣2由②得x≤1∴不等式组的解集为﹣2<x≤1∴不等式组的整数解的和为﹣1+0+1=0.【答案】022.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);,△ABC的面积为S△,试说明>π.(2)记△ABC的外接圆的面积为S圆【考点】作图—复杂作图;勾股定理;三角形的外接圆与外心.【试题解析】解:(1)如图所示:(2)∵△ABC的外接圆的面积为S,圆=π×()2=π,∴S圆△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【答案】见解析23.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【试题解析】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.【答案】见解析24.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【试题解析】解:(1)过D点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1【答案】见解析26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y 值表示7:00时的存量,x=2时的y 值表示8:00时的存量…依此类推.他发现存量y (辆)与x (x 为整数)满足如图所示的一个二次函数关系. 时段 x 还车数(辆)借车数 (辆) 存量y (辆) 6:00﹣7:00 145 5 100 7:00﹣8:00243 11 n … … … … …根据所给图表信息,解决下列问题:(1)m= 60 ,解释m 的实际意义: 该停车场当日6:00时的自行车数 ;(2)求整点时刻的自行车存量y 与x 之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【试题解析】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.【答案】见解析27.如图,A(5,0),B(3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位长度的速度运动,运动时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.【考点】圆的综合题.【试题解析】解:(1)∵A(5,0),B(3,0),∴OA=5,OB=3,∵∠CBO=45°,∴OC=OB=3,∴点C的坐标(0,3);(2)①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∵CO=3,∴OP=CO=,∵Q(﹣4,0),∴QP=+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,②当P在点B的右侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∵CO=3,∴OP=CO=3,∵Q(﹣4,0),∴QP=3+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述当∠BCP=15°时,t的值为或;(3)①如图1,当PC⊥BC时,⊙P与BC相切,∵∠CBO=45°,∴∠CPB=45°,CP=BC,∵CO=3,∴PO=3,∴QP=QO﹣PO=4﹣3=1,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=0.5(秒),②如图2,当PC⊥CD时,⊙P与CD相切,∵QO=4,点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=4÷2=2(秒)③如图3,当PA⊥AD时,⊙P与AD相切,设PA=r∵OA=5,OC=3,∴OP2+OC2=PC2,即(5﹣r)2+32=r2,解得:r=,∴QP=4+5﹣=,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述t1=0.5秒,t2=2秒,t3=秒.【答案】见解析28.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【考点】相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.【试题解析】解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB ′﹣B ′N=t ﹣1,∴当2<t ≤时,S=S 梯形GNMF ﹣S △FKL =×2×(t ﹣1+t )﹣(t ﹣)(t ﹣1)=﹣t 2+2t﹣,④如图⑥,当<t ≤4时, ∵B ′L=B ′C=(6﹣t ),EK=EC=(4﹣t ),B ′N=B ′C=(6﹣t ),EM=EC=(4﹣t ),S=S 梯形MNLK =S 梯形B ′EKL ﹣S 梯形B ′EMN =﹣t+.综上所述:当0≤t ≤时,S=t 2,当<t ≤2时,S=﹣t 2+t ﹣;当2<t ≤时,S=﹣t 2+2t ﹣,当<t ≤4时,S=﹣t+.最大最全最精的教育资源网 全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | 【答案】见解析。
苏州市市区2016届中考数学一模试卷含答案解析

2016年江苏省苏州市市区中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.的倒数是()A.﹣3 B. C.3 D.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.2a﹣a=2 D.(ab)2=a2b23.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 4 5人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,44.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.35.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()A.30°B.40°C.50°D.60°6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.48.对于正数x,规定f(x)=,例如f(3)=,计算…f(998)+f (999)+f(1000)的结果是()9.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm210.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k的值是()A. B. C. D.﹣2二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上.11.分解因式:a2﹣a=.12.函数y=中,自变量x的取值范围是.13.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是.15.圆锥底面圆的半径为3cm,其侧面展开图的圆心角是120°,则圆锥母线长为.16.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.17.如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.18.如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y=;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=;④当t=秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是.(填序号)三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:﹣1+(﹣2)3+|﹣3|﹣20.解不等式组:.21.先化简,再求值:(+)÷,其中a=+1.22.解分式方程:﹣.23.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB 间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).26.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.27.如图,己知MN是⊙O的直径,P为⊙O上一点,NP平分∠MNQ,且NQ⊥PQ.(1)求证:直线PQ是⊙O的切线;(2)若⊙O的半径R=2,NP=2,求NQ的长.28.如图,二次函数y=ax2+x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,己知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以B,C,E,F为顶点的四边形是平行四边形时,写出满足条件的所有点E的坐标.29.如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB 上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长.(2)当t为何值时,MN∥CD?(3)设三角形DMN的面积为S,求S与t之间的函数关系式.(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由.2016年江苏省苏州市市区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.的倒数是()A.﹣3 B. C.3 D.【考点】倒数.【分析】根据乘积是1的两数互为倒数,即可得出答案.【解答】解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选A.【点评】本题考查了倒数的性质:乘积是1的两数互为倒数,可得出答案,属于基础题.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.2a﹣a=2 D.(ab)2=a2b2【考点】幂的乘方与积的乘方;合并同类项.【分析】结合选项分别进行幂的乘方和积的乘方、合并同类项等运算,然后选择正确选项.【解答】解:A、a2+a2=2a2,原式错误,故本选项错误;B、(a2)3=a6,原式错误,故本选项错误;C、2a﹣a=a,原式错误,故本选项错误;D、(ab)2=a2b2,原式正确,故本选项正确.故选D.【点评】本题考查了幂的乘方和积的乘方、合并同类项等知识,掌握运算法则是解答本题的关键.3.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 4 5人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,4【考点】众数;中位数.【分析】利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3【考点】分式的化简求值.【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.5.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【分析】连接OA,根据圆的半径相等证明∠OAB=∠B和∠OAD=∠D,得到答案.【解答】解:连接OA,∵OA=OB,∴∠OAB=∠B=30°,∵OA=OD,∴∠OAD=∠D=20°,∴∠BAD=∠OAB+∠OAD=50°,故选:C.【点评】本题考查的是圆的性质和等腰三角形的性质,掌握圆的半径相等和等边对等角是解题的关键.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4a(c+2)=0,b2﹣4ac=8a >0,据此解答即可.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=8a,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:③④.故选:B.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).8.对于正数x,规定f(x)=,例如f(3)=,计算…f(998)+f (999)+f(1000)的结果是()【考点】分式的加减法.【专题】新定义.【分析】通过计算f(2)+f()=1,f(3)+f()=1,找出规律即可得出结论.【解答】解:∵f(1)==,f(2)+f()=1,f(3)+f()=1,∴原式=[f()+f(1000)]+[f()+f(999)]+…+[f()+f(2)]+f(1)=999+=999.5.故选B.【点评】本题考查的是分式的加减,根据题意找出规律是解答此题的关键.9.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm2【考点】二次函数的应用;展开图折叠成几何体;等边三角形的性质.【分析】如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.10.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k的值是()A. B. C. D.﹣2【考点】切线的性质;反比例函数图象上点的坐标特征.【专题】计算题.【分析】作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,根据切线的性质得PM=PN=r,再利用面积法求出r=,接着证明△OBC为等腰直角三角形得到NC=NB=,于是得到P点坐标为(,﹣),然后把P(,﹣)代入y=可求出k的值.【解答】解:作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PM=PN=r,∵OA=4,OB=3,AC=1,∴AB==5,∵S△PAB+S△PAC=S△ABC,∴•5r+•r•1=•3•1,解得r=,∴BN=,∵OB=OC,∴△OBC为等腰直角三角形,∴∠OCB=45°,∴NC=NB=,∴ON=3﹣=,∴P点坐标为(,﹣),把P(,﹣)代入y=得k=×(﹣)=﹣.故选A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了反比例函数图象上点的坐标特征.二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上.11.分解因式:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.12.函数y=中,自变量x的取值范围是x≥﹣1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是.【考点】概率公式.【分析】让1到10中大于的数的个数除以数的总个数即为所求的概率.【解答】解:1,2,3,4,5,6,7,8,9,10种,大于的数为:6,7,8,9,10;大于的概率是=.【点评】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.关键是得到1到10中大于的数的个数.15.圆锥底面圆的半径为3cm,其侧面展开图的圆心角是120°,则圆锥母线长为9.【考点】圆锥的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则=2π×3解得:l=9.故答案为:9.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为6.【考点】旋转的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.17.如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.【考点】直线与圆的位置关系.【分析】首先判断当AB与⊙O相切时,PB的值最大,设AB与⊙O相切于E,连接OE,则OE⊥AB,过点C作CF⊥PB于F,由CA⊥AB,DB⊥AB,得到AC∥OE∥PB,四边形ABPC是矩形,证得CF=AB=6,在直角三角形PCF中,由勾股定理列方程求解.【解答】解:当AB与⊙O相切时,PB的值最大,如图,设AB与⊙O相切于E,连接OE,则OE⊥AB,过点C作CF⊥PB于F,∵CA⊥AB,DB⊥AB,∴AC∥OE∥PB,四边形ABPC是矩形,∴CF=AB=6,∵CO=OP,∴AE=BE,设PB=x,则PC=2OE=2+x,PF=x﹣2,∴(x+2)2=(x﹣2)2+62,解得;x=,∴BP最大值为:,故答案为:.【点评】本题考查了直线与圆的位置关系,梯形的中位线,勾股定理矩形的判定和性质,解题的关键是知道当PB取最大值时,AB与圆相切.18.如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y=;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=;④当t=秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是①②④.(填序号)【考点】二次函数综合题.【分析】根据图(2)可以判断三角形的面积变化分为四段,①当点P在BE上运动,点Q到达点C时;②当点P到达点E时,点Q静止于点C,从而得到BC、BE的长度;③点P到达点D时,点Q静止于点C;④当点P在线段CD上,点Q仍然静止于点C时.【解答】解:当0<t≤5时,点P在线段BE上运动.如图(1)所示:过点P作PF⊥BQ,垂足为F.S△BPQ=PF•BQ=BP•sin∠CBE•BQ=t•sin∠CBE•2t=sin∠CBEt2.将(5,20)代入得25sin∠CBE=20,解得:sin∠CBE=,0<t≤5时,y=,故①正确.∵sin∠CBE=,∴COS∠CBE=,故③错误.由图(2)可知:当t=5时,点Q与点C重合,当t=10时,点P与点E重合,则BC=10,BE=10.则BC=BE.∵∠AEB=∠CBE,∴AB=BEsin∠AEB=10×=8.在△ABE中,AE==6.当t=6时,如图2所示:在△ABE与△PQB中,,∴△ABE≌△PQB(SAS).故②正确.当t=秒时,如图3所示:∵当t=秒时,PD=﹣14=,∴PQ=8﹣=7.5.∴.又∵,∴.又∵∠BQP=∠A,∴△AEB∽△QBP.故④正确.由DC=8,可知点F(22,0)设NF的解析式为y=kx+b.将N、F的坐标代入得:,解得:k=﹣5,b=110.∴NF所在直线解析式为y=﹣5x+110.故⑤错误.故答案为:①②④.【点评】本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E用了10s,点Q到达点C用了5s是解题的关键,也是本题的突破口三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:﹣1+(﹣2)3+|﹣3|﹣【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【专题】计算题.【分析】按照实数的运算法则依次计算,注意:﹣1=9,()0=1.【解答】解:原式=9﹣8+3﹣1=3.【点评】本题需注意的知识点是:a﹣p=,任何不等于0的数的0次幂是1.20.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≤2,解不等式②得:x>1.5,∴不等式组的解集为1.5<x≤2.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.先化简,再求值:(+)÷,其中a=+1.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=÷=•=,当a=+1时,原式==1+.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.解分式方程:﹣.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣(x﹣3)2﹣2x(x﹣3)=3x2,整理得:﹣x2+6x﹣9﹣2x2+6x=3x2,即2x2+6x+3=0,解得:x==,经检验x=都为分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【考点】正方形的判定;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AD=BD,又由在△ABC 中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.【点评】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A是36°,A的人数为20人,即可求得这次被调查的学生总人数;(2)由(1),可求得C的人数,即可将条形统计图(2)补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵A是36°,∴A占36°÷360=10%,∵A的人数为20人,∴这次被调查的学生共有:20÷10%=200(人),故答案为:200;(2)如图,C有:200﹣20﹣80﹣40=60(人),(3)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB 间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)过点B作BE⊥AD于点E,然后根据AB=40m,∠A=30°,可求得点B到AD的距离;(2)先求出∠EBD的度数,然后求出AD的长度,然后根据∠A=30°即可求出CD的高度.【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.【点评】本题考查了解直角三角形的应用,难度适中,解答本题的关键是根据仰角构造直角三角形并解直角三角形.26.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得b,进而求得D的坐标,根据D的坐标求得C的坐标,代入反比例函数的解析式即可求得k的值;(2)根据三角形的面积公式求得即可;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,先求得直线BD的解析式,进而求得直线PC的解析式,然后联立方程即可求得P的坐标.【解答】解:(1)∵直线y=2x+b经过点A(﹣1,0),∴0=﹣2+b,解得b=2,∴直线的解析式为y=2x+2,由直线的解析式可知B(0,2),∵OB=OD=2∴D(2,0),把x=2代入y=2x+2得,y=2×2+2=6,。
2016中考数学模拟试卷(带答案)

2016年中考数学模拟试卷(带答案)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列运算正确的是()A.B.C.D.2.某种商品标价为1200元,售出价800元,则最接近打()折售出A.6折B.7折C.8折D.9折3.从五个点(-2,6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线上的概率是()A.B.C.D.4.平行四边形ABCD中,AC平分DAB,AB=2,则平行四边形ABCD的周长为()A.4B.6C.8D.125.若,则的值为()A.B.C.D.6.若点M(x,y)满足,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定7.如图,⊙O的直径AB=8,P是圆上任一点(A、B除外),APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.B.C.6D.8.给出四个命题:①正八边形的每个内角都是135②半径为1cm和3cm的两圆内切,则圆心距为4cm③长度等于半径的弦所对的圆周角为30④Rt△ABC中,C=90,两直角边a,b分别是方程x2-7x+12=0的两个根,则它外接圆的半径长为2.5以上命题正确的有()A.1个B.2个C.3个D.4个9.若直角三角形的两条直角边长为、,斜边长为,斜边上的高为,则有()A.B.C.D.10.直角坐标系xoy中,一次函数y=kx+b(kb0)的图象过点(1,kb),且b2,与x轴、y轴分别交于A、B两点.设△ABO的面积为S,则S的最小值是()A.B.1C.D.不存在二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.点(-1,2)变换为(2,1),请描述一种变换过程.12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路与曙光路交叉口),沿街道走的最近距离是m.13.数据11,9,7,10,14,7,6,5的中位数是,众数是.14.在△ABC中,B=45,cosC=,AC=5a,则用含a的代数式表示AB是(第14题)(第15题)(第16题)15.如图,⊙O为△ABC的内切圆,C=90,BO的延长线交AC 于点D,若BC=3,CD=1,则⊙O的半径等于.16.如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:,若m是任意实数,对化简结果,你发现原式表示的数有什么特点?18.如图是一个圆锥的三视图,求它的母线长和侧面积.(结果保留)19.在平面直角坐标系中,已知点A(6,),B(0,)(1)画一个圆M,使它经过点A、B且与y轴相切(尺规作图,保留作图痕迹);(2)若圆M绕原点O顺时针旋转,旋转角为(0),当圆M与x轴相切时,求圆心M走过的路程.(结果保留)20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,(1)根据这规律可知第④个图中有多少个三角形?第n个图中有多少个三角形?(用含正整数n的式子表示);(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;21.如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的抛物线三角形,[a,b,c]称为抛物线三角形系数.(1)若抛物线三角形系数为[-1,b,0]的抛物线三角形是等腰直角三角形,求的值;(2)若△OAB是抛物线三角形,其中点B为顶点,抛物线三角形系数为[-2,2m,0],其中m且四边形ABCD是以原点O为对称中心的矩形,求出过O、C、D三个点的抛物线的表达式.22.如图,直角梯形ABCD,DAB=90,AB∥CD,AB=AD,ABC=60.以AD为边在直角梯形ABCD外作等边△ADF,点E是直角梯形ABCD内一点,且EAD=EDA=15,连接EB、EF.(1)求证:EB=EF;(2)四边形ABEF是哪一种特殊四边形?(直接写出特殊四边形名称)(2)若EF=6,求直角梯形ABCD的面积;23.如图1,抛物线与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且OB=,(O为坐标原点).(1)求实数k的值;(2)求实数a,b的值;(3)如图2,过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,请直接写出所有满足△EOC∽△AOB的点E的坐标.参考答案一、选择:1-5CBCCD6-10BABCB二、填空:11、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下112、34013、8,714、15、16、三、解答题:17(6分)、化简得.--------------------------4分是一个非负数18(8分)L=13--------------------2分S侧面积=65---------------6分19(8分)(1)画法正确4分(其中无痕迹扣1分)(2)..2分或3..2分20、(1)10个------------------2分-----------------4分(2)不存在..4分(其中过程3分)21、(1)b=2或2..5分(其中点坐标求出适当给分)(2)..5分(其中点坐标求出适当给分)22、(1)证明完整..4分(2)菱形-------4分(写平行四边形3分)(3)S梯形=----------------4分23、(1)k=4..3分(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)(3)提示:发现OCOB,且OC=2OB所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分希望为大家提供的2016年中考数学模拟试卷的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省中考数学模拟试卷
一、选择题(本大题共10小题,每小题3分,共30分)请将正确答案前面的英文字母填涂在答题纸相应的位置上.
1.2015的相反数是
A .2015
B .一2015
C .
12015 D .12015
- 2.下列运算正确的是
A .336a a a +=
B .2(1)21a a +=+
C .222()ab a b =
D . 632a a a ÷=
3.把代数式2218x -分解因式,结果正确的是
A .22(9)x -
B .22(3)x -
C . 2(3)(3)x x +-
D .2(9)(9)x x +-
4.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这1 9位同学的
A .平均数
B .中位数
C .众数
D .方差
5.下列图形中既是轴对称图形,又是中心对称图形的是
A .等边三角形
B .平行四边形
C .正方形
D .正五边形
6如图,BC ⊥ AE 于点C ,CD ∥AB ,∠B=55°,则∠1等于
A .35°
B .45°
C .55°
D .65°
7.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的顶角是
A .50°
B .80°
C .50°或80°
D .40°或65°
8.已知2230x x --=,则224x x -的值为
A .-6
B .6
C .-2或6
D .-2或30
9.如图,在□ABCD 中,对角线AC 、BD 相交成的锐角为α,若
AC=a ,BD=b ,则□ABCD 的面积是 A .
1sin 2
ab a B .sin ab a C .cos ab a D .1cos 2ab a 10.抛物线2
y ax bx c =++的顶点为D(一1,2),与x 轴的一
个交点A 在点(一3,0)和(一2,0)之间,其部分图象如
图,则以下结论:
①240b ac -<;②0a b c ++<;③c —a=2;
④方程220ax bx c ++-=有两个相等的实数根.
其中正确结论的个数为
A .1个
B .2个
C .3个
D .4个
二、填空题(本大题共8小题,每小题3分,共24分;请将答案填写在答题纸相应的位置上)
11.要使分式12
x x +-有意义,则x 的取值是 ▲ ; 12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩
的解,则m n -= ▲ ; 13.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明
摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ▲ ;
14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2
cm,,扇形的圆心角θ=120°,则该圆锥的母线长l 为l ;
15.如图,⊙O 的直径AB 与弦CD 相交于点E ,且AC=2,3CE=1,则弧BD 的
长是 ▲ .
16.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE=3,点Q 为对角线
AC 上的动点,则△BEQ 周长的最小值为 ▲ ;
17.如图,函数2y x =和4y ax =+的图象相交于点A(m ,3),则不等式24x ax ≥+的解
集为 ▲ .
18.正方形11122213332,,,A B C O A B C C A B C C …按如图的方式放置.
点123,,A A A ,…和点1C , 23C ,C ,…分别在直线1y x =+和x 轴上,则点6B 的坐标是 ▲ .
三、解答题(本大题共10小题,共76分.请在答题卡指定区域内作答,解答时写出必要的文字说明,证明过程或演算步骤.)
19.(本题5分)
计算 184cos 45()122
o +-+- 20.(本题5分)
解不等式组322131722
x x x x ->+⎧⎪⎨-≤-⎪⎩ 21.(本题5分)
先化简,再计算221211()111
x x x x x x -+-+÷+-+,其中2x =22.(本题6分)
某校为了调查学生书写汉字的能力,从八年级800名学生中随机抽选了50名学生参加测试,这50名学生同时听写50个常用汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:
请结合图表完成下列问题:
(1)求表中a 的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,请你估计该校八年级汉字书写优秀的人数?
(4)第一组中的A 、B 、C 、D 四名同学为提高汉字书写能力,分成两组,每组两人进行对抗
练习.请用列表法或画树状图的方法,求A 与B 名同学能分在同一组的概率.
23.(本题6分)
已知:如图,在□ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连结BE ,DF .
(1)求证:△DO E ≌△BOF
(2)∠DOE 等于多少度时,四边形BFED 为菱形?请说明理由.
24.(本题8分)
如图,已知A
1
(4,)
2
-,B(一1,2)是一次函数y kx b
=+与反比例函数
m
y
x
=(m≠0,
m<0)图象的两个交点,A C⊥x轴于C, B D⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数值大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
25.(本题8分)
如图,在一笔直的海岸线l上有A、B两个观测站,点A在点B的正东方向,AB=4km,有一艘小船在点P处,从点A 测得小船在北偏西60°方向,从点B测得小船在北偏东45°的方向.
(1)求小船到海岸线l的距离;
(2)小船从点P沿射线AP方向航行一段时间后,到C处,此时,从点B测得小船在北偏西15°的方向,求此时小船到观测点B的距离.(结果保留根号)
26.(本题10分)
2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?
27.(本题10分)
如图AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连结BC.
(1)求证:BC平分∠PBD
BC=AB·BD
(2)求证:2
(3)若PA=6,PC=62BD的长.
28.(本题13分)
已知:如图,在四边形OABC中,AB∥OC,B C⊥x轴于点C,A(1,一1),B(3,一1),动点P从点D出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线似,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.
(1)求经过D、A、B三点的抛物线的解析式,并确定顶点M的坐标;
(2)用含t的代数式表示点P、点Q的坐标;
(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O
或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由.
(4)求出S与t的函数关系式.。