中考数学真题模拟试卷 (59)

合集下载

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西省中考数学模拟试卷试题及答案详解(精校打印)

2025年陕西中考模拟真题数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、单选题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列实数是无理数的是()AB C .12D .2-2.下列几何体放置在水平面上,其中俯视图是圆的几何体为()A .B .C .D .3.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,1402120∠=︒∠=︒,,则34∠+∠的值为()A .160︒B .150︒C .100︒D .90︒4.如图,墨迹污染了等式中的运算符号,则污染的是()A .+B .-C .×D .÷5.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围()A .2k <-B .2k >-C .0k >D .0k <6.如图,在菱形ABCD 中,延长BC 至点F ,使得2BC CF =,连接AF 交CD 于点E .若2CE =,则菱形ABCD 的周长为()A .12B .16C .20D .247.如图,在O 中,半径OA ,OB 互相垂直,点C 在劣弧A 上.若26BAC ∠=︒,则ABC ∠=()A .17︒B .18︒C .19︒D .20︒8.已知二次函数2(1)5y x =--+,当a x b ≤≤且0ab <时,y 的最小值为2a ,最大值为2b ,则a b +的值为()A .2B .12C .3D .32二、填空题(共5小题,每小题3分,计15分)9小的正整数.10.分解因式:2233m n -=.11.如图,在正五边形ABCDE 内,以CD 为边作等边CDF V ,则BFC ∠的数为.12.已知正比例函数图象与反比例函数图象都经过点()1,2-,那么这两个函数图象必都经过另一个点的坐标为.13.如图,在四边形ABDC 中,90A D ∠=∠=︒,3AC DC ==,5BC =,若点M ,点N 分别在AB 边和CD 边上运动,且AM DN =,连接MN ,则MN 的最小值为.三、解答题(共13小题,计81分,解答应写出过程)14()202441---.15.解方程:32544x x =---.16.解不等式组:322443x x x x ->+⎧⎪-⎨<⎪⎩17.已知:如图,ABC V .求作:以AC 为弦的O ,使O 到AB 和BC的距离相等.18.如图,在矩形ABCD 中,点E ,F 在BC 上,且BE CF =,连接AE DF ,.求证:ABE DCF △≌△.19.《九章算术》中有这样一道题:今有米在十斗桶中,不知其数.满中添粟而舂之,得粟七斗,问故米几何?(粟米之法:粟率五十,粝米三十.)大意为:今有米在容量为10斗的桶中,但不知道数量是多少;再向桶加满粟,再舂成米,共得米7斗.问原来有米多少斗?(出米率为35)请解答上面问题.20.甲、乙、丙三人玩捉迷藏游戏,一人为蒙眼人,捉另外两人,捉到一人,记为捉一次;被捉到的人成为新的蒙眼人,接着捉……一直这样玩(每次捉到一人).请用树状图解决下列问题,(1)若甲为开始蒙眼人,捉两次,求第二次捉到丙的概率;(2)若捉三次,要使第三次捉到甲的概率最小,应该谁为开始蒙眼人?21.电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻1R ,1R 与踏板上人的质量m 之间的函数关系式为1R km b =+(其中k ,b 为常数,0120)m ≤≤,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻0R 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为0U ,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式U I R=;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.图1图2(1)求出1R 与踏板上人的质量m 之间的函数关系式并写出m 的取值范围;(2)求出当电压表显示的读数为2伏时,对应测重人的质量为多少千克?22.如图,某小区内有AB 和CD 两栋家属楼,竖直的移动支架EF 位于两栋楼之间,且高为4m ,点A ,E ,C 在同一条直线上.当移动支架EF 运动到如图所示的位置时,在点F 处测得点B ,D 的仰角分别为45︒、60︒,点A 的俯角为30︒,此时测得支架EF 到楼CD 的水平距离EC 为15m .求两楼的高度差.(结果精确到1m 1.41≈ 1.73≈)23.近日,教育部印发的《2023年全国综合防控儿童青少年近视重点工作计划》明确,要指导地方教育行政部门督促和确保落实学生健康体检制度和每学期视力监测制度,及时把视力监测结果记入儿童青少年视力健康电子档案,并按规定上报全国学生体质健康系统.按照国家视力健康标准,学生视力状况分为:视力正常、轻度视力不良、中度视力不良和重度视力不良四个类别,分别用A,B,C,D表示.某校为了解本校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力状况调查,根据调查结果,绘制了如下尚不完整的统计图.(1)此次调查的学生总人数为______;扇形统计图中,m ______;(2)补全条形统计图.(3)已知重度视力不良的四名学生中,甲、乙为九年级学生,丙、丁分别为七、八年级学生,现学校要从中随机抽取2名学生调查他们对护眼误区和保护视力习惯的了解程度,请用列表法或画树状图法求这2名学生恰好是同年级的概率.24.如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE 于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.25.在山体中修建隧道可以保护生态环境,改善公路技术状态,提高运输效率.某城市道路中一双向行驶隧道(来往方向各一车道,路面用黄色双实线隔开)图片如图所示.隧道的纵截面由一个矩形和一段抛物线构成。

中考数学模拟试卷

中考数学模拟试卷

江西南城实验中学中考模拟考试数 学 试 卷一、选择题(本大题共6个小题,每小题3分,共18分) 1.—2的绝对值是( ) A .12- B .21C .2-D .2 2下列运算正确的是( ).A. 22232x x x -= B .22(2)2a a -=- C .222()a b a b +=+ D .()2121a a --=--3.在绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .4、南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( ) A.0.83510⨯ B.3.7510⨯ C.3.6510⨯ D.3.9510⨯5、.如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB =38, ∠B =30°, 则DE 的长是( ). A. 6 B. 4 C. 34 D. 236、现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明 掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线y =-x 2+4x 上的概率为( )A.181 B. 121 C. 91 D. 61 7、如图,直线y =-2x +4与x 轴,y 轴分别相交于A ,B 两点,C 为OB 上一点,且∠1=∠2,则S △ABC =( )A.1B.2C.3D.48.如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( ).aaaa 二、填空题(本大题共8小题,每小题3分,共24分) 9.在函数y =,自变量x 的取值范围是 .10.分解因式:32242x x x -+= .11、已知方程230x x k -+=有两个相等的实数根,则k =.12.双曲线1y 、2y 在第一象限的图像如图,14y x=, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B , 交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 . 13、如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数表达式为 . 14.如图,在等腰直角ABC ∆中,90ACB O∠=,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且90DOE O∠=,DE交第7题图OC 于点P .则下列结论:(1)图形中全等的三角形只有两对;(2)ABC ∆的面积等于四边形CDOE 面积的2倍;(3)CD CE +=;(4)222AD BE OP OC +=⋅.其中正确的结论有___________(只填序号)三、(本大题共2小题,每小题5分,共10分)15、计算:2014)452-⎛⎫⎪⎝⎭16、.解方程:12111x x x-=-- 四、(本大题共2小题,每小题7分,共14分) 17、先简化,再求值:,其中x=.18、如图方格纸中每个小方格是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的三个顶点均在格点上. (1)画出△ABC 关于y 轴对称的△111A B C ;(2)画出将△ABC 绕原点O 逆时针旋转90所得的△222A B C ;(3)△111A B C 与△222A B C 成轴对称图形吗?若成轴对称图形,写出对称轴的解析式;若不成轴对称图形,请简要分析原因.五、(本大题共2小题,每小题8分,共16分)19、实验中学综合实践活动组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:(1)求这次调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢排球的圆心角度数;(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.20、如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F . (1)求证四边形BEDF 为矩形.(2)若BC BE BD ⋅=2,试判断直线CD 与⊙O 的位置关系,并说明理由.六、(本大题共2小题,每小题9分,共18分)21、某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部分对应值如下表:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)22、如图,△ABC 中,AB=BC ,AC=8,tanA=k ,P 为AC 边上一动点,设PC=x ,作PE ∥AB 交BC 于E ,PF ∥BC 交AB 于F . (1)证明:△PCE 是等腰三角形;(2)EM 、FN 、BH 分别是△PEC 、△AFP 、△ABC 的高,用含x 和k 的代数式表示EM 、FN ,并探究EM 、FN 、BH 之间的数量关系;(3)当k=4时,求四边形PEBF 的面积S 与x 的函数关系式.x 为何值时,S 有最大值?并求出S 的最大值.七、(本大题共2小题,每小题10分,共20分)23、、已知:如图1,在梯形ABCD中,∠A=90°,AD∥BC, AD=2,AB=3,tan C=12,点P是AD延长线上一点,F为DC的中点,联结BP,交线段DF于点G.(1)若以AB为半径的⊙B与以PD为半径的⊙P外切,求PD 的长;(2)如图2,过点F作BC的平行线交BP于点E,①若设DP=x,EF=y,求y与x的函数关系式并写出自变量x的取值范围;②联结DE和PF,若DE=PF,求PD的长.图1 图224、如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_ ),点C的坐标为(_ );(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A 与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.图1 图2。

最新版初三中考数学模拟试卷易错题及答案9548592

最新版初三中考数学模拟试卷易错题及答案9548592

中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列多项式不是完全平方式的是( ) A .214m m ++B .2269a ab b ++C .24129t t -+D .224x xy y --2.由132x y-=可以得到用x 表示y 的式子的是( )A .223x y -=B .2133x y =- C . 223x y =- D .223x y =-3.下列各式的因式分解中,正确的是( ) A .236(36)m m m m m -=- B .2()a b ab a a ab b ++=+ C .2222()x xy y x y -+-=--D .222()x y x y +=+4.2200620082004-⨯的计算结果为( ) A .1B .-1C .4D .-45.下列各式中,分解因式错误的是( ) A .224(4)(4)m n m n m n -=+- B .2616(8)(2)x x x x +-=+- C . 22244(2)x xy y x y -+=-D .()()am an bm bn a b m n +++=++6.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( ) A .△OCDB .△OABC .△OAFD .△OEF7.化简 2a 3 + a 2·a 的结果等于( ) A . 3a 3B .2a 3C .3a 6D .2a 68.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB 的依据是( ) A .SSSB .SASC .ASAD .AAS9.计算:53x x ÷=( ) A .2xB .53xC .8xD .110.下列现象属于旋转的是( ) A .吊机起吊物体的运动 B .小树在风中“东倒西歪” C .汽车的行驶D .镜子中的人像11.如图是用直尺和圆规作一个角的平分线的示意图,则说明 OC 平分∠AOB 的依据是( ) A . SASB .SSSC .ASAD . AAS12.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )A .B .C .D .13.若41(2)(5)x m x n x +=-+-,则m 、n 的值是( ) A .41m n =-⎧⎨=-⎩B .41m n =⎧⎨=⎩C .73m n =⎧⎨=-⎩D . 73m n =-⎧⎨=⎩14.如图所示,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,若∠BAF=50°,则∠EAF 的度数为( ) A .50°B .45°C .40°D .20°15.用科学记数法表示0.000 0907,并保留两个有效数字,得( ) A . 49.110-⨯ B .59.110-⨯C .59.010-⨯D .59.0710-⨯16.已知2x y m =⎧⎨=⎩是二元一次方程531x y +=的一组解,则m 的值是( ) A . 3B . -3C .113D .113-17.如图,若∠l=∠2,则在结论:①∠3=∠4;②AB ∥DC ;③AD ∥BC 中,正确的个数是( ) A .0个B .1个C .2个D .3个18.如图 ,已知直线 AB 、CD 被直线 EF 所截,则∠AMN 的内错角为( ) A . ∠EMBB . ∠BMFC .∠ENCD .∠END19.等腰三角形是轴对称图形,它的对称轴是( ) A .过顶点的直线 B .底边上的高所在的直线 C .顶角平分线所在的直线 D .腰上的高所在的直线20.等腰三角形的“三线合一”是指( ) A .中线、高、角平分线互相重合B .腰上的中线、腰上的高、底角的平分线互相重合C .顶角的平分线、中线、高线三线互相重合D .顶角的平分线、底边上的高及底边上的中线三线互相重合21.已知ABC △的三边长分别为5,13,12,则ABC △的面积为( ) A .30B .60C .78D .不能确定22.如图,△ABC 中,∠ACB=120°,在AB 上截取AE=AC ,BD=BC ,则∠DCE 等于( ) A .20°B .30°C .45°D .60°23.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( ) A .14B .15C .16D .32024.长方体的顶点数,棱数,面数分别是( ) A .8,10,6B .6,12,8C .6,8,10D .8,12,625.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能...是( )26.已知在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠B=∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是( ) A . BC =B ′C ′B .AC=A ′C ′C .∠C=∠C ′D .∠A=∠A ′27.如图是气象工作者绘制的某地元旦这一天的气温变化图,某同学根据该图给出了下列四个结论:①零点时的气温是+2℃;②4点时气温最低,l4点时气温最高;③气温为0。

2022学年福建省各地中考数学模拟精编试卷(含答案解析)

2022学年福建省各地中考数学模拟精编试卷(含答案解析)

2022学年福建省各地中考数学模拟精编试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=22.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是().A.147B.151C.152D.1563.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.4.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A.50和48 B.50和47 C.48和48 D.48和435.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.56.下列方程有实数根的是()A.420x+=B221x-=-C .x+2x−1=0D .111x x x =-- 7.下列各式属于最简二次根式的有( ) A .8B .21x +C .3yD .128.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c9.如图,在平行四边形ABCD 中,E 是边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD′与CE 交于点F ,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )A .40°B .36°C .50°D .45°10.下列各数中,比﹣1大1的是( ) A .0 B .1 C .2 D .﹣311.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( ) A .32,31B .31,32C .31,31D .32,3512.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个. A .4个B .3个C .2个D .1个二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.不等式组42348x x -+<⎧⎨-≤⎩①②的解集是_____.14.计算:|﹣3|+(﹣1)2= .15.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x 厘米,则依题意列方程为_________.16.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.17.抛物线y=(x+1)2 - 2的顶点坐标是______ .18.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=ax+b的图象与反比例函数kyx=的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知10OA=,A(n,1),点B的坐标为(﹣2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求△AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是.20.(6分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).21.(6分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x=>的图象的两个交点分别为A (1,5),B .(1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.22.(8分)已知2是关于x 的方程x 2﹣2mx +3m =0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为_____.23.(8分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣3|.24.(10分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.25.(10分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数的解析式; (2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.26.(12分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A ﹣﹣﹣不超过5天”、“B ﹣﹣﹣6天”、“C ﹣﹣﹣7天”、“D ﹣﹣﹣8天”、“E ﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题: (1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是 (选填:A 、B 、C 、D 、E );(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人? 27.(12分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1. (1)求证:无论实数m 取何值,方程总有两个实数根; (2)若方程有一个根的平方等于4,求m 的值.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【答案解析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【题目详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【答案点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.2、C【答案解析】根据中位数的定义进行解答【题目详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【答案点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.3、D【答案解析】测试卷分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.4、A【答案解析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【题目详解】由折线统计图,得:42,43,47,48,49,50,50, 7次测试成绩的众数为50,中位数为48, 故选:A .【答案点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息. 5、D 【答案解析】根据平均数、中位数、众数和方差的定义逐一求解可得. 【题目详解】 解:A 、平均数为=3,正确;B 、重新排列为1、2、3、3、6,则中位数为3,正确;C 、众数为3,正确;D 、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误; 故选:D . 【答案点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量. 6、C 【答案解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A .∵x 4>0,∴x 4+2=0无解;故本选项不符合题意; B 22x -≥022x -=﹣1无解,故本选项不符合题意;C .∵x 2+2x ﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意. 故选C .点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 7、B 【答案解析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【题目详解】A=A选项错误;B B选项正确;C=D=D选项错误;故选:B.【答案点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.8、A【答案解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.9、B【答案解析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【题目详解】∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B.【答案点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF 和∠AED ′是解决问题的关键. 10、A 【答案解析】用-1加上1,求出比-1大1的是多少即可. 【题目详解】 ∵-1+1=1, ∴比-1大1的是1. 故选:A . 【答案点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”. 11、C 【答案解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1. 故选C . 12、B 【答案解析】分析:根据已知画出图象,把x =−2代入得:4a −2b +c =0,把x =−1代入得:y =a −b +c >0,根据122cx x a⋅=<-,不等式的两边都乘以a (a <0)得:c >−2a ,由4a −2b +c =0得22c a b -=-,而0<c <2,得到102c-<-<即可求出2a −b +1>0. 详解:根据二次函数y =ax 2+bx +c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x =−2代入得:4a −2b +c =0,∴①正确;把x =−1代入得:y =a −b +c >0,如图A 点,∴②错误;∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122cx x a⋅=<-, ∴不等式的两边都乘以a (a <0)得:c >−2a , ∴2a +c >0,∴③正确;④由4a −2b +c =0得22c a b -=-, 而0<c <2,∴102c-<-< ∴−1<2a −b <0 ∴2a −b +1>0, ∴④正确.所以①③④三项正确. 故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、2<x≤1 【答案解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集. 【题目详解】 由①得x >2, 由②得x≤1,∴不等式组的解集为2<x≤1. 故答案为:2<x≤1. 【答案点睛】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 14、4. 【答案解析】 |﹣3|+(﹣1)2=4, 故答案为4.15、x+23x=75.【答案解析】测试卷解析:设长方形墙砖的长为x厘米,可得:x+23x=75.16、1.016×105【答案解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,【题目详解】解:101 600=1.016×105故答案为:1.016×105【答案点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键.17、(-1,-2)【答案解析】测试卷分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.18、4 5【答案解析】测试卷分析:根据概率的意义,用符合条件的数量除以总数即可,即1024 105-=.考点:概率三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=3x;y=12x﹣12;(2)54;(1)﹣2<x<0或x>1;【答案解析】(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.(1)根据A、B的横坐标结合图象即可得出答案.【题目详解】解:(1)过A作AM⊥x轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=.把B(﹣2,n)代入反比例函数的解析式得:n=﹣,即B的坐标是(﹣2,﹣),把A、B的坐标代入y=ax+b得:,解得:k=.b=﹣,即一次函数的解析式是y=x﹣.(2)连接OB,∵y=x﹣,∴当x=0时,y=﹣,即OD=,∴△AOB的面积是S△BOD+S△AOD=××2+××1=.(1)一次函数的值大于反比例函数的值时x 的取值范围是﹣2<x <0或x >1,故答案为﹣2<x <0或x >1.【答案点睛】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.20、(1)y=﹣x 2+2x+4;M (1,5);(2)2<m <4;(3)P 1(311,31),P 2(313,31 ),P 3(3,1),P 4(﹣3,7). 【答案解析】测试卷分析:(1)将点A 、点C 的坐标代入函数解析式,即可求出b 、c 的值,通过配方法得到点M 的坐标;(2)点M 是沿着对称轴直线x=1向下平移的,可先求出直线AC 的解析式,将x=1代入求出点M 在向下平移时与AC 、AB 相交时y 的值,即可得到m 的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM 与△BCD 相似,则要进行分类讨论,分成△PCM ∽△BDC 或△PCM ∽△CDB 两种,然后利用边的对应比值求出点坐标.测试卷解析:(1)把点A (3,1),点C (0,4)代入二次函数y=﹣x 2+bx+c 得, 解得 ∴二次函数解析式为y=﹣x 2+2x+4, 配方得y=﹣(x ﹣1)2+5,∴点M 的坐标为(1,5);(2)设直线AC 解析式为y=kx+b ,把点A (3,1),C (0,4)代入得, 解得:∴直线AC 的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC 两边分别交于点E 、点F把x=1代入直线AC 解析式y=﹣x+4解得y=3,则点E 坐标为(1,3),点F 坐标为(1,1)∴1<5﹣m <3,解得2<m <4;(3)连接MC ,作MG ⊥y 轴并延长交AC 于点N ,则点G 坐标为(0,5) ∵MG=1,GC=5﹣4=1∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N 坐标为(﹣1,5),∵NG=GC ,GM=GC , ∴∠NCG=∠GCM=45°, ∴∠NCM=90°,由此可知,若点P 在AC 上,则∠MCP=90°,则点D 与点C 必为相似三角形对应点①若有△PCM ∽△BDC ,则有∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°,若点P 在y 轴右侧,作PH ⊥y 轴, ∵∠PCH=45°,CP=∴PH== 把x=代入y=﹣x+4,解得y=, ∴P 1();同理可得,若点P 在y 轴左侧,则把x=﹣代入y=﹣x+4,解得y= ∴P 2();②若有△PCM ∽△CDB ,则有 ∴CP==3 ∴PH=3÷=3, 若点P 在y 轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P 在y 轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P 3(3,1);P 4(﹣3,7).∴所有符合题意得点P 坐标有4个,分别为P 1(),P 2(),P 3(3,1),P 4(﹣3,7).考点:二次函数综合题21、(1)11k =-,25k =;(2)0<n <1或者n >1.【答案解析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【题目详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x =>的图象上,∴25k =.(2)观察图象可知,满足条件的n的值为:0<n<1或者n>1.【答案点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解.22、11【答案解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【题目详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【答案点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质23、3+1【答案解析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.【题目详解】原式=21-1【答案点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.24、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【答案解析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【题目详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A >y B ,选择B 方式上网学习合算,当x >50时,∵y A =0.6x ﹣8,y B =0.6x ﹣20,y A >y B ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,y A <y B ,选择A 方式上网学习合算,当x=30时,y A =y B ,选择哪种方式上网学习都行,当x >30时,y A >y B ,选择B 方式上网学习合算.【答案点睛】本题考查一次函数的应用.25、(1)y=6x ;(2)454;(3)32<x <1. 【答案解析】(1)先利用矩形的性质确定C 点坐标(1,4),再确定A 点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k 1=1,即反比例函数解析式为y=6x ;(2)利用反比例函数解析式确定F 点的坐标为(1,1),E 点坐标为(32,4),然后根据△OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF 进行计算;(3)观察函数图象得到当32<x <1时,一次函数图象都在反比例函数图象上方,即k 2x+b >1k x . 【题目详解】(1)∵四边形DOBC 是矩形,且点C 的坐标为(1,4),∴OB=1,OD=4,∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=1,∴反比例函数解析式为y=6x ; (2)把x=1代入y=6x得y=1,则F 点的坐标为(1,1); 把y=4代入y=6x 得x=32,则E 点坐标为(32,4), △OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF=4×1﹣12×4×32﹣12×1×1﹣12×(1﹣32)×(4﹣1) =454; (3)由图象得:不等式不等式k 2x+b >1k x 的解集为32<x <1. 【答案点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.26、(1)见解析;(2)A;(3)800人.【答案解析】(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【题目详解】解:(1)∵被调查的学生人数为24÷40%=60人,∴D类别人数为60﹣(24+12+15+3)=6人,则D类别的百分比为×100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A,故答案为:A;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.【答案点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27、(1)证明见解析;(2)m 的值为1或﹣2.【答案解析】(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.【题目详解】(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴无论实数m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于2,∴x=±2 是原方程的根,当x=2 时,2﹣2(m+3)+m+2=1.解得m=1;当x=﹣2 时,2+2(m+3)+m+2=1,解得m=﹣2.综上所述,m 的值为1 或﹣2.【答案点睛】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.。

2023年重庆一中中考数学模拟试卷附参考答案

2023年重庆一中中考数学模拟试卷附参考答案

2023年重庆一中中考数学模拟试题一、选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,请将答题卡上对应选项的代号涂黑.1.−3的相反数是A.3B.13C.−13D.−3 2.下列几何体中,俯视图是三角形的是3.a 2·a 3的运算结果正确的是A.a 2+a 3B.a 6C.a 5D.6a4.下列图象是函数图象的是5.如图,在平面直角坐标系中,已知A(6,4),B(2,3),D(3,2),△ABC 与△DEF 位似,原点O 是位似中心,则E 点的坐标是A.(1,2)B.(1, 32)C.(32,2)D.(32, 32) 6.下列说法正确的是A.代数式x+4π是分式 B.分式xy x−y 中x ,y 都扩大3倍,分式的值不变 C.分式x+1x 2+1是最简分式 D.分式x+1x−1有意义7.一辆汽车的速度(km/h)与时间(min)之间的变化关系如图所示,则下列说法正确的是A.时间是因变量,速度是自变量B.汽车在3~8min 时匀速行驶C.汽车在8~12min 时匀速行驶D.汽车最快的速度是10km/hB. D. B. A.C.D.8.如果m=3√2−1,那么m 的取值范围正确的是A.1<m <2B.2<m <3C.3<m <4D.4<m <59.如图,等腰直角三角形ABC 两腰与圆相切,底边BC 过圆心O 点,⊙O 的半径为1,则线段BD 的长为A.√2−1B.2−√2C.√2+1D.√2+210.已知a >b >0>c >d >e ,对多项式a −b −c −d −e 任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含减法运算,称这种操作为“绝对领域”,例如:a −|b −c −d|−e ,a −|b −c|−|d −e|等,下列相关说法正确的个数是①一定存在一种“绝对领域”操作使得操作后的式子化简的结果为非负数;②一定存在一种“绝对领域”操作使得操作后的式子化简的结果与原式互为相反数; ③进行“绝对领域”操作后的式子化简的结果可能有11种结果.A.0B.1C.2D.3二、填空题(本大题共8个小题,每小题4分,共32分)请将每小题的答案直接填在答.题卡..中对应的横线上. 11.计算:sin30°−(1+π)0=_______.12.已知第一组数据:1,3,5,7的方差为S 12;第二组数据:6,6,6,6的方差为S 22;第三组数据:2023,2022,2021,2020的方差为S 32,则S 12,S 22,S 32的大小关系是_______.(用“<”连接)13.若y=(m+2)x |m|-3是关于x 的反比例函数,则m 的值为_______.7题图(min) 9题图 5题图14.有四张大小和背面完全相同的不透明卡片,正面分别印有“1”、 “2”、“3”、 “6”四个数字,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上数字的积为6的概率是_______.15.如图,正方形ABCD 中,扇形ABC 与扇形BCD 的弧交于点E ,BC=1cm ,则图中阴影部分的面积为_______cm 2.(结果保留π)16.若关于y 的不等式组{y −1≥2y−13−12(y −a)>0无解,且关于x 的分式方程a x+1+1=x+a x−1的解为负数,则所有满足条件的整数a 的值之和是_______.17.如图,在△ABC 中,∠C=90°,AC=BC=5,点E ,F 分别为边AB 与BC 上两点,连接EF ,将△BEF 沿着EF 翻折,使得B 点落在AC 边上的D 处,AD=2,则EO 的值为_______.18.一个各位数字都不为0的四位正整数m ,若千位与个位数字相同,百位与十位数字 相同,则称这个数m 为“双胞蛋数”,将千位与百位数字交换,十位与个位数字交换,得到一个新的“双胞蛋数”m´,并规定F(m)=m−m ´11.则F(8228)=_______;若已知数m为“双胞蛋数”,且千位与百位数字互不相同,F(m)54是一个完全平方数,则满足条件的m 的最小值为_______. F AE B DOC 17题图15题图三、解答题(本大题共8个小题,19、20每小题8分,21-25每小题10分,26题12分,共78分)解答题时每小题须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)y(4x −3y)+(x −2y)2 (2)( a+1a−1+1)÷2aa 2−120.如图,在矩形ABCD 中,点E 是边AD 上一点,连接CE ,且满足CE=BC.(1)用尺规完成以下基本作图:过点B 作CE 的垂线,垂足为F ;(保留作图痕迹,不写作法)(2)在(1)问所作的图形中,求证:AE=EF.证明:∵四边形ABCD 是矩形,∴①,AD=BC ,∠D=90°.∴∠DEC=∠ECB ,CE=AD.∵BF⊥CE,∴②,∴∠D=∠CFB.在△DCE 和△FBC 中:{∠D =∠CFB∠DEC =∠FCB ③∴△DCE≌△FBC(A AS),∴④∴AD-DE=CE −CF即AE=EF21.国家利益高于一切,国家安全人人有责,2023年4月15日是第八个全民国家安全教育日,某校开展了“树牢总体国家安全观,感悟新时代国家安全成就”的国安知识竞赛,现从该校七、八年级中各随机抽取20名学生的竞赛成绩(100分制)进行整理、A BD C E描述和分析(成绩用x表示,共分成四组:不合格0≤x<60,合格60≤x<80,良好80≤x<100,优秀x=100),下面给出了部分信息:七年级抽取的学生竞赛成绩在良好组的数据是:80,84,85,90,95,98八年级的学生竞赛成绩在良好组的数据是:80,82,84,86,86,90,94,98七年级抽取的学生竞赛成绩条形统计图七、八年级抽取的学生竞赛成绩的统计量根据以上信息,解答下列问题:(1)直接写出a,b的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生对“国安知识”掌握较好?请说明理由(写出一条理由即可);(3)该校七、八年级各有800人参加此次竞赛活动,估计参加此次竞赛活动成绩优秀的学生人数是多少?22.周末,小明和小红约着一起去公园跑步锻炼身体.若两人同时从A地出发,匀速跑向距离12000m处的B地,小明的跑步速度是小红跑步速度的1.2倍,那么小明比小红早5分钟到达B地.(1)求小明、小红的跑步速度;(2)若从A地到达B地后,小明以跑步形式继续前进到C地(整个过程不休息).据了解,在他从跑步开始前30分钟内,平均每分钟消耗热量10卡路里,超过30分钟后,每多跑步1分钟,平均每分钟消耗的热量就增加1卡路里,在整个锻炼过程中,小明共消耗2300卡路里的热量,小明从A地到C地锻炼共用多少分钟?23.长嘴壶茶艺表演是一项深受群众喜爱的民俗文化,所用到的长嘴壶更是历史悠久, 源远流长.如图是长嘴壶放置在水平桌面上,l 是水平桌面,测得AD=BC=4AE ,AB=30cm ,CD=22cm ,且CD∥AB,∠DAB=60°,壶嘴EF 与水平面的夹角为α(0°<α<90°).(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)(1)如图,当壶嘴EF 与水平面的夹角为45°时,壶嘴口F 离桌面高度恰好为壶身高度的3倍,求壶嘴EF 的长度;(结果保留根号)(2)若长嘴壶放置在水平桌面上,为使得长嘴壶能够装满茶水,求EF 的取值范围.(结果保留两位小数)24.如图,在正方形ABCD 中,AD=4,动点F ,E 分别从点A ,B 出发,F 点沿着A→D→C 运动,到达C 点停止运动,点E 沿着B→A→D 运动,到达D 点停止运动,连接EC ,BF ,己知F 点的速度v F =1且BF⊥CE,令S △AEC =y 1,S △ABF =y 2,运动时间为t ,请回答下列问题:(1)请直接写出y 1,y 2与t 之间的函数关系式以及对应的t 的取值范围;(2)请写出函数y 1的一条性质;(3)在直角坐标系中画出y 1、y 2的图象;并根据图形直接写出当y 1≥y 2时t 的取值范围. B C DFEl25.如图1,抛物线y=a x 2+b x +c(a≠0)与x 轴相交于点A 、B(点B 在点A 左侧),与y 轴相交于点C(0,3),已知点A 坐标为(1,0),△ABC 面积为6.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,过点P 作直线BC 的垂线,垂足为点E ,过点P 作PF∥y 轴交BC 于点F ,求△PEF 周长的最大值及此时点P 的坐标;(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y ´,平移后的抛物线与原抛物线相交于点D ,点M 为直线BC 上的一点,点N 是平面坐标系内一点,是否存在点M ,N ,使以点B ,D ,M ,N 为顶点的四边形为菱形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.26.如图,在△ABC 中,AB=AC=3,∠BAC=120°,点D 为直线AC 右上方一点,且满足∠ADC=6O °,连接BD.(1)如图1,若CD⊥AC,BD 交AC 于点O ,求CO 的长;图2 图1 A DC B EF(2)如图2,点E 为线段BD 上一点,连接EA ,EC ,且满足∠EAD=60°,试证明AD=CD+2AE ;(3)如图3,在(2)的条件下,以AC ,CD 为边构造平行四边形ACDF ,当AE+AF=2时,直接写出△ADF 的面积.参考答案图1D图2 A B C E D 图3 F D C B A E。

重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)附参考答案

重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)附参考答案

重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.实数-5的相反数是( ) A.5B.-5C.15D.-152.下图是由几个小正方体搭成的几何体,则这个几何体的左视图为( )3.反比例函数的图象经过点A(3,2),下列各点在此反比例函数图象上的是( ) A.(-3,2)B.(3,-2)C.(-6,-1)D.(-1,6)4.如图,△ABC 与△DEF 是位似图形,点O 为位似中心,位似比为2︰3.若△ABC 的面积为8,△DEF 的面积是( ) A.12B.16C.18D.205.将含45°角的直角三角板按如图所示摆放,直角顶点在直线m 上,其中一个锐角顶点在直线n 上.若m ∥n ,∠1=30°,则∠2的度数为( ) A.45°B.60°C.75°D.90°6.估算√6×√15+1的结果( ) A.在7和8之间B.在8和9之间C.在9和10之间D.在10和11之间7.一组图形按下列规律排序,其中第①个图形有2个爱心,第②个图形有5个爱心,ADF COEB 4题图7题图 ①②③④…5题图mn12D.C. B. A.第③个图形有8个爱心,…,按此规律排列下去,则第⑧个图形的爱心的个数是( ) A.26B.25C.24D.238.如图,AB 是⊙0的直径,BC 是⊙0的切线,连接0C 交⊙0于点D ,连接AD ,若∠A=30°,AD=√3,则CD 的长为( ) A.3B.2C.√3D.19.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,∠EAF=45°.若∠FEC=α,则∠BAE 一定等于( ) A.12αB.90°-12αC.45°-12αD.90°-α10.已知x >y >z >0>m >n ,对多项式x -y+z -m -n ,任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后,称这种操作为“绝对操作”.例如:|x -y|+z -m -n ,x -|y+z|-|m -n|,x -y+|z -m -n|等.对多项式进行“绝对操作”后,可进一步对其进行运算.下列说法其中正确的个数是( ) ①存在八种“绝对操作”,使其化简的结果与原多项式相等. ②不存在任何“绝对操作”,使其运算结果与原多项式之和为0. ③所有的“绝对操作”共有7种不同的结果. A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的横线上. 11.计算:2sin60°-(13)0=______.9题图ADBFCE 8题图12.若一个正n 边形的每个内角为135°,则n 的值为______.13.2023年10月26日上午,神州十七号载人飞船载着杨洪波、唐胜杰、江新林3名航天员奔赴“天宫”,从2003年的神舟五号到2023年的神州十七号,20年中国载人航天工程共有20位航天员问鼎苍穹,截止到目前为止,我国航天员在太空的时间已累计达到近21200个小时,其中,数字21200用科学记数法表为______.14.现有四张完全相同的刮刮卡,涂层下面的文字分别是“赢”、“在”、“一”、“诊”.小明从中随机抽取两张并刮开,则这两张刮刮卡上的文字恰好是“一”和“诊”的概率是______.15.如图,菱形ABCD 的边长为6,∠A=60°,BD̂是以点A 为圆心,AB 长为半径的弧,CD ̂是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为______(结果保留根号).16.若整数a 使关于x 的不等式组{x −a >2x −3a <−2无解,且使关于y 的分式方程ay y−5-55−y=-3有非负整数解,则满足条件的a 的值之和为______.17.如图,在等腰直角△ABC 中,AC=4,∠C=90°,M 为BC 边上任意一点,连接AM , 将△ACM 沿AM 翻折得到△AC ´M ,连接BC ´,并延长交AC 于点N ,若点N 是AC 的中点,则CM 的长为______.18.一个四位正整数的各个数位上的数字互不相等且均不为0,若满足千位数字与个位数字之和等于百位数字与十位数字之和,则称这个四位数M 为“博雅数”.将“博雅数”M=abcd̅̅̅̅̅̅的千位数字与十位数字对调,百位数字与个位数字对调得到一个新的17题图BANCM C ´15题图C四位数N.若N 能被9整除,则a+d=______.在此条件下,若F(M)=M+N 13为整数,则满足条件的M 的最大值为______.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.计算.(1)(2a -1)(2a+1)-a(4a -1);(2)(1-1x+1)÷xx 2+2x+1.20.学习了矩形的判定后,小蒋对等腰三角形底边上的高和底角顶点到顶角外角平分线的距离的数量关系进行了拓展性研究.请根据他的思路完成以下作图与填空. 用直尺和圆规,作等腰三角形ABC 的外角∠CAM 的角平分线AN ,再过点C 作CH 上AN 于点H.(只保留作图痕迹)已知:如图,三角形ABC 中AC=AB ,AD 是底边BC 上的高,AN 平分∠CAM ,CH ⊥AN 于点H.求证:AD=CH. 证明:∵AN 平分CAM ∴∠CAN=12∠CAM∵AC=AB ,AD 是底边BC 上的高 ∴①=12∠CMB ,∠ADC=90°又∵∠BAC+∠CAM=180° ∴∠DAH=12(∠CAB+∠CAM)=②又∵CH ⊥AN 于点H ∴③=90°∴四边形ADCH 为矩形 ∴AD=CH小蒋进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:等腰三角形底边上的高等于④.21.某公司计划购入语音识别输入软件,提高办公效率.市面上有A 、B 两款语音识别输入软件,该公司准备择优购买.为了解两款软件的性能,测试员小林随机选取了20段短文,其中每段短文都含10个文字.他用标准普通话以相同的语速朗读每段短文来测试这两款软件,并将语音识别结果整理、描述和分析,下面给出了部分信息. A 款软件每段短文中识别正确的字数记录为:5,5,6,6,6,6,6,6,6,7,9,9,9,9,9,10,10,10,10,10.A 、B 两款软件每段短文中识别正确的字数的统计表根据以上信息,解答下列问题.(1)上述表中的a=______,b=______,c=______.B 款软件每段短文中识别正确的字数折线统计图ABCM D(2)若你是测试员小林,根据上述数据,你会向公司推荐哪款软件?请说明理由(写出一条理由即可).(3)若会议记录员用A、B两款软件各识别了800段短文,每段短文有10个文字,请估计两款软件一字不差....地识别正确的短文共有多少段?22.某学校食堂不定期采购某调味加工厂生产的“0添加”有机生态酱油和生态食醋两种食材.(1)该学校花费1720元一次性购买了酱油、食醋共100瓶,已知酱油和食醋的单价分别是18元、16元,求学校购买了酱油和食醋各多少瓶?(2)由于学校食材的消耗量下降和加工厂调味品的价格波动,现该学校分别花费900元、600元一次性购买酱油和食醋两种调味品,已知购买酱油的数量是食醋数量的1.25倍,每瓶食醋比每瓶酱油的价格少3元,求学校购买食醋多少瓶?23.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点D从点B出发,沿着折线B→C→A(含端点)运动,速度为每秒1个单位长度,到达A点停止运动,设点D的运动时间为t,点D到AB的距离DG为y1,请解答下列问题.(1)直接写出y1关于t的函数关系式,并写出t的取值范围.(t>0),在直角坐标系中分别画出y1,y2的图象,并写出函数y1的一(2)若函数y2=15t条性质.(3)根据函数图象,直接估计当y1≥y2时t的取值范围.(保留1位小数,误差不超过0.2)C24.小明和小红相约周末游览合川钓鱼城,如图,A ,B ,C ,D ,E 为同一平面内的五个景点.已知景点E 位于景点A 的东南方向400√6米处,景点D 位于景点A 的北偏东60°方向1500米处,景点C 位于景点B 的北偏东30°方向,若景点A ,B 与景点C ,D 都位于东西方向,且景点C ,B ,E 在同一直线上. (1)求景点A 与景点B 之间的距离.(结果保留根号)(2)小明从景点A 出发,从A 到D 到C ,小红从景点E 出发,从E 到B 到C ,两人在各景点处停留的时间忽略不计.已知两人同时出发且速度相同,请通过计算说明谁先到达景点C.(参考数据:√3≈1.73)25.如图,抛物线y=a x ²+5a x +b 经过点D(-1,-5),且交x 轴于A(-6,0),B 两点(点A 在点B 的左侧),交y 轴于点C. (1)求抛物线的解析式.(2)如图1,过点D 作DM ⊥x 轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE ⊥AD ,PF ⊥DM ,求√2PE+PF 的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA 方向平移√52个单位长度,在平移后的抛物线上存在点G ,使得∠CAG=45°,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程.EABCD30°60°45°26.如图,在△ABC 中,∠ACB=90°,∠A=60°,点D 是边AB 上一动点,连接CD ,将CD 绕点D 逆时针旋转α度得到线段DE.(1)如图1所示,α=90°,连接CE ,作EF ⊥BC 交BC 于F ,若CD=4,∠ACD=∠BDE ,求EF 的长.(2)如图2,α=60°,G 为AB 中点,连接GE ,延长GE 交BC 于F ,问:DG ,EG ,EF 之间的关系.(3)如图3,在(2)小问的基础上,AC=4,在线段CG 上取一点P ,使得3CP=GP ,Q 为CB 上一动点,将△CPQ 沿PQ 翻折得到△C ´PQ ,点D ,P 在运动过程中,当C ´E 最短时,请直接写出△ABE 的面积.重庆市十一中2024年中考数学模拟试卷(九年级下开学考试)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右图2ABCDF G E图3A BCF G D EQ C ´ P图1A B CEFD图2侧正确答案所对应的方框涂黑. 1.实数-5的相反数是( ) A.5B.-5C.15D.-151.解:互为相反数的数之和为0,故选A 。

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。

2023年初中数学中考模拟试卷(含解析)

2023年初中数学中考模拟试卷(含解析)

2023年初中数学中考模拟试卷(含解析)一、单选题1.从3名男生和2名女生共5名候选人中随机选取两人参加演讲比赛,则两人恰好是一男一女的概率是()A .25B .12C .35D .452.计算(﹣3)﹣9的结果等于()A .6B .﹣12C .12D .﹣63.下列说法正确的是()A .若|a |=a ,则a >0B .若sinA =,则锐角∠A =60°C .矩形的对角线互相垂直平分D .菱形的面积等于对角线的乘积4.改革开放四十年以来,中国每天都在发生新的变化.目前,我省重大新兴产业基地、工程和专项在建及储备项目共1656个,总投资9364亿元.数据9364亿用科学记数法可表示为()A .9364×108B .9364×109C .9.364×1011D .9.364×10125.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:x…2-1-012…2y ax bx c=++…tm 2-2-n…且当12x =-时,其对应的函数值0y >.有下列结论:①0abc >;②对称轴为12x =-;③2-和3是关于x 的方程21ax bx c ++=的两个根;④2003m n <+<其中,正确结论的个数是()A .0B .1C .2D .36.将△ABC 平移得到△A B C ''',若80A AC '∠=︒,则A C C ''∠的度数是()A .10°B .80°C .100°D .160°7.如图,△ABC 是等腰直角三角形,AC=BC ,AB=4,D 为AB 上的动点,DP ⊥AB 交折线A ﹣C ﹣B 于点P ,设AD=x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是()A.B.C.D .8.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE ,分别交AC 、AD 于点F 、G ,连接OG ,则下列结论:①OG =12AB ;②图中与△EGD 全等的三角形共有5个;③以点A 、B 、D 、E 为项点的四边形是菱形;④S 四边形ODGF =S △ABF .其中正确的结论是()A .①③B .①③④C .①②③D .①②④9.如图,在⊙O 中,将劣弧BC 沿弦BC 翻折恰好经过圆心O ,A 是劣弧BC 上一点,分别延长CA ,BA 交圆O 于E ,D 两点,连接BE ,CD.若tan ECB ∠=ABE 的面积为1S ,ADC △的面积为2S .则12S S =()A .25B .425C .37D .94910.如图,正方形ABCD 中,4=AD ,点E 是对角线AC 上一点,连接DE ,过点E 作EF ED ⊥,交AB 于点F ,连接DF ,交AC 于点G ,将EFG ∆沿EF 翻折,得到EFM △,连接DM ,交EF 于点N ,若点F 是AB 的中点,则EMN 的周长是()A .2B .2C D 二、填空题11.1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,它的运行轨道距地球最近点439000米.将439000用科学记数法表示应为___.12.不等式组2213x x -<⎧⎨+<⎩的解集为_______________.13.如图,有一个正三角形图片高为1米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,工人将图片沿数轴正方向滚动一周,点A 恰好与数轴上点A '重合,则点A '对应的实数是______.14.如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是__________15.如图,在Rt ABC △中,90C ∠=︒,6CA =,8CB =,点P 为此三角形内部(包含三角形的边)的一点且P 到三角形三边的距离和为7,则CP 的最小值为______.三、解答题16.计算:6tan30°+(3.14-π)012.17.计算:2133|2sin 602-︒⎛⎫-++ ⎪⎝⎭18.一个不透明的袋子中装有三个大小、质地都相同的小球,球面上分别标有数字123-、、,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的小球中任意摸出一个小球,记下数字作为A 点的纵坐标.(1)“A 点坐标为()0,0”的事件是事件(填“随机”或“不可能”或“必然”);(2)用列表法或画树状图法列出所有可能出现的结果,并求点A 落在第四象限的概率.19.如图,在□ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分∠ADC 交BC 于点F .求证:(1)ABE CDF ≌;(2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结论.20.如图,AD 是ABC 的角平分线.(1)作线段AD 的垂直平分线EF ,分别交AB 、AC 于点E 、F ;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE 、DF ,四边形AEDF 是________形.(直接写出答案)21.如图,在Rt ABC △中,90A ∠=︒,4AB =,3AC =,D ,E 分别是AB ,BC 边上的动点,以BD 为直径的O 交BC 于点F .(1)当AD DF =时,求证:CAD CFD ≅ ;(2)当CED △是等腰三角形且DEB 是直角三角形时,求AD 的长.22.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,P 为BA 延长线上一点,连接CA 、CD 、AD ,且∠PCA =∠ADC ,CE ⊥AB 于E ,并延长交AD 于F .(1)求证:PC 为⊙O 的切线;(2)求证:2PC PA PB =⋅;(3)若3tan 4ADC ∠=,36AF AD ⋅=,求PA 的长.23.已知在扇形AOB 中,点C 、D 是 AB 上的两点,且 2,130,10AC AO C B OA D =∠=︒=.(1)如图1,当OD OA ⊥时,求弦CD 的长;(2)如图2,联结AD,交半径OC于点E,当OD//AC时,求AEED的值;内接正多边形的边?如果能,(3)当四边形BOCD是梯形时,试判断线段AC能否成为O请求出这个正多边形的边数;如果不能,请说明理由.参考答案与解析1.C【分析】画出树状图表示出所有可能的情况,再找出符合题意的情况,最后根据概率公式计算即可.【详解】解:根据题意可画树状图如下:共有20种等可能的情况,其中两人恰好是一男一女的有12种,则两人恰好是一男一女的概率是123 205=;故选:C.【点睛】本题考查用列表或画树状图法求概率.正确的列出表格或画出树状图是解题关键.2.B【分析】原式利用减法法则变形,计算即可得到结果.【详解】解:原式=﹣3+(﹣9)=﹣12,故选B.【点睛】此题考查有理数的减法,解题关键在于掌握运算法则.3.B【分析】A.根据绝对值的性质判断即可;B.根据特殊角的三角函数值判断即可;C.根据矩形的性质判断即可;D.根据菱形的面积的计算方法判定即可.【详解】A、当|a|=a时,a≥0,故选项A错误,不符合题意;B、∵sinA2=,∴锐角∠A=60°,故选项B正确,符合题意;C、矩形的对角线相等且互相平分,但不一定垂直,故选项C错误,不符合题意;D、菱形的面积等于对角线的乘积的一半,故选项D错误,不符合题意.故选:B .【点睛】本题主要考查了绝对值的性质,特殊角的三角函数值,矩形的性质,菱形面积的计算方法.熟练掌握以上知识是解题的关键.4.C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将9364亿用科学记数法表示为:9.364×1011.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.C【分析】①根据表中数据判断,,a b c 的正负即可;②根据(0,2)-,(1,2)-,可得对称轴为直线12x =-;③根据对称轴为直线12x =-,再根据二次函数的对称性得出结论;④把1x =-和2x =代入抛物线解析式求出m n +的值,再根据a 的取值范围得出结论.【详解】解:①当0x =时,2c =-,当1x =时,22a b +-=-,0a b ∴+=,22y ax ax ∴=--,0abc ∴>,故①正确;②根据(0,2)-,(1,2)-,可得对称轴为直线12x =-;故②错误;③ 对称轴为直线12x =-2x ∴=-时,y t =则3x =时,,y t =2∴-和3是关于x 的方程2ax bx c t ++=的两个根;故③正确④2m a a =+-,422n a a =--,22m n a ∴==-,44m n a ∴+=-,当12x =-时,其对应的函数值0y >∴83a >∴203m n +>,故④错误;故选:C .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.6.B【分析】利用平移的性质证明四边形''AA C C 为平行四边形,根据对角相等即可解答.【详解】解:由题意作下图:由平移的性质知,//'',''AC A C AC A C =,∴四边形''AA C C 为平行四边形,''A AC A C C '∴∠=∠,80A AC '∠=︒ ,80A C C ''∴∠=︒,故选:B .【点睛】本题考查了平移的性质、平行四边形的判定及性质,解题的关键是掌握平移的性质.7.B【分析】根据题意可以列出y 与x 的函数解析式,从而可以确定y 与x 的函数图象,从而可以得到正确的选项,本题得以解决.【详解】由题意可得,当0≤x≤2时,y=2x x ⋅=22x ,当2≤x≤4时,y=222(4)4112(2)22222x x x x x x x --+==-+=--+,∴当0≤x≤2时,函数图象为y=212x 的右半部分,当2≤x≤4时,函数图象为y=21(2)22x --+的右半部分,故选B .【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,可以列出相应的函数解析式、确定函数的图象.8.B【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DE AB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴= 在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确;∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确.∵OB=OD ,AG=DG ,∴OG 是△ABD 的中位线,∴OG ∥AB ,OG=12AB ,∴△GOD ∽△ABD ,△ABF ∽△OGF ,∴△GOD 的面积=14△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF:OF=2:1,∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△AOG 的面积=△BOG 的面积,∴S 四边形ODGF =S △ABF ;④正确;故答案为:B.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.9.B【分析】分别作△ABC 、点O 关于线段BC 的对称,交 BC于点F 、H ,OH 与BC 交于点M ,连接OH 、OB ,过点B 作BG ⊥CE 于点G ,根据轴对称的性质可得 BC的度数为120°,则有∠BFC =∠BAC =120°,进而可得△ABE 和△ADC 都为等边三角形,然后根据三角函数可得25AE AC =,最后根据相似三角形的性质可求解.【详解】解:分别作△ABC 、点O 关于线段BC 的对称,交 BC于点F 、H ,OH 与BC 交于点M ,连接OH 、OB ,过点B 作BG ⊥CE 于点G ,如图所示:∵劣弧BC 沿弦BC 翻折恰好经过圆心O ,∴由折叠的性质可得1,,2OM MH OH OH BC BAC BFC ==⊥∠=∠,∴12OM OB =, BH CH =,∴30OBC ∠=︒,∴60BOH ∠=︒,∴ BC的度数为120°,∴ BDC的度数为240°,∠D =∠E =60°,∴∠BFC =∠BAC =120°,∴∠EAB =∠DAC =60°,∴△ABE 和△ADC 都为等边三角形,且ABE ACD ∽△△,∵BG ⊥CE ,∴,30EG AG EBG ABG =∠=∠=︒,∴3tan EG BG EG EBG==∠,∵3tan 6ECB ∠=,设3,6BG x CG x ==,则EG AG x ==,∴2,5AE x AC x ==,∴25AE AC =,∴212425S AE S AC ⎛⎫== ⎪⎝⎭;故选B .【点睛】本题主要考查折叠的性质、圆的基本性质、相似三角形的性质与判定及三角函数,熟练掌握折叠的性质、圆的基本性质、相似三角形的性质与判定及三角函数是解题的关键.10.C【分析】如图:过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE .先通过等腰三角形和全等三角形的判定和性质得到FQ=BQ=PE=1;再说明△DEF 是等腰直角三角形,然后再利用勾股定理计算得到;如图2,由DC//AB 可得△DGC ∽△FGA ,列比例式可求FG 和CG 的长,从而得EG 的长;然后再根据AGHF 是等腰直角三角形,求得GH 和FH 的长;利用DE ∥GM 证明△DEN ∽△MNH ,则DE EN MH NH 可得3,然后计算出△EMN 各边的长,最后求周长即可.【详解】解:如图1:过E 作PQ ⊥DC ,交DC 于P ,交AB 于Q ,连接BE .∵DC ∥AB∴PQ ⊥AB ,∴四边形ABCD 是正方形∴∠ACD=450∴△PEC 是等腰直角三角形∴PE=PC.设PC=x ,则PE=x ,PD=4-x ,EQ=4-x.∴PD=EQ ,∴∠DPE=∠EQF=90°,∠PED=∠EFQ.∴△DPE ≌△EQF∴DE=EF∵DE ⊥EF∴△DEF 是等腰直角三角形易证△DEC ≌△BEC∴DE=BE∴EF=BE∵EQ ⊥FB∴FQ=BQ=12BF∵AB=4,F 是AB 的中点∴BF=2∴FQ=BQ=PE=1∴CE=2,PD=4-1=3Rt △DAF 中,224225DF =+=∴DE=EF=10如图2:∵DC//AB.∴△DGC ∽△FGA∴422CGDCDG AG AF FG ====∴AG=2AG,DG=2FG ∴15533FG =⨯∵224442AC =+=∴22233CG =⨯∴8252233EG ==连接GM 、GN ,交EF 于H.∵∠GFE=45°∴△GHF 是等腰直角三角形∴2510332GH FH ==由折叠得:GM ⊥EF ,103∴∠EHM=∠DEF=90°∴DE ∥HM∴△DEN ∽△MNH ∴DE EN MH NH=3EN NH==∴EN=3NH∵EN+NH=EH=3∴EN=3∴NH=EH-EN=326-=在Rt △GNH 中,6GN ===由折叠得:MN=GN ,EM=EG∴△EMN 的周长为2632EN MN EM ++=+=.故选:C .【点睛】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数等知识,灵活应用所学知识并求出PE 的长是解答本题的关键.11.4.39×105【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于439000有6位,所以可以确定n =6−1=5.【详解】解:439000=4.39×105.故答案为:4.39×105【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.12.﹣2<x <1【详解】解:2{213x x -<+<①②,解①得x >﹣2,解②得x <1,所以不等式组的解集为﹣2<x <1.故答案为﹣2<x <1.13.【详解】考点:等边三角形的性质;实数与数轴.分析:首先理解题意:求点A′对应的实数是正三角形的周长,已知此正三角形的高,利用三角函数的性质,求得边长即可.解:∵△ABC 是正三角形,∴∠B=60°,∵CD 是高,∴∠CDB=90°,∴sin ∠B=sin60°=CD BC =2,∵CD=1,∴BC=3,∴△ABC 的周长为∴点A′对应的实数是故答案为14.2.4【详解】过P 点作PE ⊥AC ,PF ⊥BD ,∵矩形ABCD ,∴AD ⊥CD ,∴△PEA ∽△CDA ,∴PE PA CD CA =,∵,∴35PE PA =…①,同理:△PFD ∽△BAD ,∴PF PD AB BD =,∴35PF PD =…②,∴①+②得:43555PE PF PA PD AD ++===,∴PE+PF=125,即点P 到矩形的两条对角线AC 和BD 的距离之和是:125.15【分析】以点C 为原点,CB 为x 轴正半轴,CA 为y 轴正半轴建立平面直角坐标系,设P 为(),x y 根据已知和等面积法得到x 、y 的关系式,则可知点P 在直线211y x =-+上运动,当CP 垂直该直线时,CP 最小,求出CP 所在的直线方程,联立方程组求点P 坐标,再利用两点间距离公式即可求解.【详解】如图所示,以点C 为原点,CB 为x 轴正半轴,CA 为y 轴正半轴建立平面直角坐标系,设P 为(),x y ,过P 作PE x ⊥轴,PF y ⊥轴,PD AB ⊥,∴PE y =,PF x =,连接PA ,PC ,PB ,∴ABC ACP BCP ABP S S S S =++△△△△,∴11116868102222x y PD ⨯⨯=⨯⨯+⨯⨯+⨯⨯,解得:24345x y PD --=,∵P 到三角形ABC 三边的距离和为7,∴7PE PF PD ++=,即:243475x y x y --++=,整理得:211y x =-+,∴点P 在直线211y x =-+上运动,设直线211y x =-+为l ,∴当1CP l ⊥交l 于点1P 时,1CP最小,∴11CP l k k ⋅=-,∴112CP k =,又∵直线1CP 过原点()0,0C ,∴直线1CP 为:12y x =,联立12211y x y x ⎧=⎪⎨⎪=-+⎩,解得:225115x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点1P 为2211,55⎛⎫ ⎪⎝⎭,∴最小值CP 为1CP ,=【点睛】本题是将几何图形问题转化为平面直角坐标系中的问题,涉及三角形的等面积法、求直线方程、直线方程的动点和最值问题、解二元一次方程组、两点间的距离公式等知识,解答的关键是找到相关知识的关联点,利用代数知识解决几何问题,是有一定难度的填空压轴题.16.1【详解】试题分析:首先根据三角函数、0次幂和二次根式的计算法则求出各式的值,然后进行求和得出答案.试题解析:原式=6117.7【分析】先根据负整数指数幂、绝对值的意义、特殊角的三角函数值逐项化简,再合并同类项或同类二次根式即可.【详解】213|2sin 602-︒⎛⎫-++ ⎪⎝⎭=432=++=7=7.【点睛】本题考查了实数的混合运算,熟练掌握负整数指数幂的意义及特殊角的三角函数值是解答本题的关键.18.(1)不可能(2)13【分析】(1)首先根据题意画树状图,然后根据点A 的坐标即可求解;(2)从表格中找到点A 落在第四象限的结果数,利用概率公式计算可得.【详解】(1)解:不可能.画树状图点A 的坐标为()()()()()()121321233132----,,,,,,,,,,,∴“A 点坐标为()0,0”的事件是不可能事件.(2)解:画树状图点A 的坐标为()()()()()()121321233132----,,,,,,,,,,,∵由树状图知共有6种等可能的结果,点A 恰好落在第四象限的情况有2种,即()()1,2,3,2--∴P (点A 落在第四象限)=2163=.【点睛】本题考查了列表法或树状图法求概率的知识.注意列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)见解析;(2)菱形,理由见解析.【分析】(1)由平行四边形ABCD 可得出的条件有:①AB=CD ,②∠A=∠C ,③∠ABC=∠CDA ;已知BE 、CD 分别是等角∠ABD 、∠CDA 的平分线,易证得∠ABE=∠CDF ④;联立①②④,即可由ASA 判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF ,那么DE 和BF 平行且相等,由此可判定四边形BEDF 是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD 的形状.【详解】(1)∵四边形ABCD 是平行四边,∴A C AB CD ABC ADC∠=∠=∠=∠,,∵BE 平分ABC ∠,DF 平分ADC ∠,∴ABE CDF∠=∠∴()ABE CDF ASA ≌(2)由ABE CDF ≌,得AE CF=在平行四边形ABCD 中,AD BC AD BC=,∥∴DE BF DE BF= ,∴四边形EBFD 是平行四边形若BD EF ⊥,则四边形EBFD 是菱形20.(1)见解析;(2)菱形.【分析】(1)线段的垂直平分线过线段的中点,且垂直于该线段.(2)根据AD 是ABC 的角平分线,且EF 是AD 的垂直平分线,可知四边形AEDF 满足菱形的条件.【详解】(1)如图,直线EF 即为所求作的垂直平分线.(2)根据AD 是ABC 的角平分线,且EF 是AD 的垂直平分线,可知四边形AEDF 的对角线互相垂直,因此为菱形.【点睛】本题考查垂直平分线的概念和作法,以及菱形的判定定理.21.(1)证明见解析;(2)32或37【分析】(1)根据BD 是圆的直径,可以得到∠BFD =90°,即∠DFC =90°,然后利用“HL ”证明△CAD ≌△CFD 即可;(2)因为三角形CED 为等腰三角形,故每一条边都可能是底边,可以分三类讨论,由于三角形DEB 是直角三角形,所以D 和F 都可以为直角的顶点,需要分两类讨论;当∠EDB =90°时,∠DEB <90°,∠CED 是钝角,所以此时只能构造EC =ED 的等腰三角形,故取D 点使CD 平分∠ACB ,作DE ⊥AB 交BC 于E ,可以证明DE =DC ,且DE ∥DC ,得到△BDE ∽△BAC 即可求解;当∠AED =90°时,若三角形CED 为等腰三角形,则∠ECD =∠EDC =45°,即EC =DE ,利用三角函数或相似即可求出AD .【详解】解:(1)∵BD 是圆的直径,∴∠DFB =90°,∴∠DFC =90°,在Rt △CAD 和Rt △FCD 中,CD CD AD FD=⎧⎨=⎩,∴△CAD ≌△CFD (HL );(2)∵三角形DEB 是直角三角形,且∠B <90°,∴直角顶点只能是D 点和E 点,若∠EDB =90°,如图在AB 上取D 点使CD 平分∠ACB ,作DE ⊥AB 交BC 于E ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,∵∠CAB =∠EDB =90°,∴AC ∥DE ,∴∠ACD =∠CDE ,∴∠ECD =∠CDE ,∴CE =DE ,此时三角形ECD 为E 为顶角顶点的等腰三角形,三角形DEB 是E 为直角顶点的直角三角形,设CE =DE =x ,在直角三角形ABC 中5BC =,∴BE =5-x ,∵DE ∥AC ,∴△BDE ∽△BAC ,∴DEBEAC BC =,∴535x x-=,解得158x =,∴158CE =,∵DE ∥AC ,∴ADCEAB BC =,∴15845AD =,∴32AD =;若∠DEB =90°,如图所示,∠CED =90°,∵△CED 为等腰三角形,∴∠ECD =∠EDC =45°,即EC =DC ,设EC =DC =y ,∵3tan =4ACB AB =∠,∴3tan =4DEB BE =∠,∴43BE y =,∵5BC CE BE =+=,∴453y y +=∴157y =,∴157CE CD ==,∵3sin 5AC B BC ==∠,∴15257==3sin 75DE BD B =∠,∴37AD AB BD =-=∴AD 的长为32或37.【点睛】本题主要考查了全等三角形的性质与判定,相似三角形的性质与判定,三角函数,解题的关键在于能够利用数形结合的思想进行分类讨论求解.22.(1)证明见解析;(2)证明见解析;(3)907.【分析】(1)如图(见解析),先根据圆周角定理可得12AOC ADC ∠=∠,再根据等腰三角形的性质、三角形的内角和定理可得1902A A C OC O =︒-∠∠,然后根据角的和差可得90OCP ∠=︒,最后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得PBC ADC ∠=∠,从而可得PBC PCA ∠=∠,再根据相似三角形的判定与性质即可得证;(3)先根据圆周角定理、直角三角形的性质可得ACF ADC ∠=∠,再根据相似三角形的判定与性质可得AF AC AC AD=,从而可得6AC =,又根据圆周角定理、正切三角函数可得8,10BC AB ==,然后设PA x =,由题(2)的结论可得PC =形的性质可得PC BC PA AC=,由此即可得出答案.【详解】(1)如图,连接OC由圆周角定理得:2AOC ADC ∠=∠,即12AOC ADC ∠=∠OA OC= 1)909(2180102AOC OCA OAC AD AO C C ∠=︒-∠=︒-∴∠=∠=︒-∠PCA ADC∠=∠ 9090OCP OCA PCA ADC ADC ∴∠=∠+∠=∠+∠=︒-︒,即OC PC⊥又OC 是⊙O 的半径∴PC 是⊙O 的切线;(2)如图,连接BC由圆周角定理得:PBC ADC∠=∠PCA ADC∠=∠ PBC PCA∴∠=∠在BCP 和CAP 中,PBC PCAP P∠=∠⎧⎨∠=∠⎩BCP CAP∴~ PC PBPA PC∴=即2PC PA PB =⋅;(3)CE AB ⊥ ,即90AEC ∠=︒90ACF BAC ∴∠+∠=︒由圆周角定理得:90BCA ∠=︒90ABC BAC ∴∠+∠=︒ACF ABC∴∠=∠又ABC ADC∠=∠ ACF ADC∴∠=∠在ACF △和ADC △中,ACF ADCCAF DAC∠=∠⎧⎨∠=∠⎩ACF ADC∴~ AFACAC AD ∴=,即2AC AF AD=⋅36AF AD ⋅=6AC ∴=或6AC =-(不符题意,舍去),3tan 4AB A C DC C AD ∠∠==∠ tan tan AC ADC ABC BC ∠=∠=∴,即634BC =解得8BC =10AB ∴=,152OA OC AB ===设PA x =,则10PB PA AB x =+=+由(2)可知,2(10)PC PA PB x x =⋅=+,即PC 又由(2)可知,BCP CAP~ PC BCPA AC ∴=86=解得907x =或0x =经检验,907x =是所列方程的根,0x =是所列方程的增根故PA 的长为907.【点睛】本题考查了圆周角定理、圆的切线的判定与性质、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(3),利用圆周角定理找出两个相似三角形,从而求出AC 的长是解题关键.23.(1)10CD =(2)AE DE =(3)线段AC 能成为O 的内接正多边形的边,边数为18【分析】(1)取 CD 的中点E ,连接OE ,根据圆的有关性质可得COE EOD AOC α∠=∠=∠=,然后由余角的性质及等边三角形的判定与性质可得答案;(2)由平行线的性质及三角形内角和定理可得108AOD ∠=︒.然后根据相似三角形的判定与性质可得答案;(3)根据圆内接多边形的性质及三角形的内角和定理分两种情况进行解答:①//BD OC ;②//CD OB .【详解】(1)解:设AOC α∠=,取 CD的中点E ,连接OE ,∴ 22CD CE DE ==,又∵ 2CD AC =,∴ CE A DE C ==,∴COE EOD AOC α∠=∠=∠=,∵OD OA ⊥,∴90AOD ∠=︒,∴90AOC COE EOD ∠+∠+∠=︒,∴90ααα++=︒,∴30α=︒,∴60COD ∠=︒,∵OC OD =,∴COD △是等边三角形,∴CD OC OA ==,又10OA =,∴10CD =;(2)解:∵OD AC ∥,∴2OCA COD α∠=∠=,∵OA OC =,∴2OCA OAC α∠=∠=,在AOC 中,∵180OAC OCA AOC ∠+∠+∠=︒,∴22180ααα++=︒,∴36α=︒,∴36,72AOC COD ∠=︒∠=︒,∴108AOD ∠=︒,在AOD △中,∵OA OD =,∴OAD ODA ∠=∠,∵180OAD ODA AOD ∠+∠+∠=︒,∴36OAD ODA ∠=∠=︒,∴363672OED OAD AOC ∠=∠+∠=︒+︒=︒,∴OED COD ∠=∠,∴10ED OD ==,∵,OAE OAD AOE ADO ∠=∠∠=∠,∴AOE ADO △∽△,∴OA AE AD OA=,设AE x =,则10AD x =+,∴101010x x =+.解之得5x =,∴AE DE ==(3)解:当四边形BOCD 是梯形时,①∥BD OC ,∴2ODB COD α∠=∠=,∵OB OD =,∴2OBD ODB α∠=∠=,∵130AOB AOC COD DOB ∠=∠+∠+∠=︒,∴1303BOD α∠︒=-,在BOD 中,∵180OBD ODB BOD ∠+∠+∠=︒,∴221303180ααα++︒-=︒,∴50α=︒.当50α=︒时,13030BOD α∠=︒-<,不合题意,舍去.②CD OB ∥,∴1303ODC BOD α∠=∠=︒-,∵OC OD =,∴1303OCD ODC α∠=∠=︒-,在COD △中,∵180OCD ODC COD ∠+∠+∠=︒,∴130313032180ααα-+︒-+=︒,∴20α=︒,∴3601820n =︒︒=.∴线段AC 能成为O 的内接正多边形的边,边数为18.【点睛】本题考查的是圆的弧、弦、角之间的关系、三角形的内角和定理、圆内接多边形的性质等知识,正确作出辅助线是解决此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年湖南省怀化市中考数学试卷一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4.00分)﹣2018的绝对值是()A.2018 B.﹣2018 C.D.±20182.(4.00分)如图,直线a∥b,∠1=60°,则∠2=()A.30°B.60°C.45°D.120°3.(4.00分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途径城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示为()A.13×103 B.1.3×103C.13×104D.1.3×1044.(4.00分)下列几何体中,其主视图为三角形的是()A.B.C.D.5.(4.00分)下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生6.(4.00分)使有意义的x的取值范围是()A.x≤3 B.x<3 C.x≥3 D.x>37.(4.00分)二元一次方程组的解是()A.B.C.D.8.(4.00分)下列命题是真命题的是()A.两直线平行,同位角相等B.相似三角形的面积比等于相似比C.菱形的对角线相等D.相等的两个角是对顶角9.(4.00分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.=C.=D.=10.(4.00分)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上) 11.(4.00分)因式分解:ab+ac=.12.(4.00分)计算:a2•a3=.13.(4.00分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是.14.(4.00分)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.15.(4.00分)一个多边形的每一个外角都是36°,则这个多边形的边数是.16.(4.00分)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,…a n…(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即=q(常数),那么这一列数a1,a2,a3…a n,…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3.3233,…,3100的和,解:令S=1+3+32+33+…+3100+3101则3S=3+32+33+…+3100因此,3S﹣S=3100﹣1,所以S=即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52018的和为三、解答题(本大题共8小题,共86分)17.(8.00分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣118.(8.00分)解不等式组,并把它的解集在数轴上表示出来.19.(10.00分)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.20.(10.00分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.21.(12.00分)为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?22.(12.00分)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留);(2)求证:CD是⊙O的切线.23.(12.00分)已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.24.(14.00分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2018年湖南省怀化市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4.00分)﹣2018的绝对值是()A.2018 B.﹣2018 C.D.±2018【分析】直接利用绝对值的定义进而分析得出答案.【解答】解:﹣2018的绝对值是:2018.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4.00分)如图,直线a∥b,∠1=60°,则∠2=()A.30°B.60°C.45°D.120°【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故选:B.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.3.(4.00分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途径城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示为()A.13×103 B.1.3×103C.13×104D.1.3×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将13000用科学记数法表示为1.3×104.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4.00分)下列几何体中,其主视图为三角形的是()A.B.C.D.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选:D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.5.(4.00分)下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生【分析】根据调查的方式、中位数、可能性和样本知识进行判断即可.【解答】解:A、调查舞水河的水质情况,采用抽样调查的方式,正确;B、数据2.0,﹣2,1,3的中位数是1,错误;C、可能性是99%的事件在一次实验中不一定会发生,错误;D、从2000名学生中随机抽取100名学生进行调查,样本容量为2000,错误;故选:A.【点评】此题考查概率的意义,关键是根据调查的方式、中位数、可能性和样本知识解答.6.(4.00分)使有意义的x的取值范围是()A.x≤3 B.x<3 C.x≥3 D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣3≥0,解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.7.(4.00分)二元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选:B.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(4.00分)下列命题是真命题的是()A.两直线平行,同位角相等B.相似三角形的面积比等于相似比C.菱形的对角线相等D.相等的两个角是对顶角【分析】根据平行线的性质、相似三角形的性质、菱形的性质、对顶角的概念判断即可.【解答】解:两直线平行,同位角相等,A是真命题;相似三角形的面积比等于相似比的平方,B是假命题;菱形的对角线互相垂直,不一定相等,C是假命题;相等的两个角不一定是对顶角,D是假命题;故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(4.00分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,”建立方程即可得出结论.【解答】解:江水的流速为v km/h,则以最大航速沿江顺流航行的速度为(30+v)km/h,以最大航速逆流航行的速度为(30﹣v)km/h,根据题意得,,故选:C.【点评】此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.10.(4.00分)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.【分析】根据当k>0、当k<0时,y=kx﹣3和y=(k≠0)经过的象限,二者一致的即为正确答案.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上) 11.(4.00分)因式分解:ab+ac=a(b+c).【分析】直接找出公因式进而提取得出答案.【解答】解:ab+ac=a(b+c).故答案为:a(b+c).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4.00分)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.13.(4.00分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是.【分析】利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.【解答】解:摸出的小球标号为奇数的概率是:,故答案为:.【点评】此题主要考查了概率公式,关键是掌握概率的计算方法.14.(4.00分)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是1.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.15.(4.00分)一个多边形的每一个外角都是36°,则这个多边形的边数是10.【分析】多边形的外角和是固定的360°,依此可以求出多边形的边数.【解答】解:∵一个多边形的每个外角都等于36°,∴多边形的边数为360°÷36°=10.故答案为:10.【点评】本题主要考查了多边形的外角和定理:多边形的外角和是360°.16.(4.00分)根据下列材料,解答问题.等比数列求和:概念:对于一列数a1,a2,a3,…a n…(n为正整数),若从第二个数开始,每一个数与前一个数的比为一定值,即=q(常数),那么这一列数a1,a2,a3…a n,…成等比数列,这一常数q叫做该数列的公比.例:求等比数列1,3.3233,…,3100的和,解:令S=1+3+32+33+…+3100+3101则3S=3+32+33+…+3100因此,3S﹣S=3100﹣1,所以S=即1+3+32+33 (3100)仿照例题,等比数列1,5,52,53,…,52018的和为【分析】直接利用有理数的混合运算法则以及结合已知例题分析得出答案.【解答】解:令S=1+5+52+53+…+52017+52018则5S=1+5+52+53+…+52017+52018因此,5S﹣S=52018﹣1,所以S=.故答案为:.【点评】此题主要考查了有理数的混合运算法则,正确将原式变形是解题关键.三、解答题(本大题共8小题,共86分)17.(8.00分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8.00分)解不等式组,并把它的解集在数轴上表示出来.【分析】分别解两不等式,进而得出公共解集.【解答】解:解①得:x≤4,解②得:x>2,故不等式组的解为:2<x≤4,【点评】此题主要考查了解一元一次不等式组的解法,正确掌握基本解题思路是解题关键.19.(10.00分)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.【点评】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.20.(10.00分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.【解答】解:(1)根据题意,得:y=90x+70(21﹣x)=20x+1470,所以函数解析式为:y=20x+1470;(2)∵购买B种树苗的数量少于A种树苗的数量,∴21﹣x<x,解得:x>10.5,又∵y=20x+1470,且x取整数,∴当x=11时,y有最小值=1690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.【点评】本题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.21.(12.00分)为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.22.(12.00分)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留);(2)求证:CD是⊙O的切线.【分析】(1)由扇形的面积公式即可求出答案.(2)易证∠FAC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD是⊙O的切线.【解答】解:(1)∵AB=4,∴OB=2∵∠COB=60°,∴S==扇形OBC(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线【点评】本题考查圆的综合问题,解题的关键是熟练运用扇形面积公式以及切线的判定方法,本题属于中等题型.23.(12.00分)已知:如图,在四边形ABCD中,AD∥BC.点E为CD边上一点,AE与BE分别为∠DAB和∠CBA的平分线.(1)请你添加一个适当的条件AD=BC,使得四边形ABCD是平行四边形,并证明你的结论;(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sin∠AGF=,求⊙O的半径.【分析】(1)添加条件AD=BC,利用一组对边平行且相等的四边形为平行四边形验证即可;(2)作出相应的图形,如图所示;(3)由平行四边形的对边平行得到AD与BC平行,可得同旁内角互补,再由AE 与BE为角平分线,可得出AE与BE垂直,利用直径所对的圆周角为直角,得到AF与FB垂直,可得出两锐角互余,根据角平分线性质及等量代换得到∠AGF=∠AEB,根据sin∠AGF的值,确定出sin∠AEB的值,求出AB的长,即可确定出圆的半径.【解答】解:(1)当AD=BC时,四边形ABCD是平行四边形,理由为:证明:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形;故答案为:AD=BC;(2)作出相应的图形,如图所示;(3)∵AD∥BC,∴∠DAB+∠CBA=180°,∵AE与BE分别为∠DAB与∠CBA的平分线,∴∠EAB+∠EBA=90°,∴∠AEB=90°,∵AB为圆O的直径,点F在圆O上,∴∠AFB=90°,∴∠FAG+∠FGA=90°,∵AE平分∠DAB,∴∠FAG=∠EAB,∴∠AGF=∠ABE,∴sin∠ABE=sin∠AGF==,∵AE=4,∴AB=5,则圆O的半径为2.5.【点评】此题属于圆综合题,涉及的知识有:圆周角定理,平行四边形的判定与性质,角平分线性质,以及锐角三角函数定义,熟练掌握各自的性质及定理是解本题的关键.24.(14.00分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P 点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x ﹣,解方程组,解得或,则此时P点坐标为(,﹣),综上所述,符合条件的点P 的坐标为(,)或(,﹣),【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.第21页(共21页)。

相关文档
最新文档