2017年广东省深圳市中考数学模拟试卷(二)及答案
广东省深圳市2017年中考数学二模试卷(解析版)

广东省深圳市2017年中考数学二模试卷(解析版)一、选择题1.﹣的倒数是()A. ﹣B.C. ﹣3D. 32.人民网北京1月24日电(记者杨迪)财政部23日公布了2016年财政收支数据,全国一股公共预算收入159600亿元,将159600亿元用科学记数法表示为()A. 1.596×105元B. 1.596×1013元C. 15.96×1013元D. 0.1596×106元3.下列四个图案中,具有一个共有的性质,那么下面四个数中,满足上述共有性质的一个是()A. 228B. 707C. 808D. 6094.下列运算正确的是()A. 8a﹣a=8B. (﹣a)4=a4C. a3•a2=a6D. (a﹣b)2=a2﹣b25.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A. B. C. D.6.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是()A. 168元B. 300元C. 60元D. 400元7.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”,例如:M(1,1),N(﹣2,﹣2)都是“平衡点”,当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A. 0≤m≤1B. ﹣1≤m≤0C. ﹣3≤m≤3D. ﹣3≤m≤18.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A. 140°B. 130°C. 120°D. 110°9.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A. B. C. D.10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为36,则PD+PE+PF=()A. 12B. 8C. 4D. 311.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QO,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B. C. D.12.如图,▱ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论::①DE平分∠ADC;②E是BC的中点;③AD=2CD;④梯形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有()A. 4B. 3C. 2D. 1二、填空题13.分解因式:2a2﹣8=________.14.若x2y m与2x n y6是同类项,则m+n=________.15.如图,在平面直角坐标系中,A,B两点分别在x轴和y轴上,OA=1,OB= ,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为________.16.如图,一次函数y=kx+b的图象l与坐标轴分别交于点E,F,与双曲线y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________.三、解答题17.计算:(﹣)﹣2﹣|﹣|+2sin60°+(π﹣4)0.18.先化简,再求值:÷(﹣),其中x= ﹣1.19.我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表根据图表中提供的信息,解答下列问题:(1)m=________,n=________,p=________;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.20.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.21.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?22.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.23.如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0),B(1,0),与y轴的交点为D,对称轴与抛物线交于点C,与x轴负半轴交于点H.(1)求抛物线的表达式;(2)点E,F分别是抛物线对称轴CH上的两个动点(点E在点F上方),且EF=1,求使四边形BDEF的周长最小时的点E,F坐标及最小值;(3)如图2,点P为对称轴左侧,x轴上方的抛物线上的点,PQ⊥AC于点Q,是否存在这样的点P使△PCQ与△ACH相似?若存在请求出点P的坐标,若不存在请说明理由.答案解析部分一、<b >选择题</b>1.【答案】C2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】D二、<b >填空题</b>13.【答案】2(a+2)(a﹣2)14.【答案】815.【答案】16.【答案】﹣2三、<b >解答题</b>17.【答案】解:原式=4﹣+ +1=5.18.【答案】解:原式= ÷[ ﹣]= ÷= •= ,当x= ﹣1时,原式= =19.【答案】(1)200;80;30(2)解:如图所示:(3)解:2000×40%=800(人),答:估计该校2000名学生中有800名学生最喜欢跳大绳.20.【答案】(1)证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形;(2)解:过点P作PH⊥AD于H,如图所示:∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°,∴AB∥PH,∵AB=6,∴AH=PH=3,∵AD=8,∴DH=AD﹣AH=8﹣3=5,在Rt△PHD中,∠PHD=90°.∴tan∠ADP= = .21.【答案】(1)解:设孔明同学测试成绩为x分,平时成绩为y分,依题意得:解之得:,答:孔明同学测试成绩为90分,平时成绩为95分;(2)解:由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)解:设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥75答:他的测试成绩应该至少为75分.22.【答案】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC= AB(3)解:连接MA,MB,∵点M是的中点,∴= ,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴= .∴BM2=MN•MC.又∵AB是⊙O的直径,= ,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.23.【答案】(1)解:∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3(2)解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4).将D点向下平移1个单位,得到点M,连结AM交对称轴于F,作DE∥FM交对称轴于E点,如图1所示.∵EF∥DM,DE∥FM,∴四边形EFMD是平行四边形,∴DE=FM,EF=DM=1,DE+FB=FM+FA=AM.由勾股定理,得AM= = = ,BD= = = ,四边形BDEF周长的最小值=BD+DE+EF+FB=BD+EF+(DE+FB)=BD+EF+AM= +1+ ;设AM的解析式为y=mx+n,将A(﹣3,0),M(0,2)代入,解得m= ,n=2,则AM的解析式为y=x+2,当x=﹣1时,y= ,即F(﹣1,),由EF=1,得E(﹣1,).故四边形BDEF的周长最小时,点E的坐标为(﹣1,),点F坐标为(﹣1,),四边形BDEF周长的最小值是+1+ ;(3)解:点P在对称轴左侧,当△PCQ∽△ACH时,∠PCQ=∠ACH.过点A作CA的垂线交PC与点F,作FN⊥x轴与点N.则AF∥PQ,∴△CPQ∽△CFA,∴= =2.∵∠CAF=90°,∴∠NAF+∠CAH=90°,∠NFA+∠NAF=90°,∴∠BFA=∠CAH.又∵∠FNA=∠AHC=90°,∴△FNA∽△AHC,∴= = = ,即= = .∴AN=2,FN=1.∴F(﹣5,1).设直线CF的解析式为y=kx+b,将点C和点F的坐标代入得:,解得:k= ,b= .∴直线CF的解析式为y= x+ .将y= x+ 与y=﹣x2﹣2x+3联立得:解得:或(舍去).∴P(﹣,).∴满足条件的点P的坐标为(﹣,).。
2017年(深圳版)中考模拟考试数学试题(含答案)

2017年深圳市初中毕业生学业考试数学模拟试题本试卷分选择题和非选择题两部分,共三大题23小题,满分100分,考试用时90分钟第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.20171-的相反数是( )A .2017B .﹣2017C .D .﹣ 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093、下列运算正确的是( )A 、63222a a a =⋅B 、2226)3(b a ab =C 、22=÷ab abcD 、b a ba b a 22243=+4.下面四个手机应用图标中是中心对称图形的是( )A .B .C .D .5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元 C.80元 D .60元 6.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( ) A .4,5 B .5,4C .4,4D .5,57.如图所示,向一个半径为R 、容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )A .B .C .D .8.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( )A .8B .6C .4D .29.已知6是关于x 的方程x 2﹣7mx+24n=0的一个根,并且这个方程的两个根恰好是菱形ABCD 两条对角线的长,则菱形ABCD 的周长为( )A .20B .24C .32D .5610.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4 11.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C 落在斜边上的点C 处,折痕为BD ,如图②,再将②沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图③,若折痕DE 的长是cm ,则BC 的长是( )A .3cmB .4cmC .5cmD .6cm12.如图,在圆心角为90°的扇形OAB 中,半径OA=4cm ,C 为弧AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为( )cm 2.A .4π﹣2﹣2 B .4π﹣2 C .2π+2﹣2 D .2π+2第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)13.分解因式:x x x 1512323--=__________________.14.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是 .15.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D (不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则△DEF 的周长为(用含a 的式子表示).16.如图,双曲线y=(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB∥x 轴,点A 的坐标为(2,3),求△OAC 的面积是_________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:20170﹣|﹣|+1)31(--+2sin45°.18.先化简,再求值:(﹣x+1)÷,其中x=﹣2.19.某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)被调查的学生人数为 ;(2)把折线统计图补充完整;(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?20、如图7,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为45°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB、CD的高度。
2017届深圳市中考一模模拟测试数学试卷含答案

2017届深圳市中考一模模拟拟测试数学一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A、-4 B、4 C、1/4 D、-1/42.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是() A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A 、①②B 、①④C 、②③D 、③④10. 如图,正六边形ABCDEF 内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为( )A 、2,3/2πB 、2,πC 、2,3πD 、2,4π11. 如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A 、4 B 、6 C 、8 D 、1012. 如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE⊥EF,AE=EF ,现有如下结论:①BE=GE ; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正确的结论有( )A 、1个 B 、2个 C 、3个 D 、4个11题图 12题图二、填空题(本题共有4小题,每小题3分,共12分) 13. 因式分解:a 3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=(x <0)的图象经过点A ,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:sin30°+(﹣1)2013﹣+(π﹣3)0﹣cos60° .18. 解不等式组并写出它的所有非负整数解.⎪⎩⎪⎨⎧-≤-〉+x x x x 996344932319. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。
深圳市宝安区2017届中考数学二模试卷含答案解析

年广东省深圳市宝安区中考数学二模试卷7 9B.4.下列运算正确的是(A.2a•a =2a B.(3ab)=6a b2 3 6 22 2 254,64,82,对于这组数据,以下说法正确的是(A.x=3 B.x=﹣1C.x =3,x =1D.x =3,x =﹣11 2 1 29.若方程mx+ny=6 的两个解是,则m,n 的值为(A.B.C.D.使B D=A B,连接A D,依据此图可求得tan75°的值为(B.2+D.A.B.2 C.D.二、填空题(本大题共小题,每小题分,共分)431232(2)根据以上信息,补全频数分布直方图;1300元/只(1)请问今年A型智能手表每只售价多少元?;G (3)在(2)的条件下,如图3,点M是⊙G优弧上的一个动点(不包括A、23.(9分)如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且O C=3O A.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线B C于点D,连接PC.(1)求抛物线的解析式;请说明理由.2017年广东省深圳市宝安区中考数学二模试卷参考答案与试题解析1.﹣5的倒数是(A.5 B.﹣5 C.【考点】17:倒数.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣.故选:D.7 9【解答】解:3.4亿=3.4×108.故选:B.中1≤|a|<10,确定a与n的值是解题的关键.B.4.下列运算正确的是(A.2a a=2a B.(3ab)=6a b2 3 6 22 2 2(C)2abc与ab不是同类项,故C 错误;故选(D)。
2017年深圳初中毕业生学业考试数学模拟试题(含答案)

秘密★启用前2017年深圳市初中毕业生学业考试数学模拟试题考试时间:90分钟 满分100分一、选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上............) 1.下列四个数中,无理数是( ) A .32-B. 3-C. 0D. 2- 2.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A .312×104B .0.312×107C .3.12×106D .3.12×1074.下列运算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(﹣a 2)3D .a 8÷a 25.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C 的度数为( ) A .50° B .40° C .30° D .20°6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,要说明∠D′O′C′=∠DOC ,需要证明△D′O′C′≌△DOC ,则这两个三角形全等的依据是( ) A .边边边B .边角边C .角边角D .角角边7.对于双曲线y=,当x >0时,y 随x 的增大而减小,则m 的取值范围为( )A .m >0B .m >1C .m <0D .m <18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( ) A .B .C .D .9.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则的长为( )A .π B .π C .πD .π10.下列命题正确是( )A. 点(1,3)关于x 轴的对称点是1(-,)3.B. 函数 32+-=x y 中,y 随x 的增大而增大.C. 若一组数据3,x ,4,5,6的众数是3,则中位数是3.D. 同圆中的两条平行弦所夹的弧相等.11.下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为( )A .21B .24C .27D .3012.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG .给出以下结论: ①DG=DF ; ②四边形EFDG 是菱形; ③AF GF EG ⨯=212; ④当,6=AG 52=EG 时,BE 的长为5512,其中正确的结论个数是( ) A. 1 B. 2 C. 3 D. 4二、填空题(本题共4小题,每小题3分,共12分,请将正确的选项填.......在答题卡上.....) 13.分解因式:2x 2-8= . 14.小明用S 2=101[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)3]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .15.如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 m (结果保留根号).16.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这10个正方形分成面积相等的两部分,则该直线l 的解析式为 .三、解答题(本大题共7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17.(5分)计算:()(032cos6032π-︒--+---.18.(5分)先化简,再求值:(1﹣)÷,其中a=﹣1.19.(本题8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:20.(本题7分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?21.(本题8分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.22.(本题9分)已知,如图(1),PAB 为⊙O 的割线,直线PC 与⊙O 有公共点C , 且PB PA PC ⨯=2,(1)求证: ①PBCPCA ∠=∠; ②直线PC 是⊙O 的切线;(2)如图(2) , 作弦CD ,使,AB CD ⊥ 连接AD 、BC,若6,2==BC AD ,求⊙O 的半径;(3)如图(3),若⊙O 的半径为2,10=PO ,2=MO ,090=∠POM ,⊙O 上是否存在一点Q , 使得QM PQ 22+有最小值?若存在,请求出这个最小值;若不存在,说明23.已知抛物线y=a (x+3)(x ﹣1)(a ≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y=﹣x+b 与抛物线的另一个交点为D .(1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求点P 的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B 出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?2017年深圳市初中毕业生学业考试数学模拟试题(参考答案)一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上).三、解答题(本大题有7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17.计算:()(032cos6032π-︒--+--.解: 原式=21)271(212-+--⨯…………………………………… 4分 =271…………………………………………………………… 5分18.先化简再求值:(1﹣)÷,其中a=﹣1.解:原式=÷…………………………………………2分=×……………………………………………… 3分=a +1.………………………………………………………… 4分 当a=﹣1时,原式=﹣1+1=.…………………………………5分19(7分) 解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,即a 的值是12;……………………………………………………………………… 1分 ②补充完整的频数分布直方图如下图所示,…………………………………………2分(2)∵测试成绩不低于80分为优秀, ∴本次测试的优秀率是:;……………………………… 3分(3)设小明和小强分别为A 、B ,另外两名学生为:C 、D ,则所有的可能性为:(AB )、(AC )、(AD )、(BA )、(BC )、(BD ),………………… 5分 所以小明和小强分在一起的概率为:.……………………………… 7分20.解:(1)∵在矩形OABC 中,OA=3,OC=2,∴B(3,2),……………………………………………… 1分∵F为AB的中点,∴F(3,1),……………………………………………… 2分∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);…………………………………… 3分(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k)…………………………………………… 4分=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+…………………… 6分=.……………………………………………… 7分当k=3时,S有最大值.S最大值21.解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:,……………………………………………… 2分解得:x=1600,经检验,x=1600是原方程的解………………………………………3分∴x+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.………………………4分(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600,100﹣x)=﹣50x+15000,…………5分根据题意得:,解得:,…………………………………………… 6分∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种.…………………………………………… 7分∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元. (8)22.(1)① 证明:∵PB PA PC ⨯=2∴PCPBPA PC = ∵BPC CPA =∠………………………… 1分 ∴PCA ∆∽PBC ∆∴PBC PCA ∠=∠.………………………… 2分②证法一:作直径CF ,连接AF 则090=∠CAF∴090=∠+∠FCA F ∵B F ∠=∠由①的结论PBC PCA ∠=∠∴090=∠+∠FCA PCA ……………………… 3分 ∴CF PC ⊥∵PC 经过直径的一端点C∴直线PC 是⊙O 的切线;…………………… 4分(2)解法一:作直径BE ,连接CE 、AE.则=∠BCE ∵AB CD ⊥∴AE//CD ……………………………… 5分 ∴弧AD=弧CE∴AD=CE=2 …………………………… 6分 ∵BC=6,∴在Rt BCE ∆中由勾股定理得:406222222=+=+=BC CE BE∴10240==BE∴R=10……………………………… 7分(3):如图(3),取OM 中点G ,连接QG 、QO 、QM 、QP 、PG ∵2=MO ∴121==OM OG∵⊙O 的半径2==OQ r , ∴OM OG OQ ∙=2 ∵QOG MOQ ∠=∠ ∴MOQ ∆∽QOG ∆∴22==OM OQ QM QG ∴QM QG 22=∴QG PQ QM PQ +=+22…………………………… 8分 ∵PG QG PQ ≥+∴Q 落在线段PG 上时,PG OG PQ QM PQ =+=+22最小,……………………… 9分 ∴QM PQ 22+最小值为PG =()111102222=+=+OG PO ………………10分23.【考点】二次函数综合题.【分析】(1)根据二次函数的交点式确定点A 、B 的坐标,进而求出直线AD 的解析式,接着求出点D 的坐标,将D 点坐标代入抛物线解析式确定a 的值;(2)由于没有明确说明相似三角形的对应顶点,因此需要分情况讨论:①△ABC ∽△BAP ;②△ABC ∽△PAB ;(3)作DM ∥x 轴交抛物线于M ,作DN ⊥x 轴于N ,作EF ⊥DM 于F ,根据正切的定义求出Q 的运动时间t=BE +EF 时,t 最小即可.【解答】解:(1)∵y=a (x +3)(x ﹣1),∴点A 的坐标为(﹣3,0)、点B 两的坐标为(1,0), ∵直线y=﹣x +b 经过点A ,∴b=﹣3,∴y=﹣x ﹣3,当x=2时,y=﹣5,则点D 的坐标为(2,﹣5), ∵点D 在抛物线上,∴a (2+3)(2﹣1)=﹣5,解得,a=﹣, 则抛物线的解析式为y=﹣(x +3)(x ﹣1)=﹣x 2﹣2x +3;(2)如图1中,作PH⊥x轴于H,设点P坐标(m,n),当△BPA∽△ABC时,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴解得m=﹣4或1(舍弃),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,∴AB2=AC•PB,∴42=,解得a=﹣或(舍弃),则n=5a=﹣,∴点P坐标(﹣4,﹣).当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,∴n=﹣3a(m﹣1),∴,解得m=﹣6或1(舍弃),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得a=﹣或(不合题意舍弃),则点P坐标(﹣6,﹣3),综上所述,符合条件的点P的坐标(﹣4,﹣)和(﹣6,﹣3).(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).11。
2017年深圳市中考数学试卷含答案解析(Word版)

2017年广东省深圳市中考数学试卷一、选择题1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.图中立体图形的主视图是()A.B.C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=3308.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题( )A .五边形外角和为360°B .切线垂直于经过切点的半径C .(3,﹣2)关于y 轴的对称点为(﹣3,2)D .抛物线y=x 2﹣4x +2017对称轴为直线x=210.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( ) A .平均数 B .中位数 C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10cm ,则树AB 的高度是( )m . A .20B .30C .30D .4012.如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE=,其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.因式分解:a 3﹣4a= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= .16.如图,在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,Rt △MPN ,∠MPN=90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE=2PF 时,AP= . 三、解答题 17.计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.先化简,再求值:(+)÷,其中x=﹣1.19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.2.图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.5.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【考点】J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.6.不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x<5,得:x>﹣1,解不等式x﹣2<1,得:x<3,∴不等式组的解集为﹣1<x<3,故选:D.7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【考点】89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】WA:统计量的选择.【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.40【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠ABC=30°,∠DCB=90°. ∵∠BDF=30°, ∴∠DBF=60°, ∴∠DBC=30°, ∴BC===20m , ∴AB=BC•sin60°=20×=30m .故选B .12.如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE=,其中正确结论的个数是( )A .1B .2C .3D .4【考点】S9:相似三角形的判定与性质;KD :全等三角形的判定与性质;LE :正方形的性质;T7:解直角三角形.【分析】由四边形ABCD 是正方形,得到AD=BC ,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据相似三角形的性质得到AO 2=OD•OP ,由OD ≠OE ,得到OA 2≠OE•OP ;故②错误;根据全等三角形的性质得到CF=BE ,DF=CE ,于是得到S △ADF ﹣S △DFO =S△DCE﹣S △DOF ,即S △AOD =S 四边形OECF ;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD 是正方形, ∴AD=BC ,∠DAB=∠ABC=90°, ∵BP=CQ , ∴AP=BQ ,在△DAP 与△ABQ 中,,∴△DAP ≌△ABQ ,∵∠Q +∠QAB=90°, ∴∠P +∠QAB=90°, ∴∠AOP=90°, ∴AQ ⊥DP ; 故①正确;∵∠DOA=∠AOP=90,∠ADO +∠P=∠ADO +∠DAO=90°, ∴∠DAO=∠P , ∴△DAO ∽△APO , ∴,∴AO 2=OD•OP , ∵AE >AB , ∴AE >AD , ∴OD ≠OE ,∴OA 2≠OE•OP ;故②错误; 在△CQF 与△BPE 中,∴△CQF ≌△BPE , ∴CF=BE , ∴DF=CE ,在△ADF 与△DCE 中,,∴△ADF ≌△DCE ,∴S △ADF ﹣S △DFO =S △DCE ﹣S △DOF , 即S △AOD =S 四边形OECF ;故③正确; ∵BP=1,AB=3, ∴AP=4,∵△AOP ∽△DAP , ∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.二、填空题13.因式分解:a3﹣4a=a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:216.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【考点】S9:相似三角形的判定与性质.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.三、解答题17.计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】因为<2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.18.先化简,再求值:( +)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣119.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【考点】VC:条形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.【考点】AD:一元二次方程的应用.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣800<0,原方程无解,故不能围成一个面积为200平方厘米的矩形.21.如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.【考点】MR:圆的综合题.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE•HF=HM•HN,又HM•HN=AH•HB,推出HE•HF=AH•HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE•HF=HM•HN,∵HM•HN=AH•HB,∴HE•HF=AH•HB=2•(10﹣2)=16.23.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,=AB•OC=×5×2=5,∴S△ABC=S△ABD,∵S△ABC=×5=,∴S△ABD设D(x,y),∴AB•|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.2017年7月8日。
2017年广东省深圳市龙岗区中考数学第二次模拟试卷(解析版)

2017年广东省深圳市龙岗区中考数学第二次模拟试卷一、选择题。
(共10题;共30分)1、空气的密度为0.00129g/cm3, 0.00129这个数用科学记数法可表示为()A、0.129×10﹣2B、1.29×10﹣2C、1.29×10﹣3D、12.9×10﹣12、下列事件发生的概率为0的是()A、射击运动员只射击1次,就命中靶心B、任取一个实数x,都有|x|≥0C、画一个三角形,使其三边的长分别为8cm,6cm,2cmD、抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为63、已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是A、①②都有实数解B、①无实数解,②有实数解C、①有实数解,②无实数解D、①②都无实数解4、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )A、图象关于直线x=1对称B、函数y=ax2+bx+c(a≠0)的最小值是﹣4C、﹣1和3是方程ax2+bx+c(a≠0)=0的两个根D、当x<1时,y随x的增大而增大5、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A、B、C、5D、46、如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四边形ABCD是平行四边形,下列结论错误的是()A、沿AE所在直线折叠后,△ACE和△ADE重合B、沿AD所在直线折叠后,△ACE和△ADE重合C、以A为旋转中心,把△ACE逆时针旋转90°后与△ADB重合D、以A为旋转中心,把△ACE逆时针旋转270°后与△ADB重合7、如图,AB是⊙O的直径,弦CD⊥AB,∠COB=60°,CD=2,则阴影部分图形的()A、4πB、2πC、πD、8、古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数,下列属于三角数的是……………………… ( )A 、55B 、60C 、65D 、759、如图,在平行四边形ABCD 中,AD=7,CE 平分∠BCD 交AD 边于点E ,且AE=4,则AB 的长为( )A 、4B 、3C 、D 、210、已知二次函数y=﹣ x 2﹣3x ﹣ ,设自变量的值分别为x1 , x2 , x3 , 且﹣3<x 1<x 2<x 3 , 则对应的函数值y 1 , y 2 , y 3的大小关系是( ) A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 2>y 3>y 1 D 、y 2<y 3<y 1二、填空题(共6题;共12分)11、分解因式:x 2﹣9=________. 12、若不等式组的解集是﹣1<x <1,则(a+b )2009=________13、不等式组 的最大整数解为________.14、在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,AC=6,BC=8,CD=________.15、如图,下面每个图形中的四个数都是按相同的规律填写的,根据此规律确定x的值为________.16、如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上,正方形ADEF的面积为4,且BF=2AF,则k 值为________ .三、解答题(共7题;共58分)17、化简,再求代数式的值:,其中.18、已知关于x的不等式组(a≠0)求该不等式组的解集.19、有一则广告称“有80%的人使用本公司的产品”,你对该则广告的宣传有何看法?20、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.21、如图,在△ABC中,AB是⊙O的直径,AC与⊙O交于点D,点E在弧BD上,连接DE,AE,连接CE 并延长交AB于点F,∠AED=∠ACF.(1)求证:CF⊥AB;(2)若CD=4,CB=4 ,cos∠ACF= ,求EF的长.22、如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=________s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.23、平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.答案解析部分一、选择题。
广东省深圳市龙华区2017年中考数学二模试卷及参考答案

21. 如图,在平面直角坐标系内,已知直线l1经过原点O 及A(2,2 )两点,将直线l1向右平移4个单位后得到直线l2 , 直线l2与x 轴交于点B.
(1) 求直线l2的函数表达式; (2) 作∠AOB 的平分线交直线l2于点C,连接AC.求证:四边形OACB是菱形; (3) 设点P 是直线l2上一点,以P 为圆心,PB 为半径作⊙P,当⊙P 与直线l1相切时,请求出圆心P 点的坐标. 22. 如图1,已知二次函数y=x2+bx+c的图象与x 轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,顶点为D,对 称轴为直线l.
3. 下列图形均是一些科技创新公司标志图,其中既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
பைடு நூலகம்
4. 据报道,深圳今年4 月2 日至4 月8 日每天的最高气温变化如图所示.则关于这七天的最高气温的数据,下列判断中
错误的是( )
A . 平均数是26 B . 众数是26 C . 中位数是27 D . 方差是 5. 已知三角形三边的长分别为1、2、x,则x的取值范围在数轴上表示为( )
(1)
求该二次函数的表达式;
(2) 若点E 是对称轴l 右侧抛物线上一点,且S△ADE=2S△AOC,求点E 的坐标; (3) 如图2,连接DC 并延长交x 轴于点F,设P 为线段BF 上一动点(不与B、F 重合),过点P 作PQ∥BD 交直线BC 于点 Q,将直线PQ 绕点P 沿顺时针方向旋转45°后,所得的直线交DF 于点R,连接QR.请直接写出当△PQR 与△PFR 相似时 点P 的坐标.
A . 70° B . 110° C . 125° D . 130° 8. 如图,已知五边形ABCDE 是⊙O 的内接正五边形,且⊙O 的半径为1.则图中阴影部分的面积是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省深圳市中考数学模拟试卷(二)及答案1.9的平方根是()A.±3B.3C.﹣3D.812.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2016年“快的打车”账户流水总金额达到147.3亿元,147.3亿用科学记数法表示为()A.1.473×1010B.14.73×1010C.1.473×1011D.1.473×10123.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3ab﹣2ab=1B.x4⋅x2=x6C.(x2)3=x5D.3x2÷x=2x5.如图,已知a∥b,∠1=50°,则∠2=()A.40°B.50°C.120°D.130°6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元7.由几个大小相同的正方形组成的几何图形如图,则它的左视图是()(1)A.B.C.D.(a≠0)在同一直角坐标系中的图象可能是8.若ab>0,则函数y=ax+b与y=bx()A.B.C.D.9.已知不等式组{x −a <−11−x 3⩽1的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A.﹣1B.0C.1D.210.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A 处时,发现它的北偏东30°方向有一灯塔B .轮船继续向北航行2小时后到达C 处,发现灯塔B 在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?( )A.1小时B.√小时C.2小时D.2√3小时11.对于数对(a,b)、(c,d),定义:当且仅当a=c且b=d时,(a,b)=(c,d);并定义其运算如下:(a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),则xy的值是()A.﹣1B.0C.1D.212.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③(A n gle A O E=135^{\circ}\);④S△AOE=SΔCOE,其中正确结论有()A.1个B.2个C.3个D.4个13.分解因式:a x2−9a=__________。
14.有A、B两只不透明口袋,每只口袋装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、”心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是__________.15.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打__________折.16.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,O B1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,O B2长为半径画弧交x轴于点A3;…,按照此做法进行下去,则O A n的长为__________.)−2+√3tA n60∘+|−1|+(2cos60∘+1)0.17.计算:(−1218.解方程:3+xx−4+1=14−x.19.某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机__________台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是__________;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是__________台.20.2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC =38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)21.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F 作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.,抛物线y=a x2+bx经过点23.如图,⊙C的内接△AOB中,AB=AO=4,t A n∠AOB=34A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.求证:AD∥OB;(3)动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ ⊥AD时,求运动时间t的值.1.【能力值】无【知识点】(1)略【详解】(1)【考点】21:平方根【分析】直接根据平方根的定义求解即可.【解答】解:∵(±3)2=9,∴9的平方根为±3.故选:A.【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作±√a(a≥0).【答案】(1)A2.【能力值】无【知识点】(1)略【详解】(1)【考点】1I:科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:147.3亿用科学记数法表示为1.473×1010,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】(1)A3.【能力值】无【知识点】(1)略【详解】(1)【考点】P3:轴对称图形;R5:中心对称图形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.【答案】(1)B4.【能力值】无【知识点】(1)略【详解】(1)【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4⋅x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选:B.【点评】本题主要考查了同底数幂的乘法、除法运算,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.【答案】(1)B5.【能力值】无【知识点】(1)略【详解】(1)【考点】JA:平行线的性质【分析】根据平角的定义得到∠3=180°﹣∠1=180°﹣50°=130°,然后根据两直线平行,同位角相等即可得到∠2的度数.【解答】解:如图,∵∠1=50°,∴∠3=180°﹣∠1=180°﹣50°=130°,又∵a∥b,∴∠2=∠3=130°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;也考查了平角的定义.【答案】(1)D6.【能力值】无【知识点】(1)略【详解】(1)【考点】8A:一元一次方程的应用【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x×60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.【答案】(1)D7.【能力值】无【知识点】(1)略【详解】(1)【考点】U2:简单组合体的三视图【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.【答案】(1)B8.【能力值】无【知识点】(1)略【详解】(1)【考点】F3:一次函数的图象;G2:反比例函数的图象【分析】由于ab>0,那么a、b同号,当a>0,b>0时,直线经过第一、二、三象限,双曲线经过第一、二象限,当a<0,b<0时,直线经过第二、三、四象限,双曲线经过第二、四象限,利用这些结论即可求解.【解答】解:∵ab>0,∴a、b同号,当a>0,b>0时,直线经过第一、二、三象限,双曲线经过第一、三象限,当a<0,b<0时,直线经过第二、三、四象限,双曲线经过第二、四象限,A、图中直线经过直线经过第一、四、三象限,双曲线经过第一、三象限,故A选项错误;B、图中直线经过原点,故B选项错误;C、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故C选项正确;D、图中直线经过第二、一、四象限,双曲线经过第二、四象限,故D选项错误.故选:C.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线当k>0时经过第一、三象限,当k<0时经过第二、四象限.y=kx+b、双曲线y=kx【答案】(1)C9.【能力值】无【知识点】(1)略【详解】(1)【考点】C4:在数轴上表示不等式的解集【分析】首先解不等式组,求得其解集,又由,即可求得不等式组的解集,则可得到关于a的方程,解方程即可求得a的值.【解答】解:{x −a <−11−x 3⩽1的解集为:﹣2≤x <a ﹣1, 又∵ , ∴﹣2≤x <1,∴a ﹣1=1,∴a =2.故选:D .【点评】此题考查了在数轴上表示不等式的解集.注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【答案】(1)D10.【能力值】无【知识点】(1)略【详解】(1)【考点】TB :解直角三角形的应用﹣方向角问题【分析】过B 作AC 的垂线,设垂足为D .由题易知:∠DAB =30°,∠DCB =60°,则∠CBD =∠CBA =30°,得AC =BC .由此可在Rt △CBD 中,根据BC (即AC )的长求出CD 的长,进而可求出该船需要继续航行的时间.【解答】解:作BD ⊥AC 于D ,如下图所示:易知:∠DAB =30°,∠DCB =60°,则∠CBD =∠CBA =30°.∴AC =BC ,∵轮船以40海里/时的速度在海面上航行,∴AC =BC =2×40=80海里,∴CD =12BC =40海里. 故该船需要继续航行的时间为40÷40=1小时.故选:A .【点评】本题考查了解直角三角形的应用中的方向角问题,注意掌握“化斜为直”是解三角形的常规思路,需作垂线(高),原则上不破坏特殊角(30°、45°60°).【答案】(1)A11.【能力值】无【知识点】(1)略【详解】(1)【考点】98:解二元一次方程组【分析】根据(a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ),得出(x ,y )※(1,﹣1)的值即可求出x ,y 的值.【解答】解:∵(a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ),∴(x ,y )※(1,﹣1)=(x+y ,﹣x+y )=(1,3),∵当且仅当a =c 且b =d 时,(a ,b )=(c ,d );∴{x +y =1−x +y =3, 解得:{x =−1y =2,∴x y 的值是(−1)2=1,故选:C .【点评】此题主要考查了新定义.根据已知得出规律以及解二元一次方程组,根据题意得出(x ,y )※(1,﹣1)=(x+y ,﹣x+y )是解决问题的关键.【答案】(1)C12.【能力值】无【知识点】(1)略【详解】(1)【考点】KL:等边三角形的判定;KO:含30度角的直角三角形;LB:矩形的性质【分析】根据矩形性质求出OD=OC,根据角求出∠DOC=60°即可得出三角形DOC是等边三角形,求出AC=2AB,即可判断②,求出∠BOE=75°,∠AOB=60°,相加即可求出∠AOE,根据等底等高的三角形面积相等得出S△AOE=S△COE.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OD=OB,AC=BD,∴OA=OD=OC=OB,∵AE平分∠BAD,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC,∴△ODC是等边三角形,∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°∴∠DAC=∠ACB=30°,∴AC=2AB,∵AC>BC,∴2AB>BC,∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°,∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∵四边形ABCD是矩形,∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD,∴BE=BO,∴(A n gle B O E=\A n gle B E O=\frac{1}{2}\left(180^{\circ}-\A n gle O B E\right)=75^{\circ}\),∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC,∴根据等底等高的三角形面积相等得出S△AOE=S△COE,∴④正确;故选:C.【点评】本题考查了矩形性质,平行线性质,角平分线定义,等边三角形的性质和判定,三角形的内角和定理等知识点的综合运用.【答案】(1)C13.【能力值】无【知识点】(1)略【详解】(1)【考点】55:提公因式法与公式法的综合运用【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a x2−9a=a(x2−9),=a(x+3)(x﹣3).故答案为:a(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【答案】(1)a(x+3)(x﹣3)14.【能力值】无【知识点】(1)略【详解】(1)【考点】X6:列表法与树状图法【分析】列举出所有情况,看刚好能组成“细心”字样的情况数占所有情况数的多少即可.【解答】解:共有4种情况,恰好能组成“细心”字样的情况数有1种,所以概率为1.4.故答案为14【点评】考查用列树状图的方法解决概率问题;得到刚好能组成“细心”字样的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.【答案】(1)1415.【能力值】无【知识点】(1)略【详解】(1)【考点】C9:一元一次不等式的应用−800≥800×5%,然后【分析】设打x折,利用销售价减进价等于利润得到1200⋅x10解不等式求出x的范围,从而得到x的最小值即可.【解答】解:设打x折,−800≥800×5%,根据题意得1200⋅x10解得x≥7.所以最低可打七折.故答案为七.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x折时,标价要乘0.1x为销售价.【答案】(1)七16.【能力值】无【知识点】(1)略【详解】(1)【考点】FI:一次函数综合题【分析】由直线y=x的性质可知,△O A1B1,△O A2B2,…都是等腰直角三角形,且O A2=O B1=√2O A1,由此可知,后一个三角形的直角边长是前一个三角形直角边长的√2倍,得出一般规律.【解答】解:∵B1,B2,…,B n是直线y=x上的点,∴△O A1B1,△O A2B2,…,△O A n B n都是等腰直角三角形,由等腰三角形的性质,得O A2=O B1=√2O A1,O A3=O B1=√2O A2,…O A n=O B n﹣1=√2O A n−1=(√2)n−1.故答案为:(√2)n−1.【点评】本题考查了一次函数的综合运用.关键是根据特殊三角形的性质,得出直角边长之间的变化规律.【答案】(1)(√2)n−117.【能力值】无【知识点】(1)略【详解】(1)【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值【分析】原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.【答案】(1)解:原式=4+3+1+1=9.18.【能力值】无【知识点】(1)略【详解】(1)解方程:3+xx−4+1=14−x.【考点】B3:解分式方程【分析】因为4﹣x=﹣(x﹣4),所以最简公分母为(x﹣4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化.【答案】(1)解:方程两边同乘(x﹣4),得:3+x+x﹣4=﹣1,整理解得x=0.经检验x=0是原方程的解.19.【能力值】无【知识点】(1)略(2)略(3)略(4)略【详解】(1)【考点】VB:扇形统计图;VC:条形统计图;W4:中位数【分析】(1)用一月份的销售量除以该月的销售量所占百分比即可得到总得销售量;(2)用销售总量减去其他三个月的销售量即可得到二月份的销售量;(3)用二月份的销售量除以四个月的销售总量即可得到二月份所占百分比;(4)找到销售量位于中间位置的两个月份,其销量的平均数即为四个月销量的中位数.【点评】本题考查了两种统计图的应用及中位数的知识,解题的关键是正确的识图并从两种图形中整理出进一步解题的信息.【答案】(1)解:(1)由两种统计图可知一月份的销售量为60台,占前四个月销售量的25%,∴60÷25%=240,∴专卖店1~4月共销售这种品牌的手机240台;(2)如图×360∘=135∘(3)∵90240∴“二月”所在的扇形的圆心角的度数是135°;(4)排序后一三两月的销量位于中间位置,∴中位数为:(60+50)÷2=55台.20.【能力值】无【知识点】(1)略(2)略【详解】(1)【考点】T9:解直角三角形的应用﹣坡度坡角问题【分析】(1)延长BA交EF于点G,利用三角形外角性质即可求出所求角的度数;(2)过A作CD的垂线,垂足为H,在直角三角形ADH中,求出∠DAH=30°,利用30度角所对的直角边等于斜边的一半求出DH与AH的长,确定出三角形ACH为等腰直角三角形,求出CH,AH的长,由AC+CH+HD求出大树高即可.【点评】此题属于解直角三角形的应用﹣坡度坡角问题,涉及的知识有:勾股定理,含30度直角三角形的性质,特殊角的三角函数值,以及外角性质,熟练掌握性质及定理是解本题的关键.【答案】(1)解:(1)延长BA交EF于一点G,如图所示,则∠DAC=180°﹣∠BAC﹣∠GAE=180°﹣38°﹣(90°﹣23°)=75°;(2)过点A作CD的垂线,设垂足为H,在Rt△ADH中,∠ADC=60°,∠AHD=90°,∴∠DAH=30°,∵AD=3,∴DH=32,AH=3√32,在Rt△ACH中,∠CAH=∠CAD﹣∠DAH=75°﹣30°=45°,∴∠C=45°,∴CH=AH=3√32,AC=3√62,则树高3√62+3√32+32(米).21.【能力值】无【知识点】(1)略(2)略【详解】(1)【考点】CE:一元一次不等式组的应用【分析】(1)本题需根据题意设A型花和B型花每枝的成本分别是x元和y元,根据题意列出方程组,即可求出A型花和B型花每枝的成本.(2)本题需先根据题意设按甲方案绿化的道路总长度为a米,根据题意列出不等式,解出结果;再求出工程的总成本即可得出答案.【点评】本题主要考查了一元一次不等式的应用,在解题时要注意根据题目中的数量关系列出不等式是解题的关键.【答案】(1)解:(1)设A 型花和B 型花每枝的成本分别是x 元和y 元,根据题意得:{2x +3y =22x +5y =25解得:{x =5y =4所以A 型花和B 型花每枝的成本分别是5元和4元.(2)(2)设按甲方案绿化的道路总长度为a 米,根据题意得:1500﹣a ≥2aa ≤500则所需工程的总成本是5×2a+4×3a+5(1500﹣a )+4×5(1500﹣a )=10a+12a+7500﹣5a+30000﹣20a=37500﹣3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w =37500﹣3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元.22.【能力值】无【知识点】(1)略(2)略【详解】(1)【考点】KW :等腰直角三角形;LB :矩形的性质;LE :正方形的性质;S9:相似三角形的判定与性质【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.【点评】本题考查了正方形、矩形、等腰直角三角形的性质,相似三角形的判定与性质.关键是利用相似比列方程求解.【答案】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴AF RP =EAER,即:AF2=22+AR由(1)得AF=AR,∴AR2=22+AR,解得:AR=−1+√5或AR=−1−√5(不合题意,舍去),∴DP=AR=−1+√5,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴t =√5−1(秒);②若PR =PB ,过点P 作PK ⊥AB 于K ,设FA =x ,则RK =12BR =12(2−x), ∵△EFA ∼△EPK∴FA PK =EA EK即:x 2=24−12(2−x) 解得:x =±√17−3(舍去负值);∴t =√17−12(秒);若PB =RB ,则△EFA ∽△EPB ,∴EA EB =AF BP =12∴AR BP =12∴BP =23AB =23×2=43∴CP =BC −BP =2−43=23 ∴t =83(秒). 综上所述,当PR =PB 时,t =√17−12;当PB =RB 时,t =83秒.23.【能力值】无【知识点】(1)略(2)略(3)略【详解】(1)【考点】HF:二次函数综合题【分析】(1)把经过的点的坐标代入抛物线表达式,然后利用待定系数法求二次函数解析式;(2)连接AC交OB于点E,连接OC、OB,然后根据到线段两端点距离相等的点在线段的垂直平分线上求出AC⊥OB,再根据圆的切线的定义求出AC⊥AD,然后根据垂直于同一直线的两直线互相平行证明;(3)根据∠AOB的正切值求出余弦值,然后求出AE,再利用∠OAD的正切值求出OD的长,表示出OP、OQ,再过O点作OF⊥AD于F,用t表示出DF,在Rt△ODF中,利用勾股定理列式求出DF,从而得解.【点评】本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,到线段两端点距离相等的点在线段垂直平分线上,圆的切线的定义,解直角三角形,勾股定理的应用,平行线间的距离相等的性质,难度较大,作辅助线构造出直角三角形是解题的关键.【答案】(1)解:(1)∵抛物线y=a x2+bx经过点A(4,0)与点(﹣2,6),∴{16a+4b=04a−2b=6,解得{a=1 2b=−2,∴抛物线的解析式为:y=12x2−2x;(2)如图,连接AC交OB于点E,连接OC、BC,∵OC=BC,AB=AO,∴AC⊥OB,∵AD为切线,∴AC⊥AD,∴AD∥OB;(3)∵t A n∠AOB=34,∴sin∠AOB=3 5∴AE=OA⋅sin∠AOB=4×35=2.4∵AD//OB∴∠OAD=∠AOB∴OD=OA•t A n∠OAD=OA•t A n∠AOB=4×34=3,当PQ⊥AD时,OP=t,DQ=2t,过O点作OF⊥AD于F,在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF=√0D2−0F2=√32−2⋅42=1.8,∴t=1.8秒.。