材料力学8组合变形-资料

合集下载

材料力学 组合变形完整版

材料力学  组合变形完整版

x
(竖直xz面My) C
B
D
A
材料力学
组合变形/扭转与弯曲的组合
根据内力图分析
可能的危险截面:B和D
思考
如何通过计算确定危险截面的位置?
y
M
My
z
Mz
由于圆形截面的特殊性, 可将弯矩平行四边形合成
危险截面为B
材料力学
组合变形/扭转与弯曲的组合
4.确定危险点及应力状态
危险点的位置
y
y
M
My
z
Mz
M
z
T
材料力学
组合变形/扭转与弯曲的组合
危险点的应力状态
y
M
z
T


二向应力状态
材料力学
组合变形/扭转与弯曲的组合
5.根据强度理论进行强度校核 要求回顾如何根据材料选择强度理论
钢属于塑性材料,按第三或第四强度理论校核
第三强度理论校核: 1 3 []
第四强度理论校核:
材料力学
组合变形/扭转与弯曲的组合
2FL
FL
材料力学
3. 根据弯矩图确定可能的危险截面
竖直xy面:
FL
水平xz面:
2FL
FL
结论: 危险截面可 能是中点或 固定端。
材料力学
4. 通过叠加求危险截面的最大正应力
z
z
y
y
Mxy Mxz Wz Wy

Mxy 2 Mxz 2
材料力学
W
y
竖直xy面:
FL
Z
水平xz面:
2FL
σmax=|σ’+σmax| σmax≤[σ]
②扭转与弯曲组合

《材料力学》课程讲解课件第八章组合变形

《材料力学》课程讲解课件第八章组合变形

强度条件(简单应力状态)——
max
对有棱角的截面,最大的正应力发生在棱角点处,且处于单向应力状态。
max
N A
M zmax Wz
M ymax Wy
x
对于无棱角的截面如何进行强度计算——
1、确定中性轴的位置;
y
F z
M z F ey M y F ez
ez F ey z
y
zk yk z
y
x
1、荷载的分解
F
Fy F cos
Fz F sin
z
2、任意横截面任意点的“σ”
x
F
y
(1)内力: M z (x) Fy x F cos x
M y (x) Fz x F sin x
(2)应力:
Mz k
M z yk Iz
My k
M y zk Iy
(应力的 “+”、“-” 由变形判断)
F
1, 首先将斜弯曲分解
为两个平面弯曲的叠加 Fy F cos
z
L2
L2
Fz F sin
z
2, 确定两个平面弯曲的最大弯矩
y
Mz
Fy L 4
M
y
Fz L 4
3, 计算最大正应力并校核强度
max
My Wy
Mz Wz
217.8MPa
查表: Wy 692.2cm3
4, 讨论 0
y
Wz 70.758cm3
的直径为d3,用第四强度理论设计的直径为d4,则d3 ___=__ d4。
(填“>”、“<”或“=”)
因受拉弯组合变形的杆件,危险点上只有正应力,而无切应力,
r3 1 3 2 4 2
r4

材料力学第八章组合变形

材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max

材料力学- 8组合变形

材料力学- 8组合变形
l/2 l/2
D
A P
C
d
B
Q
l/2
D
l/2
解:
B
A P
mA
C
Q Q 1 mC QD 2 A M C
Ql/4
B
(1)受力分析与计算简 图:将载荷Q向轮心平移 (2)内力分析,画出弯 矩图和扭矩图;找出危险 面和危险点:危险面在中 点C处 (3)代公式:求最大安 全载荷Q
d
T
QD/2
r3
设计中常采用的简便方法:
因为偏心距较大,弯曲应力 是主要的,故先考虑按弯曲强 度条件 设计截面尺寸
M Wz 6000 6 35 10 d 3 32
解得立柱的近似直径 取d=12.5cm,再代 入偏心拉伸的强 度条件校核
d 0.12 m
15000 6000 3.14 0.1252 3.14 0.1253 4 32 32.4 106 32.4MPa 35MPa
M 2 T2 [ ] Wz
l/2
D
l/2
Ql Q M 0.8 0.2Q 4 4
B
A P
mA
C
d
T
Q Q 1 mC QD 2 A M C
Ql/4
QD Q 0.36 0.18Q 2 2
r3
B
M 2 T2 [ ] Wz
Wz
ቤተ መጻሕፍቲ ባይዱ 3
32
T
QD/2
(1)计算内力
将立柱假想地截开,取上段为 研究对象,由平衡条件,求出 立柱的轴力和弯矩分别为
F
N
FN P 15000 N M Pe 15000 0.4 6000N m

材料力学——8组合变形

材料力学——8组合变形
A
F m
B
T 15kN m
M max 20kN m
W
15kN· m
D 3
32
(1 )
4
+
r3
20kN· m
-
M2 T2 157.26MPa [ ] W
例题8 传动轴如图所示。在A处作用一个外力偶矩
m=1kN· m,皮带轮直径 D=300mm,皮带轮紧边拉力为 F1,松边拉力为F2。且F1=2F2,L=200mm,轴的许用 应力[]=160MPa。试用第三强度理论设计轴的直径
例3 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。 解:拉扭组合,危险点应力状态如图 T P A T P
P 450 10 3 6.37 MPa A 0.12

T 167000 35 .7MPa 3 Wn 0.1
P
P
1
1
a a
a a
未开槽前 立柱为轴向压缩
N P P P 1 2 A A (2a) 4a2
开槽后 立柱危险截面为偏心压缩;
P
1
P
1
a a
a a
P
1
Pa/2
1
N M P Pa 2 2P 2 2 A W 2 a a 1 2a 2 a a 6 2 P a2 开槽后立柱的最大压应力 8 2 P 4a 未开槽前立柱的最大压应力
2、相当应力计算 第三强度理论,计算相当力
2 0
r 3 1 3 2 4 2
第四强度理论,计算相当应力
r 4 2 3 2
3、强度校核

《材料力学》第八章组合变形

《材料力学》第八章组合变形
解 (1)外力分析,确定变形类型—拉弯组合;
(2)内力分析,确定危险截面—整个轴;
M=600(kN·cm) FN=15(kN)
(3)应力计算,确定危险点—a、b点;
P产生拉伸正应力: t
FN AFNd 2源自4FNd 24
M拉产弯生组弯合曲:的正应力:wmax
M Wy
M
d3
32
32M
d3
P M= a Pe
补例8.1 已知: P=2kN,L求=:1mσm,Iazx=628×104mm4,Iy=64×1040mm2740 2844
解:1.分解P力。 Py Pcos φ Pz Psin φ 2.画弯矩图,确定危险截面--固定端截面。 3.画应力分布图,确定危险点—A、 B点
σ” σ’
A
x
y
Pyl
M
z
践中,在计算中,往往忽略轴力的影响。
4.大家考虑扭转、斜弯曲与拉(压)的组合怎么处理?
例8.5 图8.14a是某滚齿机传动轴AB的示意图。轴的直径为35 mm,材料为45钢, [σ]=85 MPa。轴是由P=2.2kW的电动机通过
带轮C带动的,转速为n=966r/min。带轮的直径为D=132 mm,
Mz Py l - x Pcosφ l - x Mcosφ My Pz l - x Psinφ l - x Msinφ
式中的总弯矩为:M Pl- x
3.计算两个平面弯曲的正应力。在x截面上任取一点A(z 、y),
与弯矩Mz、My对应的正应力分别为σ’和σ”,故
- Mz y , - M yz
第八章 组合变形
基本要求: 掌握弯曲与拉伸(或压缩)的组合、扭转与弯曲的组合 的强度计算。
重点: 弯曲与拉伸(或压缩)的组合,扭转与弯曲的组合。

材料力学第8章组合变形

材料力学第8章组合变形

MB
M
2 yB
M
2 zB
(364 N m)2 (1000N m)2 1064N m
•由Mz图和My图可知, B截面上的总弯矩最大, 并且由扭矩图可见B截 面上的扭矩与CD段其 它横截面上相同,TB =-1000 N·m,于是判 定横截面B为危险截面。
3. 根据MB和TB按第四强度理论建立的强度条件为
Wp
r4
M 2 0.75T 2
W
300N.m 1400N
300N.m
1500N 200
150
300N.m
128.6N.m
120N.m
(2)作内力图
危险截面E 左处
T 300N.m
M
M
2 y
M
2 z
176N.m
(3)由强度条件设计d
r3
M2 T2 W
W d 3
32
32 M 2 T 2
第8章 组合变形
8.1 组合变形和叠加原理 8.2 拉伸或压缩与弯曲的组合 8.3 偏心压缩和截面核心 8.4 扭转与弯曲的组合 8.5 组合变形的普遍情况
8.1 组合变形和叠加原理
组合变形——实际构件由外力所引起的变形包含两种或两 种以上的基本变形。如压力框架、烟囱、传动轴、有吊车 的立柱。 叠加原理——如果内力、应力、变形等与外力成线性关系, 则在小变形条件下,复杂受力情况下组合变形构件的内力, 应力,变形等力学响应可以分成几个基本变形单独受力情 况下相应力学响应的叠加,且与各单独受力的加载次序无 关。 前提条件:
即 亦即 于是得
r4
M 2 0.75T 2 [ ]
W
•请同学们按
照第三强度理 (1064 N m)2 0.75(1000 N m)2 100106 Pa W

材料力学第八章-组合变形

材料力学第八章-组合变形

12 103 141106
94.3MPa 100MPa
故所选工字钢为合适。
材料力学
如果材料许用拉应力和许用压应力不 同,且截面部分 区域受拉,部分区域 受压,应分别计算出最大拉应力 和最 大压应力,并分别按拉伸、压缩进行 强度计算。
材料力学
=+
材料力学
t,max
=+
t,max
①外力分析:外力向形心简化并沿主惯性轴分解。
②内力分析:求每个外力分量对应的内力方程和 内力图,确定危险面。
③应力分析:画危险面应力分布图,叠加,建立 危险点的强度条件。
一般不考虑剪切变形;含弯曲组合变形,一般以弯
曲为主,其危险截面主要依据Mmax,一般不考虑弯
曲切应力。
材料力学
四.叠加原理
构件在小变形和服从胡克定律的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的代数和。
材料力学
F F
350
150
y
50 z
50 150 z0 z1
显然,立柱是拉伸和弯曲的 组合变形。
1、计算截面特性(详细计算略) 面积 A 15103 m2
z0 75mm I y 5310 cm4
材料力学
2、计算内力 取立柱的某个截面进行分析
FN F
M (35 7.5) 102 F 42.5102 F
组合变形
§8.1 组合变形和叠加原理 §8.2 拉伸或压缩与弯曲的组合 §8.3 偏心压缩和截面核心 §8.4扭转与弯曲的组合
content
1、了解组合变形杆件强度计算的基本方法 2、掌握拉(压)弯组合变形和偏心拉压杆 件的应力和强度计算 3、掌握圆轴在弯扭组合变形情况下的强度 条件和强度计算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


F 15103
667FPa
s t.max
s c.max
s c.max

Mz1 Iy

FN A

425103 F 0.125 5.31105

15
F 103
934FPa
目录
§8-2 拉伸或压缩与弯曲的组合
F 350
st.max66F7 sc.max93F4
M FN
①当危险点处于单向应力状态,所计算出的应力代数相加。此时 可按单向应力状态的强度条件进行计算。 ②当危险点处于复杂应力状态,求主应力s1 s2 s3;选用强度理 论进行强度计算。
=
+
=
+
+
§8-1 组合变形和叠加原理
研究内容
拉(压)弯组合变形
斜弯曲
弯扭组合变形
l
SF
a
外力分析 内力分析 应力分析
目录
§8-2 拉伸或压缩与弯曲的组合
A150m 00m 2 z0 75mm FN F
Iy 5.31107mm 4 z1 12m 5 m M 42 153 0FN.m
(3)立柱横截面的最大应力
F 350
M FN
s t.max

Mz0 Iy

FN A

425103 F 0.075 5.31105
第八章 组合变形
目录
第八章 组合变形
§8-1 组合变形和叠加原理 §8-2 拉伸或压缩与弯曲的组合 §8-3 斜弯曲 §8-4 扭转与弯曲的组合
目录
目录
C §8-1 组合变形和叠加原理
A FAx FAy
1、概念
工程实际中大部分构件,往往承 B 受多种外力,其变形较为复杂。
Байду номын сангаас
组合变形:
P
S
FBx
FBy 构件同时发生两种或两种以 上基本变形称为组合变形。
当材料的许用拉应力和许用压应力不相等时,应分别建立 杆件的抗拉和抗压强度条件.
stmax[st]
scmax[sc]
2020/2/1
§8-2 拉伸或压缩与弯曲的组合
=+
10-3
目录
§8-2 拉伸或压缩与弯曲的组合
s t ,max
=+
s c,max
sc


F A
s t ,max
=+
s t,max

Fl W
sc,max


Fl W
s c,max
st,maxW Fl
F A

[s
t
]
sc,maxW FlFA [sc ]
目录
§8-2 拉伸或压缩与弯曲的组合
例题8-1
铸铁压力机框架,立柱横截面尺寸如图所示,材料的
许用拉应力[st]=30MPa,许用压应力[sc]=120MPa。试按
立柱的强度计算许可载荷F。
解:(1)计算横截面的形心、
面积、惯性矩
F 350
F 350
A150m 00m 2
F
M
z0 75mm
y1 z 0 y
FN
z1
z1 12m 5 m Iy 5.31107mm 4
50(2)立柱横截面的内力
150
FN F
MF35075103
50
150
425F103Nm
组合变形工程实例
弯扭组合变形
目录
§8-1 组合变形和叠加原理
叠加原理
构件在小变形和服从胡克定理的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的叠加
解决组合变形的基本方法是将其分解为 几种基本变形;分别考虑各个基本变形时构 件的内力、应力、应变等;最后进行叠加。
-

拉伸正应力
s F2

A
最大弯曲正应力 sm axM W max4F W 1l
杆危险截面 下边缘各点处上的拉应力为
2020/2/1
stmaxssm axF A 24 F W 1l
五、强度条件
由于危险点处的应力状态仍为单向应力状态,故其强度条件 为:
smax[s]
目录
2、讨论组合变形强度问题的基本思路
(1)将外力局部等效变换(分解或平移)并分组:使每一组 力只产生一种基本变形;
(2)分别计算每种基本变形的内力,确定危险截面(一般指各种 内力都大的截面)。
(3)计算各基本变形的应力,确定危险点(一般指各种应力都大的点)。
(4)对危险点进行应力分析和强度计算。
当构件的受力情况不同于基本变形时就产生组合变形。
§8-1 组合变形和叠加原理
组合变形工程实例
10-1
压弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
拉弯组合变形
目录
组合变形工程实例 公路标志牌立柱
平安大街
槐安路 中山路
P
a
x
o
z
P m=Pa y
P——弯曲 m——扭转
弯扭组合
§8-1 组合变形和叠加原理
目录
偏心拉伸(压缩)——单向
受力特点: 载荷平行于杆件轴线,但不重合。
称为偏心拉伸(压缩)
当外力在纵向对称面时,杆件为单向偏心拉伸。 e
P
PP
PP
m=Pe
FN FN
P FN 2
2020/2/1
P P
m=Pe
P
P
m=Pe
例题8-2 正方形截面立柱的中间处开一个槽,使截面面积为原来
截面面积的一半.求开槽后立柱的的最大压应力是原来不开槽的
1.拉(压) :轴力 FN
弯矩 Mz
2.弯曲
剪力Fs
FSMz
O
z x
FN
y
因为引起的切应力较小,故一般不考虑.
2020/2/1
四、应力分析
横截面上任意一点 ( z, y) 处的正应 力计算公式为
1.拉伸正应力
s FN
A
2.弯曲正应力
s Mz y
Iz
sssFNM zy
目录
§8-2 拉伸或压缩与弯曲的组合
一、受力特点
作用在杆件上的外力既有轴向拉( 压 )力,还有横向力
二、变形特点
杆件将发生拉伸 (压缩 )与弯曲组合变形
示例1
F1 产生弯曲变形 F2 产生拉伸变形
示例2
2020/2/1
Fy 产生弯曲变形 Fx 产生拉伸变形
F2
F1
F2
Fy
F

Fx
三、内力分析 横截面上内力
(4)求压力F
s s t.m a6 x F 67t
Fst30 16 0450N 00
667 667
s s c .m a9 x F 3 4 c
s t.max
s c.max
Fsc120 16 0128N 50
934 934
许可F 压 4力 50 N 为 0405kN
A Iz
2020/2/1
( z,y)
Mz
z
O
x
FN
y
3.危险截面的确定
作内力图
F1
轴力
FNF2
弯矩
F2
F2
l/2 l/2
Mmax

F1l 4
所以跨中截面是杆的危险截面
F2
x
FN图 F1l/4
2020/2/1
x
M图
4.计算危险点的应力 F1
F2
F2
s F2 s Mmax
A
W
l/2 l/2
相关文档
最新文档