高中数学第一章统计案例1.1独立性检验自我小测选修1-2讲解
苏教版选修1-2高中数学1.1《独立性检验》

甲厂 乙厂 合计 优质品 非优质品 合计
2 n ad - bc 附:χ2= , a+bb+ca+cb+d
P(χ2≥x0) x0
0.05
0.01
3.841 6.635
课前探究学习
课堂讲练互动
解 (1)甲厂抽查的产品中有 360 件优质品,从而甲厂生产的零件 360 的优质品率估计为500=72%; 乙厂抽查的产品中有 320 件优质品,从而乙厂生产的零件的优质 320 品率估计为500=64%. (2) 甲厂 乙厂 合计 优质品 360 320 680
课前探究学习 课堂讲练互动
【题后反思】 统计的基本思维模式是归纳,通过部分数据的性质 来推测全部数据的性质,从数据上体现的只是统计关系,而不是 因果关系.
课前探究学习
课堂讲练互动
【训练3】 某企业有两个分厂生产某种零件,按规定内径尺寸(单 位: mm) 的值落在 [29.94,30.06) 的零件为优质品.从两个分 厂生产的零件中各抽出了 500 件,量其内径尺寸,得结果如
(4)若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,
但也不能作出结论“H0成立”,即不能认为Ⅰ与Ⅱ没有关 系.
课前探究学习
课堂讲练互动
题型一 利用χ2判定两个变量间的关系 【例1】 某电视台联合相关报社对“男女同龄退休”这一公众关
注的问题进行了民意调查,数据如下表所示:
赞同 男 女 合计 198 476 674
可能性为1%.
课前探究学习 课堂讲练互动
名师点睛 1.独立性检验
2 n ad - bc (1)利用随机变量 χ2= ,(其中 n=a+b a+bc+da+cb+d
+c+d 为样本容量),来确定在多大程度上可以认为“两个分 类变量有关系”的方法称为两个分类变量的独立性检验.
人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。
它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。
回归分析的初步应用包括简单线性回归和多元线性回归。
1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。
其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。
独立性检验的初步应用包括卡方检验和Fisher精确检验。
第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。
演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。
两种推理方法都有其适用的场合,需要根据具体情况进行选择。
2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。
间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。
第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。
复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。
复数的引入扩充了数系,使得一些原本无解的方程可以得到解。
3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。
复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。
第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。
它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。
流程图可以帮助人们更好地理解算法或过程,从而提高效率。
4.2 结构图结构图是一种用于描述程序结构的图形表示方法。
它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。
高中数学 第一章 统计案例 独立性检验课件 北师大版选修1-2(1)

分类变量在现实生活中是大量存在的,如是否 吸烟,是否患肺癌,宗教信仰,国别,年龄, 出生月份等等。
利用随机变量K2来确定在多大程度上可以认为” 两个分类变量有关系”的方法称为两个分类变 量的独立性检验.(为假设检验的特例)
列联表
为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机 地调查了9965人,得到如下结果(单位:人)
不吸烟
吸烟 总计
吸烟与肺癌列联表 不患肺癌 患肺癌 7775 42 2099 9874 49 91
总计 7817
2148 9965
在不吸烟者中患肺癌的比重是 0.54% 2.28% 在吸烟者中患肺癌的比重是 说明:吸烟者和不吸烟者患肺癌的可能性存在差异, 吸烟者患肺癌的可能性大
1)通过图形直观判断两个分类变量是否相关:
一:假设检验问题的原理
假设检验问题由两个互斥的假设构成,其中一个 叫做原假设,用 H0 表示;另一个叫做备择假设, 用H1表示。 例如,在前面的例子中, 原假设为: H0:面包分量足, 备择假设为 H1:面包分量不足。 这个假设检验问题可以表达为: H0:面包分量足 ←→ H1:面包分量不足
二:求解假设检验问题
2 ( n ad bc ) K2 (a b)(c d )(a c)(b d ) P(k2 ≥ m)
a c a+c
bm>10.828)= 0.001表示有99.9%的把握认为”X与Y”有关系; 适用观测数据a、 2)如果P(m>7.879)= 0.005表示有99.5%的把握认为”X与Y”有关系; b、c、d不小于5 3)如果P(m>6.635)= 0.01表示有99%的把握认为”X与Y”有关系; 4)如果P(m>5.024)= 0.025表示有97.5%的把握认为”X与Y”有关系;
高中数学选修1-2第一章课后习题解答

新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。
高中数学 第一章 统计案例 1.2 独立性检验的基本思想及其初步应用课时自测 新人教A版选修1-2(

高中数学第一章统计案例1.2 独立性检验的基本思想及其初步应用课时自测新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章统计案例1.2 独立性检验的基本思想及其初步应用课时自测新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章统计案例1.2 独立性检验的基本思想及其初步应用课时自测新人教A版选修1-2的全部内容。
1.2 独立性检验的基本思想及其初步应用1。
对服用某种维生素对婴儿头发稀疏与稠密的影响调查如下:服用的60人中头发稀疏的有5人,不服用的60人中头发稀疏的有46人,作出如下列联表:头发稀疏头发稠密总计服用维生素5a60不服用维生素46b60总计51a+b120则表中a,b的值分别为( )A。
9,14 B.55,14 C。
55,24 D.69,14【解析】选B。
根据列联表知a=60—5=55,b=60-46=14.2。
与表格相比,能更直观地反映出相关数据总体状况的是( )A。
列联表B。
散点图 C.残差图D。
等高条形图【解析】选D。
在选项中给定的列联表、散点图、残差图与等高条形图中,只有等高条形图能更直观地反映出相关数据总体状况。
3。
在研究“吸烟与患肺癌"的关系中,通过收集数据,整理分析数据得“吸烟与患肺癌有关"的结论,并且在犯错误的概率不超过0。
01的前提下认为这个结论是成立的,下列说法中正确的是( )A.在100个吸烟者中至少有99人患肺癌B。
如果1个人吸烟,那么这个人至少有99%的概率患肺癌C。
在100个吸烟者中一定有患肺癌的人D。
在100个吸烟者中可能一个患肺癌的人也没有【解析】选D。
苏教版高中数学选修(1-2)-1.1典型例题:独立性检验应用的实例

独立性检验应用的实例举例独立性检验的思想应用广泛,学习统计案例贵在体会其思想并且会利用这种思想解决实际问题,而独立性检验在生物中的应用广泛,下面通过具体例子进行说明。
一、报文科、理科与外语兴趣相关吗?1、为了探究学生文、理分科是否与外语兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的138人,无兴趣的98人,文科对外语有兴趣的73人,无兴趣的52人。
试分析学生报考文、理科与外语兴趣是否有关?分析:此题就是要在文理科与对外语有无兴趣之间有无关系作出结论,于是我们可以运用独立性检验的方法进行判断。
解:根据题目所给的数据得到如下列联表:假设学生报考文、理科与对外语有无兴趣无关,由公式计算:根据列联表中数据得到0002.0150211125236)987352138(36122≈⨯⨯⨯⨯-⨯⨯=K ,因为706.20002.0<,所以不能认为学生报考文、理科与对外语有无兴趣有关。
点评:解决本题的步骤是,要先根据已知数据绘制列联表,然后由表格中的数据利用公式求出2K 的值,再由给定的数表来确定两者有关的可靠程度。
二、患桑毛虫皮炎病与采桑相关吗?例2:调查某桑场采桑员和辅助工桑毛虫皮炎发病情况,结果如下表:利用列联表的独立性检验估计,“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系犯错误的概率是多少?()001.0)828.10(2≈≥K P解:.828.106387.3996228230)1247818(11222>=⨯⨯⨯⨯-⨯⨯=K 所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关。
犯错的概率是0.1%.点评:独立性检验的步骤是:检验2×2列联表中的数据是否符合要求,再利用公式))()()(()(22d b c a d c b a bc ad n K ++++-=计算出k 2的值;将k 2与临界值进行比较,进而作出统计推理。
三、药物对感冒有作用吗?例3:在600个人身上试验某种新药预防感冒的作用,把一年中的纪录与另外600个未用新药的人作比较,结果如下:问该种新药起到预防感冒的作用的可能性有( )A 、99%B 、90%C 、99.9%D 、小于90%解:706.22137.0600600624576)284308316292(120022<≈⨯⨯⨯⨯-⨯⨯=K 认为该种新药起到预防感冒的作用的把握小于90%.例3、某推销商为某保健药品做广告,在广告中宣传:“在服用该药品的105人中有100人未患A 疾病”,经调查发现,在不使用该药品的418人中仅有18人患A 疾病,请用所学知识分析该药品对患A 疾病是否有效?解:将问题中的数据写成2×2列联表:。
(必考题)高中数学选修1-2第一章《统计案例》检测(答案解析)(1)

一、选择题1.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9162.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%4.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .595.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7106.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1157.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =8.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 10.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9011.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .312.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;二、填空题13.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 14.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.15.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________16.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.17.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.18.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23,求甲至多命中2个且乙至少命中2个概率____.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是_____.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?大龄受试者年轻受试者合计舒张压偏高或偏低舒张压正常合计6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X,求X的分布列和数学期望.运算公式:()()()()()22n ad bcKa b c d a c b d-=++++,对照表:22.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22⨯列联表,并问是否有0099的把握认为“两个分厂生产的零件的质量有差异”.附:22()()()()()n ad bcKa b c d a c b d-=++++23.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关? ()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.100.050.025 0.010 0.005 0.001k2.0722.7063.8415.0246.6357.879 10.82824.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为子调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天再微信超过4个小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”? 25.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by a x=+和指数函数模型dx y ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==).(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n 的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名. ①完成如下所示22⨯列联表技术工 非技术工 总计 月工资不高于平均数 50 月工资高于平均数50 总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.01 0.005 0.001 0k 3.8416.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.5.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.6.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.7.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.8.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A9.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.10.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.11.D解析:D 【解析】对于①,4344443273()()464432A PB P AB ⨯====,,所以()2()()9P AB P A B P B ==,故①正确;对于②,当22log log a b >,有0a b >>,而由21a b ->有a b >,因为0,0a b a b a b a b >>⇒>>≠>>> ,所以22log log a b >是21a b ->的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线3ξ=对称,且27σ= 所以3,7D μξ==,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.12.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.二、填空题13.【分析】根据甲乙两人各射击一次得分之和为2的概率为列方程解方程求得的值【详解】甲乙两人各射击一次得分之和为2可能是甲击中乙未击中或者乙击中甲未击中故解得故答案为:【点睛】本小题主要考查相互独立事件概解析:34【分析】根据甲、乙两人各射击一次得分之和为2的概率为920列方程,解方程求得p 的值. 【详解】甲、乙两人各射击一次得分之和为2,可能是甲击中乙未击中,或者乙击中甲未击中,故()339115520p p ⎛⎫⋅-+⋅-= ⎪⎝⎭,解得34p =. 故答案为:34【点睛】本小题主要考查相互独立事件概率计算,属于基础题.14.【解析】设第一次摸出正品为事件第二次摸出正品为事件则事件和事件相互独立在第一次摸出正品的条件下第二次也摸到正品的概率为:故答案为 解析:【解析】设“第一次摸出正品”为事件A ,“第二次摸出正品”为事件B , 则事件A 和事件B 相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:()()655109|6910P AB P B A P A ⨯===().故答案为5915.994【解析】由题意知本题是一个相互独立事件同时发生的概率种开关中至少有个开关能正常工作的对立事件是种开关都不能工作分别记开关能正常工作分别为事件故答案为解析:994 【解析】由题意知本题是一个相互独立事件同时发生的概率,,,A B C ,3种开关中至少有1 个开关能正常工作的对立事件是3种开关都不能工作,分别记,,A B C 开关能正常工作分别为事件123,,A A A ,()()1231,,10.10.20.30.994P E P A A A =-=-⨯⨯=, 故答案为0.994. 16.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.17.乙【解析】线性回归模型中越接近1效果越好故乙效果最好解析:乙 【解析】线性回归模型中2R 越接近1,效果越好,故乙效果最好.18.【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件分别做出甲至多命中2个球的概率和乙至少命中两个球的概率根据相互独立事件的概率公式得到结果【详解】甲至多命中2个且乙至少命中2个包含的解析:1118【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件,分别做出甲至多命中2个球的概率和乙至少命中两个球的概率,根据相互独立事件的概率公式得到结果. 【详解】甲至多命中2个且乙至少命中2个包含的两个事件是互相独立事件, 设“甲至多命中2个球”为事件A ,“乙至少命中2个球”为事件B ,由题意()41322124411111112222216P A C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()22342344212128333339P B C C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴甲至多命中2个球且乙至少命中2个球的概率为()()1181116918P A P B ⋅=⨯=,故答案为1118. 【点睛】本题考查独立重复试验,考查离散型随机变量,是一个综合题,解题时注意进球的个数对应的是乙所得的分数,注意分数与进球个数的对应.19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的车能够充电2500次为事件B 即求条件概率:由条件概率公式即得解【详解】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的解析:717【分析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:(|)P B A ,由条件概率公式即得解. 【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:()35%7(|)()85%17P A B P B A P A ===故答案为:717【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.三、解答题21.(1)没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)分布列见解析,()32E X = 【分析】(1)根据题意列出列联表,再计算2 4.762 6.635K ≈<,故没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)由分层抽样得抽得样本的大龄受试者有3人,年轻受试者有3人,X 的可能取值为0,1,2,3,再结合超几何分布求概率和期望即可.【详解】解:()122⨯列联表如下:()210010601020 4.762 6.63530702080K ⨯⨯-⨯∴=≈<⨯⨯⨯所以,没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关.(2)由题意得,采用分层抽样抽取的6人中,大龄受试者有3人,年轻受试者有3人, 所以大龄受试者人数为X 的可能取值为0,1,2,3,所以()33361020C P X C ===,()2133369120C C P X C ===, ()1233369220C C P X C ===,()33361320C P X C ===,所以X 的分布列为:所以()0123202020202E X =⨯+⨯+⨯+⨯=. 【点睛】本题第二问解题的关键在于根据题意得抽取的6人中,大龄受试者有3人,年轻受试者有3人,进而根据超几何分布求概率分布列与数学期望,考查运算求解能力,是中档题.22.(1) 72% 64% (2) 有99%的把握认为“两个分厂生产的零件的质量有差异” 【解析】解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%. (2)χ2=()1000360180320140500500680320⨯⨯-⨯⨯⨯⨯≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”. 23.(1)0.035,41.5;(2)有. 【分析】(1)由频率分布直方图求出a 的值,再计算数据的平均值;(2)由题意填写列联表,计算观测值,对照临界值得出结论. 【详解】(1)由频率分布直方图可得:10×(0.01+0.015+a +0.03+0.01)=1, 解得a =0.035,所以通过电子阅读的居民的平均年龄为:20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5;(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1, ∴纸质阅读的人数为20014⨯=50,其中中老年有30人,∴纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为1500.10.150.35⨯++()=90,则中老年有60人, 得2×2列联表,计算()2200903060202006.061 5.024501501109033K ⨯-⨯==≈>⨯⨯⨯,所以有97.5%的把握认为认为阅读方式与年龄有关. 【点睛】本题考查了频率分布直方图与独立性检验的应用问题,考查了阅读理解的能力,是基础题.24.(1)4.76;(2)有90%的把握认为“微信控”与“性别”有关 【解析】 试题分析:(1)由频率直方图中各概率乘以各方块中点频率相加后即得;(2)从频率直方图中可计算出“微信控”和“非微信控”的男女生人数,再计算出2K 可得. 试题(1)女性平均使用微信的时间为:0.16×1+0.24×3+0.28×5+0.2×7+0.12×9=4.76. (2)2(0.04+a +0.14+2×0.12)=1,解得a =0.08. 由题设条件得列联表:所以K 2==≈2.941>2.706.所以有90%的把握认为“微信控”与“性别”有关.25.(1)指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+;(2)20.99r ≈;用反比例函数模型拟合效果更好;(3)612(千元). 【分析】(1)由96.54dx y e =,得ln ln96.54 4.6y dx dx ν=+⇔=+,将 3.7ν=, 4.5x =代入可得指数模型回归方程.令1xμ=,则y b a μ=+,代入y ,求得b ,a ,可得反比例函数回归方程.(2)求得y 与u 的相关系数为2r ,由12r r <,可得结论. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,可求得订单的期望,从而求得该企业的利润约. 【详解】解:(1)因为96.54dx y e =,所以ln ln96.54 4.6y dx dx ν=+⇔=+, 将 3.7ν=, 4.5x =代入上式,得0.2d =-,所以0.296.54x y e -=.令1xμ=,则y b a μ=+, 因为360458y ==,所以182218183.480.34451001.5380.1158ni ii i i u y u yb u u==-⋅-⨯⨯===-⨯-∑∑,则451000.3411a y b u =-⋅=-⨯=,所以11100y u =+, 所以y 关于x 的回归方程为10011y x=+. 综上,指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+. (2)y 与u 的相关系数为812882222118610.9961.40.616185.588i ii i i i i u y u yr u u y y ===-⋅===≈⨯⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑,因为12r r <,所以用反比例函数模型拟合效果更好. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 令109811111123102222T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 则111092111111*********T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, ②-①,得11109211111522222T ⎛⎫⎛⎫⎛⎫⎛⎫-=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简得10192T ⎛⎫=+ ⎪⎝⎭,所以101391292256S ⎛⎫=+⨯=+ ⎪⎝⎭,所以该企业的利润约为:3310091009101161232562569256⎡⎤⎢⎥⎛⎫⎛⎫+⨯-+⨯++≈ ⎪ ⎪⎢⎥⎝⎭⎝⎭+⎢⎥⎣⎦(千元). 【点睛】本题考查线性回归方程的求得,相关系数的比较,以及运用数学期望求利润,属于中档题. 26.(1)0.05n =;(2)①列联表见解析;②不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关 【分析】(1)根据频率分布直方图列方程组求得n 的值;(2)根据题意得到22⨯列联表,计算观测值,对照临界值表得出结论. 【详解】 (1)月工资收入在[45,50)(百元)内的人数为15月工资收入在[45,50)(百元)内的频率为:150.15100=; 由频率分布直方图得:(0.020.0420.01)50.151n +++⨯+=0.05n ∴=(2)①根据题意得到列联表:技术工 非技术工总计月工资不高于平均数193150月工资高于平均数3119 50总计 50 50 1002 5.7610.82850505050K ==<⨯⨯⨯ 不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.【点睛】本题主要考查了独立性检验和频率分布直方图的应用问题,也考查了计算能力及频率应用问题,是基础题.。
高中数学 第一章 统计案例 独立性检验两种基本思想的解读与对比素材 北师大版选修1-2(1)

独立性检验两种基本思想的解读与对比一、利用三维柱形图或二维条形图粗略地判断运用三维柱形图和二维条形图可以粗略地判断两个分类变量X与Y是否有关系,利用图形的直观性可以较好地向非专业人士解释所得到的统计分析结果.但需要注意的是:①运用两种图形法判断两个分类变量是否有关系时,作图一定要规范;②由于这两种方法无法精确地给出所得结论的可靠程度,因而只做粗略统计,而不做具体运算.例1.为考查某种药物预防疾病的效果,进行动物试验,得到如下的列联表:试用三维柱形图分析服用药和患病之间是否有关系?解:根据列联表所给的数据作出三维柱形图,如图1所示.比较说来,底面主对角线上两个柱体高度的乘积要大的多,可以在很大程度上认为“患病与是否服用药有关”.例2.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,试用二维条形图判断色盲与性别是否有关系?解:根据题中已知数据作出如下的列联表:根据列联表作出相应的二维条形图,如图2所示.从二维条形图来看,在男人中患色盲的比例38480,要比在女人中患色盲的比 例6520大,因而我们可以在很大程度上认为患色盲与性别是有关的.二、独立性检验独立性检验是用来考查两个分类变量是否具有相关关系,并且能较精确地给出这种判断的可靠程度的一种统计方法,利用这一方法,可以直接用2K 的值解决实际问题.这里需特别说明的是:2K 与k的关系并不是k =2K 是一个随机变量,它在a b c d ,,,取不同的值时,2K 可能不同;而k 是2K 的观测值,是取定一组数a 、b 、c 、d 后的一个确定的值.例3.运动员参加比赛前往往做热身运动,下表是一体育运动的研究机构对160位专业运动员追踪而得的数据,试问:由此数据,你认为运动员受伤与不做热身运动有关吗?解:由22()()()()()n ad bc K a c a b c d b d -=++++2160(19207645)38.97495656496⨯⨯-⨯=≈⨯⨯⨯. 因为38.974>7.879,所以有99.5%的把握说,运动员受伤与不做热身运动有关. 针对训练1.研究人员选取170名青年男女大学生的样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的22名,否定的38名;男生110名在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?分别用图形和独立性检验的方法判断.解析:根据题目所给数据建立如下列联表:性别与态度的关系列联表相应的三维柱形图如图所示,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“性别与态度有关”.根据列联表中的数据得到22170(22382288)5.622 5.0241106044126K⨯⨯-⨯=≈>⨯⨯⨯.所以有97.5%的把握认为“性别与态度有关”.2.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系?解析:(1)依据题意“性别与休闲方式”2×2列联表为:(2)假设“休闲方式与性别无关”,计算2124(43332721)6.201 5.02470546460K⨯⨯-⨯=≈>⨯⨯⨯.所以有理由认为假设“休闲方式与性别无关”是不合理的,即有97.5%的把握认为“休闲方式与性别有关”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高中数学 第一章 统计案例 1.1 独立性检验自我小测 苏教版选修
1-2
1.若由一个2×2列联表中的数据计算得χ2≈4.013,那么有__________的把握认为两
个变量间有关系.
2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是________.
①若χ2的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100
个吸烟的人中必有99人患有肺病
②从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那
么他有99%的可能性患有肺病
③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推
断出现错误
④以上三种说法均不正确
3.有两个分类变量X和Y的一组数据,由其列联表计算得χ2=4.523,则认为X和
Y
间有关系出错的可能性为________.
4.班级与成绩2×2列联表:
优秀 不优秀 总计
甲班 10 35 45
乙班 7 38 p
总计 m n q
表中数据m,n,p,q的值分别为__________.
5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男 女 总计
爱好 40 20 60
不爱好 20 30 50
总计 60 50 110
由22++++nadbcabcdacbd算得,χ2=21104030202060506050≈7.8.
附表:
2
P(χ2≥k) 0.050 0.010
0.001
k 3.841 6.635
10.828
参照附表,则有__________的把握认为“爱好该项运动与性别有关”.
6.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:
冷漠 不冷漠 合计
多看电视 68 42 110
少看电视 20 38 58
合计 88 80 168
则大约有__________的把握认为:多看电视与人变冷漠有关系.
7.为考察棉花种子是否经过处理跟得病之间的关系,得如下表所示的数据:
种子处理 种子未处理 合计
得病 32 101 133
不得病 61 213 274
合计 93 314 407
根据以上数据得χ2的值是__________.
8.某高校《统计初步》课程的教师随机调查了选修该课的学生的一些情况,具体数据
如下表:
非统计专业 统计专业
男 13 10
女 7 20
为了判断选修统计专业是否与性别有关,根据表中数据,得χ2=
2
50132010723272030
≈4.844.因为χ2≥3.841,所以有__________的把握认为选修统计
专业与性别有关.
9.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的
跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:
又发作 过心脏病 未发作
过心脏病
合计
心脏搭桥手术 39 157 196
3
血管清障手术 29 167 196
合计 68 324 392
试根据上述数据比较这两种手术对病人又发作过心脏病的影响有没有差别.
4
参考答案
1. 答案:95%
2. 答案:③ 解析:若95%的把握认为两个分类变量有关系,则说明判断出错的可能
性是5%.
3. 答案:5% 解析:因为χ2=4.523,所以有95%的把握认为X与Y之间有关系,即
5%的出错可能性
4. 答案:17,73,45,90 解析:m=10+7=17,n=35+38=73,p=7+38=45,q=17
+73=90.
5. 答案:99% 解析:因为7.8>6.635,所以有99%以上的把握认为“爱好该项运动与
性别有关”.
6. 答案:99.9% 解析:提出假设H0:多看电视与人变冷漠没有关系.
则χ2=216868384220110588880≈11.377>10.828.
因为当H0成立时,P(χ2≥10.828)≈0.001,所以我们有99.9%的把握认为:多看电视
与人变冷漠有关系.
7. 答案:0.164
8. 答案:95%
9. 答案:解:提出假设H0:两种手术对病人又发作过心脏病的影响没有差别.
根据列联表中的数据,得到
χ2=2392391671572919619668324≈1.78<2.072,
因为当H0成立时χ2≥1.78的概率大于15%,这个概率比较大,所以根据目前的调查数
据,不能否定假设H0,即我们可以认为病人又发作过心脏病与否与其做过何种手术无关.