理论力学第10章刚体的定点转动和一般运动
理论力学刚体运动

Ek ( t ) Ek ( t0 ) A外
§6.2 作用在刚体上的力系 一、力系
1、定义:同时作用在一个刚体的一组力称为力系。
2、分类: ①共面力系:所有的力位于同一平面内。 a) 共点力系(汇交力系):所有力的作用线交 于一点的力系。 b) 平行力系:所有力互相平行或反平行。 ②异面力系:力的作用线不在一个平面内。
二、力系等效
1、等效力系的定义 如果在两个力系作用下,刚体的运动相同,则这 两个力系互为等效力系。
2、力系的等效条件:
F1i F2 j
r1i F1i r1 j F1 j
i j
i
j
3、零力系:力系力的矢量和为零,对固定参考点 的力矩和为零的力系。 说明:①所有的零力系都等效 ②任何力系加上零力系后与原力系等效 ③最简单的零力系是一对平衡力组成的力系
2
角动量定理: dL dt
M外
2、平衡条件: Fi 0,
i
且 Mi 0
i
(对任一定点成立)
例 质量为 m ,长为 a 的匀质杆 AB 由系于两端长是 a 的线悬于 O 点,在 B 端挂质量为 m 的重物。求平衡 时杆与水平方向的夹角θ及每根线中的张力 TA 和 TB 。
2、异面力系: 等效于一个单力与一个力偶
z -F3 A F1
F F3
O
x
B F2
y
§6.3 刚体的平衡
刚体运动 平动: 直线平动、曲线平动
转动: 定轴转动、一般转动 平动:运动过程中刚体任一直线的方向保持不变。
转动:刚体上一直线相对参考系的角度发生变化。
O
刚体的一般运动(n=6)
O
大学物理—刚体的动轴转动

F r sin f r sin (m r
i 1 i i i i 1 i i i i 1
N
N
N
N
2
i i
)
根据内力性质(每一对内力等值、反向、共 线,对同一轴力矩之代数和为零),得:
f r sin
i 1 i i
i
0
得到:
F r sin (m r
1
麦克斯韦分布
所以刚体内任何一个质点的运动,都可代表整个 刚体的运动。 刚体运动时,如果刚体的各个质点在运动中 都绕同一直线圆周运动,这种运动就叫做转动, 这一直线就叫做转轴。 3. 刚体的定轴转动 定轴转动: 刚体上各点都绕同一转轴作不同半径的圆周运 动,且在相同时间内转过相同的角度。 特点: (1) 角位移,角速度和角加速度均相同;
Lz Li cos mi Ri v i cos mi ri v i
m r
2 i i
10
式中 mi ri2 叫做刚体对 Oz 轴的转动惯量, 用J表示。
麦克斯韦分布
刚体转动惯量:
J mi ri2
刚体绕定轴的角动量表达式:
Lz J
物理刚体的转动

例题
均匀圆环 : m i
JC mi R R
2
2
m
i
C R
J C mR
2
例题
均匀圆盘:
m dm ds 2 R ds 2rdr
2 R 0
面密度rJ 源自 dm r 2 2 rdr R4
2
1 2 mR 2
半径为R质量为M的均匀圆盘联结一长为L质量为m 的均匀直棒,写出刚体对O轴的转动惯量。(O轴垂直 纸面)
J
r
2
dm
转动惯量与下列三个因素有关:
⑴形状、大小相同的均匀刚体总质量越大,转动惯量越大。 ⑵总质量相同的刚体,质量分布离轴越远,转动惯量越大。 ⑶同一刚体,转轴不同,质量对轴的分布就不同,因而转 动惯量不同。
4、转动惯量的计算 Calculation of moment of inertia 例题:三个质量为m的质点,A、B、C由三个长为L的 轻杆相联结。求该质点系通过A点和O点,且垂直于 三个质点所在平面的转轴的转动惯量。
4、刚体的一般运动
A r 1
A' B r 2
o1
o2
B'
刚体的一般运动可看作 是平动和转动的叠加
5、角速度矢量:
z
, α
v
angular velocity vector
刚体作定轴转动时,各质元 的线速度、角加速度一般是 不同的,但由于各质元的相 对位置保持不变,所以描述 各质元的角量,如角位移、 角速度、角加速度都是一样 的。因此描述刚体的整体运 动时,用角量最为方便
⑶ v R 78.5m s
1
a R an R 2
2 a a2 a n 6.16 m s 1
刚体一般运动的描述

第40卷第5期大 学 物 理Vol.40No.52021年5月COLLEGE PHYSICSMay2021 收稿日期:2020-09-11;修回日期:2020-11-18作者简介:邵瀚雍(2000—),男,四川德阳人,北京师范大学物理学系2018级本科生.櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍殻殻殻殻大学生园地 刚体一般运动的描述邵瀚雍(北京师范大学物理学系,北京 100875)摘要:刚体的一般运动是刚体运动学中最复杂的一类运动,其求解通常需要借助欧拉定理或沙勒定理.通过这两个定理,我们可以把刚体的一般运动分解成较简单的定轴转动和平动.本文主要应用代数理论中的正交矩阵描述刚体的运动,并用代数语言分析了定点转动的本征问题,证明了欧拉定理.随后,将刚体的定点转动进行分解,并给出了物理图像和推导结论,完成了对刚体复杂的一般运动的简单描述. 关键词:刚体一般运动;正交矩阵;沙勒定理;欧拉角中图分类号:O31 文献标识码:A 文章编号:1000 0712(2021)05 0062 05【DOI】10.16854/j.cnki.1000 0712.200405一般运动是刚体运动学中最复杂的问题,因此国内的理论力学教材大多对此介绍较少.且由于刚体运动学教学难度大,课时少,故多数同学跳过了刚体一般运动的内容,但这恰是将刚体运动转化成代数知识的极佳机会,不得不说是一种遗憾.事实上,刚体的一般运动总能分解成基点的运动和绕过该点某轴线的定轴转动,国外教材对此用代数语言给出了证明,但也没有就代数理论和刚体运动的关联进行深入的探讨.本文从正交矩阵讲起,力图用清晰简明的语言,论证使用矩阵描述刚体运动的合理性和优越性,并借用代数思想,将刚体运动和线性代数的知识联系起来,希望能对理论力学的相关教学和学生的学习起到一定的补充和帮助作用.1 参考系实验室参考系,即观者所在的惯性参考系;本体参考系,即固连在刚体上,并与之共同运动的参考系,一般是非惯性系.固连在两种参考系上的坐标系各有利弊.在实验室坐标系中,基矢对时间的微商为零,便于建立动力学方程,但许多力学量在该系中较复杂并不断变动;在本体坐标系中,这些力学量虽然直观简单,恒定不变,但其坐标轴的基矢处在变动之中.在研究刚体定点转动的问题时,我们需要寻找这两种系之间的关联,恰当使用它们描述刚体的运动[1].2 刚体的一般运动刚体在空间不受约束自由运动时,其自由度s=6.一般选定广义坐标(xc,yc,zc,φ,θ,ψ)描述刚体的状态,其中xc、yc、zc为刚体质心在实验室系中的笛卡尔坐标,φ、θ、ψ为刚体的本体系和实验室系坐标变换对应的欧拉角.刚体一般运动有4类特殊情况:平动、定轴转动、平面平行运动、定点转动.虽然它们形式各异,但可以证明如下两点[2]:1)定点转动总可以等效于绕过该定点某一轴线的定轴转动.2)刚体一般运动总可以分解为某点的运动和绕过该点某轴线的旋转.换言之,总可以将复杂的一般运动,分解成过一点的定轴转动(或由多个定轴转动合成)与该点的运动.第1点所谈到的内容,正是刚体运动欧拉定理.该定理指出,对于基点固定的刚体,其运动可以分解为绕某个或多个转轴的转动.根据欧拉运动定理,我们可以将之推广,即第2点,沙勒定理.该定理指出,刚体的最广义位移等价于一个平移和一次旋转.它们是本文的重点,在证明前,需要先通过代数的语言,合理描述刚体的运动,以便于后续的证明.第5期邵瀚雍:刚体一般运动的描述63 3 正交矩阵在线性代数理论中,正交矩阵A被定义为行向量、列向量皆正交且值为1的方阵[3],即满足如下的性质(E为单位阵):ATA=AAT=E(1)矩阵乘法等价于一次线性变换,换句话说,在数学里这种特殊的变换(正交变换)可以保持空间中任意两点的欧式距离不变.这意味着若将某向量v乘上正交矩阵A,得到的新向量长度不变,且空间的原点不变.我们通常将这种变换称为欧拉变换[4].此外,由于正交矩阵满足:ATA=A-1A=E(2)正交变换一定存在逆变换,而且该逆变换很容易写出:A-1=AT.正交矩阵的这些特殊性质在描述刚体运动时展现出极大的优越性,因此,我们常用它描述刚体运动.4 刚体运动的代数表达[2]从物理上讲,根据沙勒定理,刚体的运动可以分为两种:定点转动和点的运动.也就是第2节中提到的6个广义坐标.而上一节中提到的正交变换———欧氏距离不变的线性变换,恰好可以准确反映刚体的定点转动.换言之,刚体的定点旋转过程可以由一次欧拉变换来描述.容易得知,这种变换对应的正交矩阵R应是一个含时矩阵,即R(t).仅仅描述旋转过程是不够的,还需要描述点的运动.易知,描述该运动只需在旋转后添上一个简单的平移矢量p即可.从数学上讲,刚体的运动,可以反过来看作是坐标轴的运动.因此,假设两组正交基分别为[e1,e2,e3]和[e′1,e′2,e′3].在这两组基下,某向量v在这两组基下的值分别为[a1,a2,a3]T和[a′1,a′2,a′3]T.因此有|v|=[e1 e2 e3]a1a2a3=[e′1 e′2 e′3]a′1a′2a′3(3)于是,得到a1a2a3=eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3a′1a′2a′3(4)已知a=[a1,a2,a3]T,a′=[a′1,a′2,a′3]T且定义如下:eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3R(5)则可以将上式写为a=Ra′(6)称R是旋转矩阵.可以看到,R矩阵是由两个标准正交基相乘而来,在线性代数中可以很容易证明,这样得到的矩阵R是正交矩阵,或者反过来说,任何正交矩阵都可以拆分为两个标准正交基的矩阵乘积.因此,旋转矩阵R恰好是正交矩阵,而正交矩阵对应的变换也恰好是两组基之间的旋转变换,也就是实验室系和本体系的欧拉变换;并且,任意实正交矩阵都能看作为一个旋转矩阵.值得一提的是,旋转矩阵的集合称之为特殊正交群:SO(n)={R∈瓗n×n|RRT=E,detR=1}这个正交群可以描述n维空间的旋转变换,在此只考虑n=3的情况.再考虑定点的运动,可以将刚体的运动在数学上表示为a′=RTa+p(7)数学的正交矩阵(变换),对应着欧式空间中距离不变的线性变换,而物理的旋转矩阵(旋转),对应着刚体运动时的任意两点保持相对距离不变的属性.这样,在本节和上一节中已经论证了刚体运动的代数表达,这种代数的表达方式是相当合适且严谨的.5 旋转变换的本征问题刚体的定点转动定理指出,对于基点固定的刚体,其一般运动都可以分解为绕某个或多个轴的转动.根据定理,假设转轴对应的空间列向量为p,由于转轴并不会因为刚体转动而发生任何变化(刚体本身就在绕轴转动),因此,当发生旋转变换时,p应当保持不变.这对应着数学中的不变子空间理论.请看定理[4]:设φ是线性空间V上的线性映射(变换),而总能找到V的子空间U,使得φ(U) U即子空间U的任意元素p在线性映射φ的像Imφ中依然是p本身,称U为φ的不变子空间.易得,φ总有两种特殊的不变子空间U,分别是零子空间和64 大 学 物 理 第40卷全空间V,并称之为平凡子空间.可以发现,在三维旋转映射R下,有一个我们最关注的非平凡不变子空间,这个子空间恰好就是转轴所处直线对应的子空间.上述内容也可以在拓扑理论中理解成映射的不动点原理(Brouwer’sFixed-pointTheorem).从物理上讲,这是一类本征值问题.即在旋转后向量p不发生改变,也就是Rp=1p.这与数学物理方法和量子力学中的本征问题有着异曲同工之妙.将线性算符L^作用于某函数ψ,若有[5]L^ψ=λψ(8)则称函数ψ为线性算符L^的本征函数,λ为算符L^的本征值.例如,定态薛定谔方程H^ψ=Eψ.因此,由Rp=1p,得知p为旋转变换φ的本征函数,λ为变换φ的本征值,这恰好就是线性代数中熟知的矩阵特征值问题:Ap=λp(9)所以若要证明欧拉定理,可以将定理的证明等价于证明旋转矩阵R的特征值组中必然有一特征值λ1=1.本征值与本征函数对刻画线性系统的普遍性质和演化规律有着重要意义.它是所有线性体系中最根本的特点.如果能得到线性体系对应的本征值与本征函数,就可以通过线性组合的方法描述或解释这一体系更为普遍的规律.6 欧拉运动定理的证明和推论欧拉运动定理的论证过程在H.Goldstein所著的ClassicalMechanics[6]和BeattyM.F.所著的Prin ciplesofEngineeringMechanics:Kinematics中都有着详细的描述.两本书巧妙利用矩阵和线性代数理论证明了欧拉定理,而我们的证明过程也借鉴了其中的思想.设旋转矩阵为R,欧拉定理中所描述的轴线为p,则有:Rp=p.根据上一节中内容,若需要证明旋转过程中存在始终不变的轴线p,则等价于证明矩阵R具有特征值λ1=+1.容易证明旋转矩阵R为正交矩阵,所以由RTR=RRT=E,可得:(R-E)RT=E-RT(10)|R-E||RT|=|E-RT|(11)设旋转前后两组正交基的基点重合于刚体的定点,且初始基为标准正交基.则可以得出初始旋转矩阵为三阶单位阵E.因此,根据矩阵乘法,后续的旋转矩阵的行列式的值|R|和|RT|仍为+1.由式(11)可得|R-E|=|E-RT|=|E-RT|T=|E-R|(12)因此,有|R-E|=|E-R|=|-1(R-E)|(13)而|-1(R-E)|=(-1)n|R-E|(14)其中n为矩阵维数,也是空间维数.所以得到|R-E|=(-1)n|R-E|(15)刚体所处为三维空间,n=3,所以|R-E|=-|R-E|=0(16)最终得出|R-E|=0,即矩阵R至少有一个特征值λ1=+1,欧拉运动定理得证.需要多谈两个问题:其一[1],如果刚体所处空间不为奇数维度,而是偶数维度,则得不到|R-E|=0的结论,也就是说欧拉运动定理在二维、四维等偶数维空间失效.所以,平面内不存在欧拉定理,因为当坐标系转动时,任何位于平面内的矢量均会发生改变,唯有沿转轴方向的矢量不发生改变,但此时它与平面垂直,并不在平面内.这是一个相当有意思的推论,这意味着我们所处的三维空间并不是随便确定的.其二,是旋转矩阵R是否还存在别的特征值?答案是肯定的.利用矩阵的久期方程:|R-λE|=0(17)可以发现,这是一个关于λ的三次方程.高斯的代数基本定理指出,该一元三次方程在复数域C 中必然存在三个根.在文献[7]中,我们可以根据矩阵的迹tr(R)求得另外两个特征值分别为λ2,3=e±iΩ(18)也就是说,旋转矩阵的另外两个复特征值的辐角,恰好为欧拉定理中绕固定轴线p的旋转角Ω.这里给出两个特殊情况:1)λ1,2,3=+1:此时Ω=0,意味着刚体保持了初始时刻的状态,为平凡解.2)λ1=+1;λ2,3=-1:此时Ω=π,意味着刚体绕轴转过了180°,刚体任意两点之间的矢量p′都做了关于p的空间坐标反演操作.而沙勒定理是欧拉定理的一个直接推论.该定理的证明如下.刚体的一般运动可以分解为刚体中某一点的运第5期 邵瀚雍:刚体一般运动的描述65 动并叠加上刚体对该点的定点运动.而根据欧拉运动定理,后一运动可以认为是绕过该点的某一轴线的转动.因此,刚体的一般运动可以分解为某点的运动和绕过该点某轴线的旋转.沙勒定理得证.至此,我们完成了刚体一般运动中沙勒定理的证明,论证了刚体的任意运动都可以分解为某点运动和定轴转动.矩阵语言虽然简练,但不能直观反映物理实质.这里需要寻找一种物理的描述办法刻画刚体的运动,这就是所谓的欧拉角,也是前面所述的3个广义坐标φ、θ、ψ.7 欧拉角在天体和力学领域里,为了完备、清晰地刻画刚体运动,分别用了章动角θ、进动角φ和自转角ψ来描述.这些称呼来自陀螺的定点运动,如图1所示.图1 陀螺定点运动示意图为了便于描述欧拉角的具体意义,可将刚体的定点转动通过坐标轴的旋转,依次分成3个步骤,如图2—图4,这里在每个步骤后面都写上了对应的旋转矩阵R.每一次的旋转并不是任意的,它们都可以在图1的陀螺运动中找到对应,转动顺序是进动、章动、自转,如下所示.1)绕Oz0轴进动φ:图2(a)→(b)图2 进动示意图从Ox0y0z0到Ox′y′z′的旋转矩阵为Rφ=cosφ-sinφ0sinφcosφ0001(19)2)绕Ox′轴(节线ON)章动θ:图3(a)→(b)图3 章动示意图从Ox′y′z′到Ox″y″z″的旋转矩阵为Rθ=1000cosθ-sinθ0sinθcosθ(20)3)绕Oz″轴自转ψ:图4(a)→(b)图4 自动示意图从Ox″y″z″到Oxyz的旋转矩阵为Rψ=cosψ-sinψ0sinψcosψ0001(21)经过上面的三次旋转变换,可以得到描述刚体的任意旋转的总变换矩阵:R =RψRθRφ(22)由前面的结论可知,所有的变换矩阵都是正交矩阵,均由变换前后的两组基底相乘而来(此处为一组基的转置和另一组基之间的矩阵乘法).在前文中,我们提到过刚体的定点运动可以由一个旋转矩阵R来描述,矩阵的特征值λ2,3=e±iΩ,其中Ω为绕该轴的转角.那么,我们现在找到了一66 大 学 物 理 第40卷种物理的语言,可以将Ω对应的总角速度ω分解为刚体的章动、进动和自转.根据图2—图4中的转动过程,三个欧拉角的角速度方向分别为:φ 沿实验室系z0轴,θ 沿节线ON,ψ 沿本体系z轴,分解如下式:ω=φ k0+θ i′+ψ k(23)将不同的角速度对应的基矢利用旋转矩阵得到的函数关系展开化简,可以得到如下的结论:ω在实验室系的坐标轴投影为ω0x=ψ sinθsinφ+θcosφω0y=ψ sinθcosφ+θsinφω0z=ψcosθ+φ(24)ω在本体系的坐标轴投影为ωx=φ sinθsinψ+θ cosψωy=φ sinθcosψ-θ sinψωz=ψ+φ cosθ(25)这样,我们得到了刚体定点转动中绕某一轴线旋转的角速度ω的实际物理意义,即可以把这一定轴转动对应的转角Ω分解到3个有意义的欧拉角(也就是φ、θ、ψ)上去.不过,需要强调的是,在导出欧拉角的时候,所经历的三次连续旋转的转轴的选取顺序其实存在着随意性.只要每次选定的旋转轴不与上一次相同,便可以任意选取.因此,在右手系中我们有3×2×2=12种不同的旋转方法,这称为欧拉角的顺规.大多数的理论力学教材所采用的是x顺规,即第二次旋转绕x轴(前文中的节线ON),而多数的量子物理、核物理的教材所采用的是y顺规,即第二次旋转绕y轴.在工程中,为了弥补前两种顺规在变换前后的坐标系区分程度低的缺点,常采用第三种常见顺规:xyz顺规[2],这样得到的3个角就分别是飞机的偏航角(Yaw)、俯仰角(Pitch)和滚动角(Roll).8 总结在本文中,我们介绍了正交矩阵在描述刚体运动的优越性,并将之应用到刚体的旋转运动中,随后利用旋转矩阵证明了刚体运动的沙勒定理,这意味着复杂的刚体一般运动可以由定轴转动和点的运动来描述.之后,我们从物理给出了刚体定点运动的图像,并用欧拉角来描述这样的运动.刚体的运动学在数学上和物理上都全部得以描述.参考文献:[1] 秦敢,向守平.力学与理论力学(下册)[M].北京:科学出版社,2017:134 135.[2] BeattyJrMF.PrinciplesofEngineeringMechanics:Kinematics—TheGeometryofMotion[M].SpringerScience&BusinessMedia,2013.[3] 同济大学数学系.工程数学线性代数[M].北京:高等教育出版社,2014:118 119.[4] 姚慕生,吴泉水,谢启鸿.高等代数学[M].上海:复旦大学出版社,2003:202.[5] 杨福家.原子物理学[M].北京:高等教育出版社,2008:125 126.[6] GoldsteinH,PooleC,SafkoJ.ClassicalMechanics[M].2002.[7] 毛文炜.刚体定点转动的欧拉定理[J].大学物理,1988,1(4):15.Descriptionoftherigidbodies generalmotionSHAOHan yong(DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:Thegeneralmotionofarigidbodyisthemostcomplicatedtypeofmotioninrigidbodykinematics,anditssolutionusuallyrequirestheaidofEuler'stheoremorChasles theorem.Throughthesetwotheorems,wecandecomposethegeneralmotionofarigidbodyintosimplerfixed-axisrotationandtranslation.Thispapermainlyusestheorthogonalmatrixinthealgebratheorytodescribethemotionofarigidbody,andanalyzestheeigenprob lemsoffixed-pointrotation,andprovesEuler stheorem.Thenitdecomposesthefixed-pointrotationofarigidbody.Physicalimagesandderivationconclusionsaregiven,andasimpledescriptionofthecomplexgeneralmotionofrigidbodiesiscompleted.Keywords:rigidbodiesgeneralmotion;orthogonalmatrix;Chasles theorem;EulerAngles。
理论力学-刚体的基本运动

教学目标知识目标:刚体的平行移动,定轴转动刚体的角速度,定轴转动刚体的角加速度,定轴转动刚体内各点的速度和加速度,皮带轮传动,齿轮传动。
能力目标:理解刚体的两种基本运动。
素质目标:沟通、协作能力;观察、信息收集能力;分析总结能力。
良好的职业道德和严谨的工作作风理论力学-刚体的基本运动〖理论学习〗7.1刚体的平行移动刚体在运动过程中,其内任一直线始终与它的最初位置保持平行,这种运动称为刚体的平行移动,简称平移。
刚体平移时,若其上各点的轨迹是直线,则称为直线平移;若其上各点的轨迹是曲线,则称为曲线平移。
图7-1结论:当刚体平移时,其上各点的轨迹形状相同,且在每一瞬时,各点的速度相同,加速度也相同。
7.2刚体绕定轴的转动在工程实际中,经常遇到齿轮、机床的主轴、发电机的转子等的运动,它们的共同特点是刚体运动时,其上或其扩展部分有一条直线始终保持不动,这种运动称为刚体绕定轴的转动,简称转动,这条固定不动的直线称为刚体的转轴或轴线,简称轴。
为确定转动刚体的位置,取其转轴为z轴,正向如图7-3所示。
通过轴线z作一固定平面A,此外,通过轴线z再作一动平面B与刚体固接。
当刚体转动时,两个平面之间的夹角用φ表示,称为刚体的转角,以弧度(rad)表示。
图7-3转角φ是一个代数量,可确定刚体在某一瞬时的位置,其符号依据右手螺旋法则确定,亦可自z轴的正端往负端看,从固定面起按逆时针转向计量的转角为正值,反之为负值。
当刚体转动时,转角φ是时间t的单值连续函数,即φ=f(t)(7-4)式(7-4)称为刚体定轴转动的运动方程。
定轴转动刚体的位置由参变量转角φ就可唯一确定,这样的刚体具有一个自由度。
7.2.1定轴转动刚体的角速度为了描述刚体转动的快慢程度,现引入角速度的概念。
设在Δt时间内,刚体的转角由φ变化到φ+Δφ,转角的增量Δφ称为角位移。
当Δt趋近于零时,比值ΔφΔt的极限称为刚体在瞬时t的角速度,以字母ω表示。
刚体的角速度ω等于转角φ对时间的一阶导数。
理论力学10

1定义刚体内所有的线段在运动过程中始终平行于初始位置称为平动。
§5-2 刚体的两种基本运动----------平行移动和绕定轴的转动一刚体的平行移动(简称平动)在运动中方向和大小始终不变,它的轨迹可以是直线,可以是曲线。
ABr G2平动刚体上点的运动方程(设A ,B 为刚体上的任两点)B A ABr r r =+G G G Ar G Br G ()0()AB r t=d d G 平动的刚体d d d d d d B A ABr r r t t t=+GG G结论:1,平动的刚体(直线平动和曲线平动)在任一时刻各点的速度和加速度相同→简化为一个点的运动2,如果平面内运动的刚体上任一条线段在运动过程中始终平行于初始位置则此刚体做平动3平动刚体上点的速度和加速度分布B A B A r r v v tt==d d d d G G G GAA B B a tv t v a G GG G ===d d d d d d d d B Ar r t t=G G =E刚体ACB平动D点D是小轮和大轮切点EAv G Dv G Ev G v v v ==G G GτAa G n Aa G τDa G n Da G Ea τG n Ea G G G G二刚体绕定轴的转动1定义:刚体上(或其扩展部分)两点保持不动,称为定轴转动2 运动方程:()t f=ϕϕ3.角速度和角加速度tϕω=d d 角速度角加速度s/rad 10s /rad 30/ rpm(,s /rad n n n ≈=πω分)转或单位αω方向:逆时针为正22t tωϕα==d d d ds ϕωvGsωαaτG naGωαs(1)角速度矢量和角加速度矢量6以矢量表示定轴转动刚体的角速度和角加速度,以矢积表示定轴转动刚体上点的速度和加速度k kt tωωαα===d d d d GGG G:kωω=G G如果:()n ωω=GG如果方向余弦n nt t ωωαα===d d d d GGG G nGrP94---5.3P94---5.3,5.4#刚体的平行移动小结#刚体绕定轴的转动时—运动的标量描述平动刚体上各点的速度和加速度在同一瞬时都相同,平动刚体的在任意瞬时的角速度和角加速度都为零.ϕ:转角ωR v =22,ωατR R v a R a n ===td d ϕω=:角速度22t t d d d d ϕωα==:角加速度k ωω=G G kαα=G G a rτα=×G G G 切向加速度v r ω=×G G G 速度()n a v r ωωω=×=××G G G G G G 法向加速度#刚体绕定轴的转动时—运动的矢量描述rChapter 6 Composite Motion of a Point点的合成运动§6-1 Concepts of composite motion of a point 点的合成运动的基本知识§6-2 Composite of velocities of a point点的速度合成定理§6-3 Composition of accelerations of a point点的加速度合成定理研究对象:通过研究一个动点相对于两个不同的参考系的运动之间的关系,提出一种有效的运动分析方法,即运动的分解与合成方法.研究方法:A moving point机构上的一个动点§8-1点的合成运动的基本知识在两个不同的坐标系下观察动点A 动系与凸轮的联系和区别点A 相对地面:垂直直线运动点A 相对凸轮:轮缘线运动(点A在动系上滑过的痕迹)凸轮相对地面:水平直线运动The absolute motion 绝对运动:The relative motion相对运动:The transport motion 牵连运动:Which describes the moving point withrespect to the fixed reference frame.动点相对静系的运动Which describes the moving frame withrespect to the fixed reference frame.动系相对静系的运动Three types of motion三种运动Which describes the moving point withrespect to the moving reference frame.动点相对动系的运动动系:绝对运动相对运动牵连运动圆周运动曲线平动直线运动x′y′o′相对轨迹动点:套筒中心A固连在BC上(平动)动系:绝对运动:直线运动(AB )相对运动:圆周运动(以C 为圆心,半径为R )牵连运动:定轴运动(轴O )'x 'y 相对轨迹动点:AB 杆上A 点凸轮(定轴转动)动系:工件(定轴转动)车刀的运动分析:动点:车刀刀尖绝对运动:直线运动牵连运动:定轴转动相对运动:曲线运动(螺旋运动)。
第十章刚体的定点运动及一般运动_理论力学

章动角 等于或近似于常数, 且进动角速度
动称为规则进动。用欧拉角描述规则进动十分方便。 §10-4 刚体绕相交轴转动的合成 刚体绕相交轴转动的合成运动是绕定点运动。
1.
刚体绕两相交轴转动之合成
图 10-7 所示为一两自由度陀 转动, 转子相对于框架绕 CD 轴以 转动, 两轴交点 O 固
螺, 框架 ABCD 绕定轴 Az 以
107角加速度见图106所以108规则进动欧拉角的实际重要性在于有许多力学系统其刚体的运动学方程式中章动角等于或近似于常数且进动角速度和自转角速度等于或近似于常数这种运动称为规则进动
第十章 刚体的定点运动及一般运动 1. 刚体绕固定点运动时,具有三个自由度(见图 10-1)用欧拉角描述其在空间的方位。
角→x'y'z',形成如图 10-3 所示之欧拉角。 四轴共面,且与 Oz' 正交。
3.
刚 体 绕 定 点 运 动 方 程 式
(10-1) 是时间的单值连续函数。 由式(10-1)可见,定点运动一般具有三个自由度。 角速度矢量 , 和 如图 10-4 所示。则 (10-2) 可见,定点运动的绝对角速度是一个变矢量,即
A 点的向轴加速度为
最后得 A 点的加速度为
矢量 aA 在 Oy1z1 平面内,且与 Oy1 轴的夹角为
2、 以上是利用瞬时转动轴及瞬时角速度方法求解。下面利用点的合成运动的方法求 A 点的 速度及加速度。 作动坐标系 固结在轴 OO1 上,则牵连运动即为刚体绕 Oz 轴以公转角速度的
转动,A 点相对于动坐标系的速度可由刚体自转角速度决定。 由于公转角速度 和瞬时转动轴位置 OC 已知,不难求出自转角速度 为(图 b)
这样, 定点 O 和瞬时速度为零的 C 点连线 OC 就是碾轮的瞬时转动轴。 由碾轮牵连角
理论力学第10章

C
B
Dபைடு நூலகம்
vCD
×
输入文件检查 构件数量 = 3 构件号= 1 构件类型代码= 1 2 (主动构件,转动 ) 角速度分量(w),角加速度分量(e) .000 .000 -5.000 .000 .000 .000 约束类型数= 2 2 自由度约束个数 = 1 2 自由度约束坐标(x,y) .000 .000 .000 1.000 1.000 .000 联接点约束个数 = 1 联接点约束中2自由度约束个数= 1 联接点约束中2自由度约束坐标(x,y) .000 -1.000 .000 1.000 1.000 .000 构件号= 2 构件类型代码= 0 3 (被动构件,平面运动) 基点坐标,角速度矢量方向 .000 -1.000 .000 .000 .000 1.000 约束类型数= 1 联接点约束个数 = 2 联接点约束中1自由度直线约束个数= 1 联接点约束中1自由直线约束坐标(x,y) -1.000 -2.000 .000 -.710 .710 .000 联接点约束中2自由度约束个数= 1 联接点约束中2自由度约束坐标(x,y) .000 -1.000 .000 1.000 1.000 .000
第十章 运动构件系统 分析和计算机计算
沈阳建筑大学
侯祥林
第十章 运动构件系统分析和计算机计算
§10-1 刚体一般运动概述
§10-2 构件系统运动分析
§10-3 构件系统运动计算机计算
例题
第十章 运动构件系统分析和计算机计算
§10-1 刚体一般运动概述
1. 刚体的定点运动 刚体运动时,若体内有一点在空 间的位置保持不变则这种运动为刚 体的定点运动 O xyz 为过定点O的定坐标系, 固定 在刚体上的动坐标系为O x´y´ z ´, ON是坐标O x´y´和O xy 的平面交线 称为节线 ON和x轴的夹角ψ---进动角 z ´轴和z轴θ----章动角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点转动不仅是一切用球铰联结的机器部件 运动的抽象,也是天体、飞机船舶、航天器 等各种自由运动物体的普遍运动形式。
• 10.1 刚体的定点运动 • 10.1.1 刚体的有限转动
1.刚体有限转动定理
当刚体转动前后连体基之间的方向余弦矩阵 A 给定以后, 有限转动轴的方向余弦 p1, p2 , p3 即可由方程组(10-5)解
出。根据线性代数理论,解出的 p(1) 也就是方向余弦矩阵
A 的本征向量。
arccos
1 2
(trA
1)
证明: 几何关系: AB sin
(10-6) (c1)
B0B 2sin 2 2AB sin 2
(c2)
sin2 sin2 sin2
(d)
2
2
利用半角公式,并代入以下方向余弦符号:
a11 i0 , i1 cos p1 cos
(e)
导出
1 a11 (1 p12 )(1 cos)
(f1)
依此类推,可导出
方向余弦 p1, p2, p3 应满足以下关系式:
p12 p22 p33 1
(10-1)
图10-2 有限转动角的确定
2有限转动轴位置和有限转动角
p e0T p(0) e1T p1
(10-2)
p(0) Ap(1)
(10-3)
i0 i1
A
e0
e1T
j0
2.瞬时角位移矢量
J p
叫做角位移。
PP PM
PM r sin
PP r sin
或
r r J sin
即
r J r
(10-7)
(h) (i) (10-8) (j) (10-9)
• (i)转动前:r ;
为表明刚体在定点转动中的位置,通常在转动轴上画一个箭号, 其长度等于刚体所转过的角度 , 其指向与刚体的转向成右手 螺旋关系,这种箭号叫作角位移。
AB B A (g)
值得注意的是刚体有限转动中两个角位移的相加次序不可 交换。这可用一个实例来加以说明。在图10-3和图10-4中,
长方体按不同顺序先绕 z轴、后绕 x轴或先绕 x轴、后绕 z轴各转过 90后,最终到达的位置截然不同!
,同时也就把 B 移到 B 。换句话说,点O 固定的刚体的
运动是以O 为轴的转动。因此,刚体的定点运动也可以
称为定点转动。刚体做定点转动时,若转角为有限值,则称为
ห้องสมุดไป่ตู้
有限转动。刚体只要绕O 轴一次转过 角后即到达新位置。 从而证明以下欧拉有限转动定理:
欧拉定理:刚体绕定点O 的任意有限转动可由绕点 O 的某根轴的一次有限转动实现。
i1
k0 i1
i0 j1 j0 j1 k0 j1
i0 k1
j0
k1
k0 k1
(10-4)
p(1) p(0) Ap(1)
(b)
(A E) p(1) 0
(10-5)
其中 E 为三阶单位阵。可以证明 det(A E) 0 ,
因此齐次代数方程组(10-5)有非零解。
可以证明,定点运动是一种转动,转动轴通过该定点。 证明:以定点 O 为球心作任意半径的球面(图10-1)。
刚体与球面的截面 S 随同刚体的定点运动而沿 球面运动。在刚性截面 S 上任取两点 A 和 B , 作连接两点的大圆弧 AB ,刚体的位置由 AB 的位置(和定点O 一起)完全确定 。
图10-1 刚体的有限转动
结论,有限角位移不是矢量。
10.1.2 刚体的瞬时转动
1.无限小转动
转动瞬轴 定转动瞬轴迹面和动转动瞬轴迹面
刚体定点转动时,若转过的角度极小以至可视作无限 小量时,称为无限小转动。 根据欧拉定理,刚体的任 意无限小转动完全等效于绕瞬时转动轴的无限小转 动。
图10-5 转动瞬轴迹面
图10-6绕瞬轴无限小转动角位移矢量
第10章 刚体的定点运动和一般运动
刚体运动时,如体内只有一点相对定参考系 保持不动,则此运动称为刚体的定点运动.
研究表明,刚体的定点运动是一种转动,因此刚 体的定点运动也可以称为定点转动。
刚体定点转动是比定轴转动更为普遍的
运动,后者可看作是定点转动的一种特例。
也可以认为定点转动是刚体绕若干根汇交 于一点的轴转动的复合运动.在不受约束的
当刚体位置有改变时, A 和 B 分别变到 A 和 B 。 S 运动到 S , AB 的新位置为 AB 。既然任意两点间的 距离不变, A 和 B 必在同一球面上。作大圆弧连接 A 和 A ,作大圆弧连接 B 和 B ,分别作 AA 和 BB 的垂直平分 大圆面。 此二平面的交线通过点 O 且与球面交于点 , 夹角为 。球面 AB 和 AB 由于对应各边的弧长相等(
将每次转动后的连体基位置相对定参考系固定而定义一系列中 间坐标系,刚体历次转动前后的位置关系由中间坐标系之间的 方向余弦矩阵确定。由于矩阵乘法不存在交换律,故当转动次 序改变时,即使绕各转动轴的角度一一相同,最终到达的位置 却不相同。其原因在于前次转动改变了固结于刚体的后续转动 轴在空间中的位置。因此一系列转动的合成不仅取决于各次转 动轴在刚体内的位置和转过的角度,而且与转动的顺序有关。
1 a22 (1 p22 )(1 cos)
(f2)
1 a33 (1 p32 )(1 cos)
(f3)
3
以上三式相加,利用 pi2 1 ,即导出式(8-6)。□
i 1
3 有限转动次序的不可交换性
如刚体绕点 O作一系列有限转动,根据欧拉定理,它完全 等效于绕过点 O 且固定于刚体的各一次转动轴的一系列转动。
AB AB 是由于刚体的任意两点间的距离不变, A A
是因为 在 AA 的垂直平分大圆上,同理, B B ),因而是全等形。这样 AB AB。这式两边同加上 AB,就给出
AA BB
(a)
就是说,以直线 O 为轴,转动角度 AA 把 A 移到 A