2019最新高中数学 课时分层作业15 反证法 新人教A版选修2-2

合集下载

人教版数学高二A版选修2-2练习 反证法 (2)

人教版数学高二A版选修2-2练习  反证法 (2)

第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法[A级基础巩固]一、选择题1.实数a,b,c满足a+b+c=0,则正确的说法是()A.a,b,c都是0B.a,b,c都不为0C.a,b,c中至少有一个为0D.a,b,c不可能均为正数答案:D2.否定结论“自然数a,b,c中恰有一个偶数”时,正确的反设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c都是奇数或至少有两个偶数解析:自然数a,b,c中奇数、偶数的可能情况有:全为奇数,恰有一个偶数,恰有两个偶数,全为偶数.剔出结论即为反设.答案:D3.“实数a,b,c不全大于0”等价于()A.a,b,c均不大于0B.a,b,c中至少有一个大于0C.a,b,c中至多有一个大于0D.a,b,c中至少有一个不大于0解析:“不全大于零”即“至少有一个不大于0”,它包括“全不大于”.选项D正确.答案:D4.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为() A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B5.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有()A.0个B.1个C.2个D.3个解析:①错:应为a≤b;②对;③错:应为三角形的外心在三角形内或在三角形的边上;④错:应为三角形可以有2个或2个以上的钝角.答案:B二、填空题6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是___________________________________.解析:“至少有一个”的否定是“一个也没有”,故结论的否定是:没有一个面是三角形或四边形或五边形.答案:没有一个面是三角形或四边形或五边形7.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.(填序号)答案:③①②8.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是________.解析:若甲获奖,则甲、乙、丙、丁说的话都是错的,同理可推知乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.答案:丙三、解答题9.若a、b、c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c =z 2-2x +π6, 求证:a 、b 、c 中至少有一个大于0.证明:设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,所以a +b +c ≤0.而a +b +c =⎝ ⎛⎭⎪⎫x 2-2y +π2+⎝ ⎛⎭⎪⎫y 2-2z +π3+⎝ ⎛⎭⎪⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π-3=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0.所以a +b +c >0,这与a +b +c ≤0矛盾,故a 、b 、c 中至少有一个大于0.10.设函数f (x )=ax 2+bx +c (a ≠0)中,a ,b ,c 均为整数,且f (0),f (1)均为奇数.求证:f (x )=0无整数根.证明:假设f (x )=0有整数根n ,则an 2+bn +c =0,由f (0)为奇数,即c 为奇数,f (1)为奇数,即a +b +c 为奇数,所以a +b 为偶数,又an 2+bn =-c 为奇数,所以n 与an +b 均为奇数,又a +b 为偶数,所以an -a 为奇数,即(n -1)a 为奇数,所以n -1为奇数,这与n 为奇数矛盾.所以f (x )=0无整数根.B 级 能力提升1.设a 、b 、c 都是正数,则三个数a +1b ,b +1c ,c +1a( ) A .都大于2 B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2解析:假设a +1b <2,b +1c <2,c +1a<2, 则a +1b +b +1c +c +1a<6; 因为a +1a ≥2,b +1b ≥2,c +1c≥2, 所以a +1b +b +1c +c +1a≥6. 所以假设错误,选项C 正确.答案:C2.若下列两个方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是________________.解析:若两方程均无实根,则Δ1=(a -1)2-4a 2=(3a -1)(-a -1)<0,解得a <-1或a >13. Δ2=(2a )2+8a =4a (a +2)<0,解得-2<a <0,所以-2<a <-1.所以,若两个方程至少有一个方程有实根,则有a≤-2或a≥-1.答案:{}a|a≤-2或a≥-13.求证:不论x,y取何非零实数,等式1x+1y=1x+y总不成立.证明:假设存在非零实数x,y使得等式1x+1y=1x+y成立.于是有y(x+y)+x(x+y)=xy,即x2+y2+xy=0,即(x+y2)2+34y2=0.由y≠0,得34y2>0.又(x+y2)2≥0,所以(x+y2)2+34y2>0.与x2+y2+xy=0矛盾,故原命题成立.。

高中数学 2.2.2 反证法课时作业(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

高中数学 2.2.2 反证法课时作业(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题

课时作业19 反证法知识点一反证法的概念1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用( )①结论相反判断,即假设;②原命题的条件;③公理、定理、定义等;④原结论.A .①②B .①②④C .①②③D .②③答案 C解析 原结论不能作为条件使用.2.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有( )A .0个B .1个C .2个D .3个答案 B解析 ①错,应为a ≤b ;②对;③错,应为三角形的外心在三角形内或三角形的边上;④错,应为三角形可以有2个或2个以上的钝角.知识点二反证法的步骤3.用反证法证明命题“a ,b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有一个不能被5整除答案 B解析 “a ,b 中至少有一个能被5整除”的否定是“a ,b 都不能被5整除”.4.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°相矛盾,∠A =∠B =90°不成立.②所以一个三角形中不能有两个直角.③假设∠A 、∠B 、∠C 中有两个角是直角,不妨设∠A =∠B =90°.正确顺序的排列为________.答案 ③①②解析 反证法的步骤是:先假设命题不成立,然后通过推理得出矛盾,最后否定假设,得到命题是正确的.故填③①②.知识点三用反证法证明命题5.若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a ,b ,c 中至少有一个大于0.证明 假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,∴a +b +c ≤0.而a +b +c=⎝⎛⎭⎪⎫x 2-2y +π2+⎝ ⎛⎭⎪⎫y 2-2z +π3+⎝ ⎛⎭⎪⎫z 2-2x +π6 =(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3.∴a +b +c >0,这与a +b +c ≤0矛盾,故a ,b ,c 中至少有一个大于0.6.用反证法证明:若函数f (x )在区间[a ,b ]上是增函数,那么方程f (x )=0在区间[a ,b ]上至多只有一个实数根.证明 假设方程f (x )=0在区间[a ,b ]上至少有两个实根,设α,β为它的两个实根,则f (α)=f (β)=0.因为α≠β,不妨设α<β,又因为函数f (x )在[a ,b ]上是增函数,所以f (α)<f (β),这与f (α)=f (β)=0矛盾.所以方程f (x )=0在区间[a ,b ]上至多只有一个实根.一、选择题1.用反证法证明结论为“自然数a ,b ,c 中恰有一个偶数”的命题时,应假设( )A .a ,b ,c 都是奇数B .a ,b ,c 都是偶数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中至少有两个偶数或都是奇数答案 D解析 假设结论不成立时应考虑所有情况,故选D.2.有以下结论:①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.下列说法中正确的是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确答案 D解析 用反证法证题时一定要将对立面找准.在①中应假设p +q >2.故①的假设是错误的,而②的假设是正确的.3.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2答案 C解析 假设都大于-2,则a +1b +b +1c +c +1a >-6,但⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝ ⎛⎭⎪⎫c +1c ≤-2+(-2)+(-2)=-6,矛盾. 4.设a ,b ,c 均为正实数,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 首先,若P ,Q ,R 同时大于0,则必有PQR >0成立.其次,若PQR >0,且P ,Q ,R 不都大于0,则必有两个为负,不妨设P <0,Q <0,即a +b -c <0,b +c -a <0,所以b <0,与b >0矛盾.故P ,Q ,R 都大于0.5.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形答案 D解析 因为正弦值在(0°,180°)内是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos(90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2,则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,∴(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°,即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.故选D.二、填空题6.命题“a ,b 是实数,若|a +1|+(b +1)2=0,则a =b =-1”,用反证法证明该命题时应假设________.答案 a ≠-1或b ≠-1解析 a =b =-1表示a =-1且b =-1,故其否定是a ≠-1或b ≠-1.7.下列命题适合用反证法证明的是________.①已知函数f (x )=a x +x -2x +1(a >1),证明:方程f (x )=0没有负实数根; ②若x ,y ∈R ,x >0,y >0,且x +y >2,求证:1+x y 和1+y x 中至少有一个小于2;③关于x 的方程ax =b (a ≠0)的解是唯一的;④同一平面内,分别与两条相交直线垂直的两条直线必相交.答案 ①②③④解析 ①是“否定性”命题;②是“至少”类命题;③是“唯一性”命题,且题中条件较少;④不易直接证明,因此四个命题都适合用反证法证明.故填①②③④.8.对于定义在实数集R 上的函数f (x ),如果存在实数x 0,使f (x 0)=x 0,那么x 0叫做函数f (x )的一个“好点”.已知函数f (x )=x 2+2ax +1不存在“好点”,那么a 的取值X 围是________. 答案 ⎝ ⎛⎭⎪⎫-12,32 解析 假设函数f (x )存在“好点”,即存在实数x ,使得x 2+2ax +1=x ,所以x 2+(2a -1)x +1=0有实数根.所以Δ=(2a -1)2-4≥0,解得a ≤-12,或a ≥32. 所以f (x )不存在“好点”时,a 的取值X 围是⎝ ⎛⎭⎪⎫-12,32. 三、解答题9.设函数f (x )=ax 2+bx +c (a ≠0),a ,b ,c 均为整数,且f (0),f (1)均为奇数,求证:f (x )=0无整数根.证明 假设f (x )=0有整数根n ,则an 2+bn +c =0(n ∈Z ),而f (0),f (1)均为奇数,即c 为奇数,a +b 为偶数,则a ,b ,c 同时为奇数,或a ,b 同时为偶数,c 为奇数, 当n 为奇数时,an 2+bn 为偶数;当n 为偶数时,an 2+bn 也为偶数,即an 2+bn +c 为奇数,与an 2+bn +c =0矛盾.所以f (x )=0无整数根.10.已知a ,b ,c 是互不相等的实数,求证:由y =ax 2+2bx +c ,y =bx 2+2cx +a 和y =cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点.证明 假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点.由y =ax 2+2bx +c , y =bx 2+2cx +a ,y =cx 2+2ax +b ,得Δ1=(2b )2-4ac ≤0,且Δ2=(2c )2-4ab ≤0,且Δ3=(2a)2-4bc≤0.同向不等式求和得4b2+4c2+4a2-4ac-4ab-4bc≤0,∴2a2+2b2+2c2-2ab-2bc-2ac≤0.∴(a-b)2+(b-c)2+(a-c)2≤0.∴a=b=c.这与题设a,b,c互不相等矛盾,因此假设不成立,从而命题得证.。

高中数学 第二章 推理与证明 2.2.2 反证法练习(含解析)新人教A版选修2-2-新人教A版高二选

高中数学 第二章 推理与证明 2.2.2 反证法练习(含解析)新人教A版选修2-2-新人教A版高二选

2.2.2 反证法一、选择题1.用反证法证明命题:“三角形的内角至少有一个不大于60度”时,反设正确的是()A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B【解析】由反证法的证明命题的格式和语言可知答案B 是正确的,所以选B.2.用反证法证明“如果a b >>A =<=C D =<【答案】D【解析】>反证法需假设结论的反面,应为小于或等于,=<3.用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()A .方程02=++b ax x 没有实根B .方程02=++b ax x 至多有一个实根C .方程02=++b ax x 至多有两个实根D .方程02=++b ax x 恰好有两个实根【答案】A【解析】方程02=++b ax x 至少有一个实根的否定是方程02=++b ax x 没有实根,∴用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是方程02=++b ax x 没有实根.故选A .4.用反证法证明命题“a b ∈N ,,如果ab 可以被5整除,那么a ,b 至少有1个能被5整除.”假设的内容是()A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除【答案】B【解析】用反证法证明时,要假设所要证明的结论的反面成立,本题中应反设a ,b 都不能被5整除.5.用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为()A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,,中至少有两个偶数D .自然数c b a ,,中至少有两个偶数或都是奇数【答案】D【解析】反证法证明时应假设所要证明的结论的反面成立,本题需反设为自然数c b a ,,中至少有两个偶数或都是奇数.6.设椭圆22221x y a b +=(a >b >0)的离心率为e =12,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2上B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内D .以上三种情形都有可能【答案】C 【解析】∵12c e a ==,∴a =2c ,∴b 2=a 2-c 2=3c 2.假设点P (x 1,x 2)不在圆 x 2+y 2=2内,则22122x x +≥,但()222212121222b c x x x x x x a a ⎛⎫+=+-=-+ ⎪⎝⎭ 223272424c c c c =+=<,矛盾.∴假设不成立.∴点P 必在圆x 2+y 2=2内.故选C.二、填空题7.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是.【答案】方程x 3+ax +b =0没有实根【解析】因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根个数大于或等于1”,所以假设是“方程x 3+ax +b =0没有实根”.8.用反证法证明命题“若210x -=,则1x =-或1x =”时,应假设.【答案】1-≠x 且1≠x【解析】反证法的反设只否定结论,或的否定是且,所以是1-≠x 且1≠x .9.用反证法证明命题:“设实数a 、b 、c 满足a +b +c =1,则a 、b 、c 中至少有一个数不小于31”时,第一步应写:假设.【答案】c b a ,,都小于31 【解析】反证法第一步是否定结论,a 、b 、c 中至少有一个数不小于31的否定是c b a ,,都小于31. 10.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误. ②所以一个三角形不能有两个直角.③假设△ABC 中有两个直角,不妨设∠A =90°,∠B =90°.上述步骤的正确顺序为________.【答案】③①②【解析】由反证法证明数学命题的步骤可知,步骤的顺序应为③①②.。

新人教A版选修2-2《2.2.2反证法》同步练习及答案

新人教A版选修2-2《2.2.2反证法》同步练习及答案

选修2-2 2.2.2 反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°[答案] B[解析] “至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a ,b ,c 都不是偶数.5.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( )A .a <bB .a ≤bC .a =bD .a ≥b[答案] B[解析] “a >b ”的否定应为“a =b 或a <b ”,即a ≤b .故应选B.6.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( )A .一定是异面直线B .一定是相交直线C .不可能是平行直线D .不可能是相交直线[答案] C[解析] 假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线.故应选C.7.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c中( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2[答案] C[解析] ⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫c +1a +⎝⎛⎭⎪⎫b +1c =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ∵a ,b ,c ∈(-∞,0),∴a +1a =-⎣⎢⎡⎦⎥⎤-a +⎝ ⎛⎭⎪⎫-1a ≤-2 b +1b =-⎣⎢⎡⎦⎥⎤-b +⎝ ⎛⎭⎪⎫-1b ≤-2 c +1c =-⎣⎢⎡⎦⎥⎤-c +⎝ ⎛⎭⎪⎫-1c ≤-2∴⎝ ⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫c +1a +⎝ ⎛⎭⎪⎫b +1c ≤-6 ∴三数a +1b 、c +1a 、b +1c 中至少有一个不大于-2,故应选C.8.若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面[答案] B[解析] 对于A ,若存在直线n ,使n ∥l 且n ∥m则有l ∥m ,与l 、m 异面矛盾;对于C ,过点P 与l 、m 都相交的直线不一定存在,反例如图(l ∥α);对于D ,过点P 与l 、m 都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁[答案] C[解析] 因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.10.已知x 1>0,x 1≠1且x n +1=x n (x 2n +3)3x 2n +1(n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n <x n +1,或者对任意正整数n 都满足x n >x n +1”,当此题用反证法否定结论时,应为( )A .对任意的正整数n ,都有x n =x n +1B .存在正整数n ,使x n =x n +1C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0[答案] D[解析] 命题的结论是“对任意正整数n ,数列{x n }是递增数列或是递减数列”,其反设是“存在正整数n ,使数列既不是递增数列,也不是递减数列”.故应选D.二、填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案] 没有一个是三角形或四边形或五边形[解析] “至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案] a,b都不能被5整除[解析] “至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A =∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________.[答案] ③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、p n,令p=p1p2…p n+1.显然,p不含因数p1、p2、…、p n.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、p n之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案] 质数只有有限多个除p1、p2、…、p n之外[解析] 由反证法的步骤可得.三、解答题15.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.[证明] 用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab +bc +ca >0矛盾,所以假设不成立.因此a >0,b >0,c >0成立.16.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14. [证明] 证法1:假设(1-a )b 、(1-b )c 、(1-c )a 都大于14.∵a 、b 、c 都是小于1的正数,∴1-a 、1-b 、1-c 都是正数.(1-a )+b 2≥(1-a )b >14=12, 同理(1-b )+c 2>12,(1-c )+a 2>12. 三式相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾. 所以(1-a )b 、(1-b )c 、(1-c )a 不能都大于14. 证法2:假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得 (1-a )b (1-b )c (1-c )a >⎝ ⎛⎭⎪⎫143① 因为0<a <1,所以0<a (1-a )≤⎝ ⎛⎭⎪⎫1-a +a 22=14. 同理,0<b (1-b )≤14,0<c (1-c )≤14. 所以(1-a )a (1-b )b (1-c )c ≤⎝ ⎛⎭⎪⎫143.② 因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .(1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b );(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析] (1)证明:∵a +b ≥0,∴a ≥-b .由已知f (x )的单调性得f (a )≥f (-b ).又a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ).两式相加即得:f (a )+f (b )≥f (-a )+f (-b ).(2)逆命题:f (a )+f (b )≥f (-a )+f (-b )⇒a +b ≥0.下面用反证法证之.假设a +b <0,那么:a +b <0⇒a <-b ⇒f (a )<f (-b )a +b <0⇒b <-a ⇒f (b )<f (-a )⇒f (a )+f (b )<f (-a )+f (-b ).这与已知矛盾,故只有a +b ≥0.逆命题得证.18.(2010·湖北理,20改编)已知数列{b n }的通项公式为b n =14⎝ ⎛⎭⎪⎫23n -1.求证:数列{b n }中的任意三项不可能成等差数列.[解析] 假设数列{b n }存在三项b r 、b s 、b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b t >b s >b r ,则只可能有2b s =b r +b t 成立. ∴2·14⎝ ⎛⎭⎪⎫23s -1=14⎝ ⎛⎭⎪⎫23r -1+14⎝ ⎛⎭⎪⎫23t -1. 两边同乘3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s ,由于r <s <t ,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列{b n }中任意三项不可能成等差数列.。

人教A版数学高二选修2-2课后提升训练反证法

人教A版数学高二选修2-2课后提升训练反证法

课后提升训练十八反证法(45分钟70分)一、选择题(每小题5分,共40分)1.命题“三角形中最多只有一个内角是直角”的结论的否定是( )A.有两个内角是直角B.有三个内角是直角C.至少有两个内角是直角D.没有一个内角是直角【解析】选C.“最多只有一个”的否定是“至少有两个”.2.命题“关于x的方程ax=b(a≠0)的解是唯一的”的结论的否定是( )A.无解B.两解C.至少两解D.无解或至少两解【解析】选D.“解是唯一的”的否定是“无解或至少两解”.3.实数a,b,c不全为0等价于( )A.a,b,c均不为0B.a,b,c中至多有一个为0C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0【解析】选D.实数a,b,c不全为0,即a,b,c中至少有一个不为0. 【补偿训练】否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D.至少有两个解【解析】选C.在逻辑中“至多有n个”的否定是“至少有(n+1)个”,所以“至多有两个解”的否定为“至少有三个解”.4.(2017·潍坊高二检测)(1)已知p3+q3=2,求证:p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下结论正确的是( )A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确【解析】选D. (1)的假设应为p+q>2;(2)的假设正确.5.若方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是( )A.(-∞,-2]∪[-1,+∞)B.[-2,1]C.(-∞,1]∪[2,+∞)D.[-2,-1]【解析】选A.假设两个方程都没有实数根,则有解得-2<a<-1,故两个方程至少有一个方程有实根时,a的取值范围为a≤-2或a≥-1.6.设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R 同时大于零”的( )A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件【解析】选C.必要性显然,充分性:若PQR>0,则P,Q,R同时大于零或其中两个为负,不妨设P<0,Q<0,R>0,因为P<0,Q<0,即a+b<c,b+c<a,所以a+b+b+c<c+a,即b<0,这与b>0矛盾,所以P,Q,R同时大于零.7.已知数列{a n},{b n}的通项公式分别为a n=an+2,b n=bn+1(a,b是常数),且a>b,那么两个数列中序号与数值均相同的项有( )A.0个B.1个C.2个D.无穷多个【解析】选A.假设存在序号和数值均相等的项,即存在n使得a n=b n,由题意a>b,n∈N*,则恒有an>bn,从而an+2>bn+1恒成立,所以不存在n使a n=b n.【补偿训练】设椭圆+=1(a>b>0)的离心率e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2) ( )A.必在圆x2+y2=2上B.必在圆x2+y2=2外C.必在圆x2+y2=2内D.以上三种情形都有可能【解析】选C.因为e==,所以a=2c.所以b2=a2-c2=3c2.假设点P(x1,x2)不在圆x2+y2=2内,则+≥2,但+=(x1+x2)2-2x1x2=+=+=<2,二者矛盾.所以假设不成立.所以点P(x1,x2)必在圆x2+y2=2内.8.已知α∩β=l,a⊂α,b⊂β,若a,b为异面直线,则( )A.a,b都与l相交B.a,b中至少一条与l相交C.a,b中至多有一条与l相交D.a,b都与l相交【解析】选B.如果l与a,b不相交,则l与a,b都平行,所以直线a,b 平行,与直线a,b异面矛盾,因此l至少与a,b中一条相交.二、填空题(每小题5分,共10分)9.(2017·长沙高二检测)“任何三角形的外角都至少有两个钝角”的否定是________________.【解析】该命题的否定有两部分,一是任何三角形,二是至少有两个,其否定应为“存在一个三角形,其外角最多有一个钝角”.答案:“存在一个三角形,其外角最多有一个钝角”10.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.【解析】由反证法的步骤可知,正确顺序为③①②.答案:③①②三、解答题(每小题10分,共20分)11.已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.【证明】假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1.又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c,d中至少有一个是负数.12.求证:过一点只有一条直线与已知平面垂直.【解题指南】文字叙述题的证明应先写出已知,求证,本题证明时应分两种情况,即点P在平面α内和点P在平面α外.【证明】已知:平面α和一点P.求证:过点P与平面α垂直的直线只有一条.证明:如图所示,不论点P在α内或α外,设PA⊥α,垂足为点A(或P).假设过点P还有另一条直线PB⊥α,设PA,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线PA,PB垂直于a,这与在同一平面内过一点有且只有一条直线与已知直线垂直相矛盾,所以假设不成立,原命题成立.【拓展延伸】反证法证题要处理好一个关键用反证法证题时,一定要处理好推出矛盾这一步骤,因为反证法的核心就是从求证的结论反面出发,导致矛盾的结果,因此如何导出矛盾,就成为了关键所在,对于证题步骤,绝不可死记,要具有全面扎实的基础知识,并能灵活运用.【能力挑战题】已知:0<α<,0<β<,且sin(α+β)=2sinα,求证:α<β.【证明】(1)假设α=β(α,β均为锐角),由sin(α+β)=2sinα得sinαcosβ+cosαsinβ=2sinα, 所以2sinαcosα=2sinα,所以cosα=1,与α∈相矛盾,故α≠β.(2)假设α>β(α,β均为锐角),由sinαcosβ+cosαsinβ=2sinα,得cosαsinβ=sinα(2-cosβ),即=.由>α>β>0得sinα>sinβ>0,所以>1.又0<cosα<cosβ<1,所以2-cosβ>1,所以<1.故=不成立,故α≤β.因为α≠β且α≤β,所以α<β.综上所述α<β.。

人教A版选修2-2 反证法 课时作业

人教A版选修2-2  反证法 课时作业

一、选择题1.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根解析:“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”答案:A2.用反证法证明命题“若直线AB,CD是异面直线,则直线AC,BD也是异面直线”的过程归纳为以下三个步骤:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的顺序为( )A.①②③B.③①②C.①③②D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.答案:B3.用反证法证明在“△ABC中至多有一个直角或钝角”,第一步应假设( )A.三角形中至少有一个直角或钝角B.三角形中至少有两个直角或钝角C.三角形中没有直角或钝角D.三角形中三个角都是直角或钝角答案:B4.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中( )A.有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°答案:B5.设实数a 、b 、c 满足a +b +c =1,则a ,b ,c 中至少有一个数不小于( )A .0B.13C.12 D .1解析:假设a ,b ,c 都小于13,则a +b +c <1,与a +b +c =1矛盾,选项B 正确. 答案:B二、填空题6.已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a ,求证:b 与c 是异面直线,若利用反证法证明,则应假设________.解析:∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b 与c 平行或相交.答案:b 与c 平行或相交7.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:由假设p 为奇数可知(a 1-1),(a 2-2),…,(a 7-7)均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…a 7)-(1+2+…+7)=0为偶数.答案:(a 1-1)+(a 2-2)+…+(a 7-7)8.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b 为实数)”,其假设为________.解析:“a 、b 全为0”即是“a =0且b =0”,因此用反证法证明时的假设为“a ,b 不全为0”.答案:a ,b 不全为0三、解答题9.设x ,y 都是正数,且x +y >2,试用反证法证明:1+x y <2和1+y x<2中至少有一个成立.证明:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2,1+y x≥2. 又因为x ,y 都是正数,所以1+x ≥2y ,1+y ≥2x .两式相加,得2+x +y ≥2x +2y ,则x +y ≤2,这与题设x +y >2矛盾,所以假设不成立.故1+x y <2和1+y x<2中至少有一个成立. 10.设等比数列{a n }的公比为q ,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列;(2)当q ≠1时,数列{S n }是等差数列吗?为什么?证明:(1)假设{S n }是等比数列,则S 22=S 1·S 3,所以a 21(1+q )2=a 1·a 1(1+q +q 2).因为a 1≠0,所以(1+q )2=1+q +q 2,所以q =0,这与等比数列的公比q ≠0矛盾.故数列{S n }不是等比数列.(2)当q ≠1时,假设{S n }是等差数列,则有2S 2=S 1+S 3,即2a 1(1+q )=a 1+a 1(1+q +q 2).因为a 1≠0,所以q (q -1)=0.又q ≠1,所以q =0.这与q ≠0矛盾.故{S n }不是等差数列.B 级 能力提升1.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a的值( ) A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2解析:假设a +1b ,b +1c ,c +1a都小于2 则a +1b <2,b +1c <2,c +1a<2 ∴a +1b +b +1c +c +1a<6,① 又a ,b ,c 大于0所以a +1a ≥2,b +1b ≥2,c +1c≥2. ∴a +1b +b +1c +c +1a≥6.② 故①与②式矛盾,假设不成立所以a +1b ,b +1c ,c +1a至少有一个不小于2. 答案:D2.对于定义在实数集R 上的函数f (x ),如果存在实数x 0,使f (x 0)=x 0,那么x 0叫作函数f (x )的一个好点.已知函数f (x )=x 2+2ax +1不存在好点,那么a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1)D .(-∞,-1)∪(1,+∞)解析:假设函数f (x )存在好点,则x 2+2ax +1=x 有实数解, 即x 2+(2a -1)x +1=0有实数解.所以Δ=(2a -1)2-4≥0,解得a ≤-12或a ≥32. 所以f (x )不存在好点时,a 的取值范围是⎝ ⎛⎭⎪⎫-12,32. 答案:A3.已知直线ax -y =1与曲线x 2-2y 2=1相交于P ,Q 两点,是否存在实数a ,使得以PQ 为直径的圆经过坐标原点O ?若存在,求出a 的值;若不存在,请说明理由.解:不存在.理由如下:假设存在实数a ,使得以PQ 为直径的圆经过原点O ,则OP ⊥OQ .设P (x 1,y 1),Q (x 2,y 2).由⎩⎨⎧ax -y =1,x 2-2y 2=1,消去y ,整理得(1-2a 2)x 2+4ax -3=0. 所以x 1+x 2=-4a 1-2a 2,x 1x 2=-31-2a 2. 因为x 1x 2+y 1y 2=0,所以x 1x 2+(ax 1-1)(ax 2-1)=0,所以(1+a 2)x 1x 2-a (x 1+x 2)+1=0,则(1+a 2)·-31-2a 2-a ·-4a 1-2a 2+1=0, 所以a 2=-2,这是不可能的.故不存在满足题设条件的实数a .。

2019版高中数学 第二章 推理与证明 课时作业15 综合法和分析法 新人教A版选修2-2.doc

2019版高中数学 第二章 推理与证明 课时作业15 综合法和分析法 新人教A版选修2-2.doc
只需证c2+a2=ac+b2.
∵△ABC三个内角A,B,C成等差数列,
∴B=60°.
由余弦定理,有b2=c2+a2-2cacos60°,
即b2=c2+a2-ac,c2+a2=ac+b2,
此式即分析中欲证之等式,即原式得证.
法二:∵△ABC三个内角A,B,C成等差数列,
∴B=60°.
由余弦定理,有b2=c2+a2-2accos60°,
A.综合法B.类比法
C.分析法D.归纳法
解析:要证 + < + ,
只需证明
2a+7+2 <2a+7+2 ,
只需证明 < ,
只需证明a2+7a<a2+7a+12,
只需证明0<12,
故选择分析法最合理.
答案:C
4.已知a>0,b>0且a+b=2,则()
A.a≤ B.ab≥
C.a2+b2≥2 D.a2+b2≤3
14.△ABC的三个内角A,B,C成等差数列,其对边分别为a,b,c.求证:(a+b)-1+(b+c)-1=3(a+b+c)-1.
证明:法一:要证(a+b)-1+(b+c)-1=3(a+b+c)-1,
即证 + = ,
即证 + =3,
也即证 + =1.
只需证c(b+c)+a(a+b)=(a+b)(b+c),
只需证b2-ac<3a2,
只需证b2-a(-b-a)<3a2,
只需证2a2-ab-b2>0.
只需证(2a+b)(a-b)>0,
只需证(a-c)(a-b)>0.
故索的因应为C.
答案:C
二、填空题(每小题5分,共15分)
6. - ________ -1.(填“>”或“<”)

高中数学 2.2.2反证法课时作业 新人教A版选修22

高中数学 2.2.2反证法课时作业 新人教A版选修22

2.2.2 反证法课时目标 1.了解间接证明的一种基本方法——反证法.2.了解反证法的思考过程、特点.3.结合已经学过的数学实例,理解反证法的推理过程,证明步骤,体会直接证明与间接证明的区别与联系.1.一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过____________,最后得出________,因此说明假设________,从而证明了原命题________,这样的证明方法叫做反证法.反证法是间接证明的一种基本方法.2.反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与________________________________________________等矛盾.一、选择题1.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用( )①结论相反判断,即假设;②原命题的条件;③公理、定理、定义等;④原结论.A.①② B.①②④C.①②③ D.②③2.反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是( )①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾.A.①② B.①③C.①③④ D.①②③④3.用反证法证明命题:若整系数一元二次方程ax2+bx+c=0 (a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是( )A.假设a、b、c都是偶数B.假设a、b、c都不是偶数C.假设a、b、c至多有一个偶数D.假设a、b、c至多有两个偶数4.命题“三角形中最多只有一个内角是直角”的结论的否定是( )A.有两个内角是直角B.有三个内角是直角C.至少有两个内角是直角D.没有一个内角是直角5.否定“自然数a、b、c中恰有一个偶数”时正确的反设为( )A.a、b、c都是奇数B.a、b、c都是偶数C.a、b、c中至少有两个偶数D.a、b、c中都是奇数或至少有两个偶数6.已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件题号12345 6答案二、填空题7.用反证法证明:“△ABC中,若∠A>∠B,则a>b”的结论的否定为________.8.将“函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数c,使f(c)>0”反设,所得命题为“__________________________”.9.若下列两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是______________.三、解答题10.已知a是整数,a2是偶数,求证:a也是偶数.11.若a 、b 、c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a 、b 、c 中至少有一个大于0.能力提升12.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y 总不成立.13.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.1.对于否定性命题或结论中出现“至多”、“至少”、“不可能”等字样时,常用反证法.2.反证法的基本步骤是:(1)反设——假设命题的结论不成立,即假设原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾的结果; (3)存真——由矛盾结果,断定反设不真,从而肯定结论成立.答案知识梳理1.正确的推理 矛盾 错误 成立2.已知条件或与假设或与定义、公理、定理、事实 作业设计1.C 2.D 3.B 4.C5.D [恰有一个偶数的否定有两种情况,其一是无偶数(全为奇数),其二是至少有两个 偶数.]6.B [∵c >d ,∴-c <-d ,a >b , ∴a -c 与b -d 的大小无法比较. 可采用反证法,当a -c >b -d 成立时,假设a ≤b ,∵-c <-d , ∴a -c <b -d ,与题设矛盾,∴a >b .综上可知,“a >b ”是“a -c >b -d ”的必要不充分条件.] 7.a ≤b8.函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]上恒小于等于0 9.a ≤-2或a ≥-1解析 若方程x 2+(a -1)x +a 2=0有实根, 则(a -1)2-4a 2≥0,∴-1≤a ≤13.若方程x 2+2ax -2a =0有实根. 则4a 2+8a ≥0,∴a ≤-2或a ≥0, ∴当两个方程至少有一个实根时, -1≤a ≤13或a ≤-2或a ≥0.即a ≤-2或a ≥-1.10.证明 假设a 不是偶数,则a 为奇数. 设a =2m +1(m 为整数),则a 2=4m 2+4m +1.因为4(m 2+m )是偶数,所以4m 2+4m +1为奇数,所以a 2为奇数,与已知矛盾,所以假 设错误,所以原命题成立,即a 是偶数.11.证明 设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0, ∴a +b +c ≤0.而a +b +c =⎝ ⎛⎭⎪⎫x 2-2y +π2+⎝ ⎛⎭⎪⎫y 2-2z +π3+⎝ ⎛⎭⎪⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3. ∴a +b +c >0,这与a +b +c ≤0矛盾, 故a 、b 、c 中至少有一个大于0.12.证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y 成立.于是有y (x +y )+x (x +y )=xy , 即x 2+y 2+xy =0,即(x +y 2)2+34y 2=0.由y ≠0,得34y 2>0.又(x +y 2)2≥0,所以(x +y 2)2+34y 2>0.与x 2+y 2+xy =0矛盾,故原命题成立. 13.(1)解 设公差为d ,由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0. ∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0,∴p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层作业(十五) 反证法(建议用时:40分钟)[基础达标练]一、选择题1.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中( )【导学号:31062157】A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°B[由反证法的证明命题的格式和语言可知答案B是正确的,所以选B.]2.用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根A[依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根,故应选A.] 3.用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数a,b,c中恰有一个偶数”时正确的假设为( )A.自然数a,b,c都是奇数B.自然数a,b,c都是偶数C.自然数a,b,c中至少有两个偶数D.自然数a,b,c中至少有两个偶数或都是奇数D [反证法证明时应假设所要证明的结论的反面成立,本题需反设为自然数a,b,c 中至少有两个偶数或都是奇数.]4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( ) A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线C[假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线,故选C.]5.设x ,y ,z 都是正实数,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2C [若a ,b ,c 都小于2,则a +b +c <6①, 而a +b +c =x +1x +y +1y +z +1z≥6②,显然①,②矛盾,所以C 正确.] 二、填空题6.用反证法证明“若函数f (x )=x 2+px +q ,则|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,假设内容是________.【导学号:31062158】[解析] “|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反面是“|f (1)|,|f (2)|,|f (3)|都小于12”.[答案] |f (1)|,|f (2)|,|f (3)|都小于127.用反证法证明命题“若x 2-1=0,则x =-1或x =1”时,应假设________. [解析] 反证法的反设只否定结论,或的否定是且,所以是x ≠-1且x ≠1. [答案] x ≠-1且x ≠1 8.完成反证法证题的全过程.题目:设a 1,a 2,…,a 7是由数字1,2,…,7任意排成的一个数列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则________均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0. 但奇数≠偶数,这一矛盾说明p 为偶数.[解析] 由假设p 为奇数可知a 1-1,a 2-2,…,a 7-7均为奇数,故(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0为奇数,这与0为偶数矛盾.[答案] a 1-1,a 2-2,…,a 7-7 (a 1-1)+(a 2-2)+…+(a 7-7) (a 1+a 2+…+a 7)-(1+2+ (7)三、解答题9. 已知x ,y >0,且x +y >2.求证:1+x y ,1+y x中至少有一个小于2.【导学号:31062159】[证明] 假设1+x y ,1+y x都不小于2,即1+x y ≥2,1+yx≥2.∵x ,y >0,∴1+x ≥2y,1+y ≥2x . ∴2+x +y ≥2(x +y ),即x +y ≤2与已知x +y >2矛盾. ∴1+x y ,1+y x中至少有一个小于2.10.设函数f (x )=ax 2+bx +c (a ≠0)中,a ,b ,c 均为整数,且f (0),f (1)均为奇数.求证:f (x )=0无整数根.[解] 假设f (x )=0有整数根n , 则an 2+bn +c =0,由f (0)为奇数,即c 为奇数,f (1)为奇数,即a +b +c 为奇数,所以a +b 为偶数,又an 2+bn =-c 为奇数,所以n 与an +b 均为奇数,又a +b 为偶数, 所以an -a 为奇数,即(n -1)a 为奇数, 所以n -1为奇数,这与n 为奇数矛盾. 所以f (x )=0无整数根.[能力提升练]1.已知a 、b 、c ∈(0,1).则在(1-a )b 、(1-b )c 、(1-c )a 中, ( )【导学号:31062160】A .不能同时大于14B .都大于14C .至少一个大于14D .至多有一个大于14A [法一:假设(1-a )b 、(1-b )c 、(1-c )a 都大于14.∵a 、b 、c 都是小于1的正数,∴1-a 、1-b 、1-c 都是正数.-a +b2>-a b>14=12, 同理-b +c 2>12,-c +a 2>12. 三式相加,得 -a +b2+-b +c2+-c +a 2>32, 即32>32,矛盾. 所以(1-a )b 、(1-b )c 、(1-c )a 不能都大于14.法二:假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b (1-b )c (1-c )a >⎝ ⎛⎭⎪⎫143①因为0<a <1,所以0<a (1-a )≤⎝⎛⎭⎪⎫1-a +a 22=14.同理,0<b (1-b )≤14,0<c (1-c )≤14.所以(1-a )a (1-b )b (1-c )c ≤⎝ ⎛⎭⎪⎫143.②因为①与②矛盾,所以假设不成立,故选A.]2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=2上 B .必在圆x 2+y 2=2外 C .必在圆x 2+y 2=2内 D .以上三种情形都有可能C [∵e =c a =12,∴a =2c ,∴b 2=a 2-c 2=3c 2.假设点P (x 1,x 2)不在圆x 2+y 2=2内,则x 21+x 22≥2,但x 21+x 22=()x 1+x 22-2x 1x 2=⎝ ⎛⎭⎪⎫-b a 2+2c a =3c 24c 2+2c 2c =74<2,矛盾.∴假设不成立.∴点P 必在圆x 2+y 2=2内.故选C.]3.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是________.[解析] 若甲是获奖的歌手,则都说假话,不合题意.若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意. 若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意. [答案] 丙4.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2<2.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).[解析] 假设a ,b 均不大于1,即a ≤1,b ≤1.则①②④均有可能成立,故①②④不能推出“a ,b 中至少有一个大于1”,故选③.[答案] ③5.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【导学号:31062161】[解] (1)设公差为d ,由已知得⎩⎨⎧a 1=2+13a 1+3d =9+32∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0. ∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0,∴p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.。

相关文档
最新文档