12-4函数的幂级数展开式
高等数学(下册)第7章第6讲函数的幂级数展开

sin x x 1 x3 1 x5 (1)n 1 x2n1 x (,) .
3! 5!
(2n 1)!
12
二、 函数的幂级数展开
2.间接展开法
间接展开法, 就是利用已知函数的幂级数展开式, 通过幂级 数运算(如四则运算、逐项求导、逐项积分等)以及变量代换等, 获得所求函数的幂级数展开式.这种方法不但计算简单, 而且可以 避免研究余项.由于函数的幂级数展开式是唯一的, 因此间接法与 直接法展成的幂级数是一致的.
2
f (n) (0) 顺序循环地取 0,1,0,1, (n 0,1,2,3,) ,
于是得到麦克劳林级数
x 1 x3 1 )!
它的收敛半径为 R , 因而此幂级数处处收敛.
11
二、 函数的幂级数展开 例 1 将函数 f (x) sin x 展开成 x 的幂级数.
f
( x0 2!
)
(
x
x0
)
2
f
(n) ( x0 n!
)
(
x
x0
)n
n0
f
(n) ( x0 n!
)
(x
x0
)n
称为函数 f (x) 在点 x0 处的泰勒级数,
特别地, 函数 f (x) 在 x0 0 处的泰勒级数
f (0) f (0)x f (0) x2 f (n) (0) xn f (n) (0) xn
第二步 求出函数 f (x) 及其各阶导数在 x 0处的值 f (0), f (0), f (0),, f (n) (0), ;
第三步 写出 f (x) 的麦克劳林级数
f (x) ~ f (0) f (0)x f (0) x2 f (n) (0) xn ,
高等数学第五节 函数幂级数展开

f(x) f(0) f(0)x f(0) x2 f(n)(0) xn
2!
n!
rn(x). ②
rn(x)f((n n 1 )(1 )x!)xn1 (0θ1).
②式称为麦克劳林公式 . 幂级数
f()0 f(0 )x f(0 )x 2 f(n )(0 )x n ,
rn(x)(n e( θx 1))!xn1 (0θ1),
且 x ≤ x x , 所以eθx ex , 因而有
rn(x)(n e x 1)!xn1(ne x1)!xn1.
注意到,对任一确定的 x 值, e x 是一个确定
的常数 . 而级数 ⑥ 是绝对收敛的,因此其一
例 1 试将函数 f(x) = ex 展开成 x 的幂级数.
解 由 f(n )(x)ex(n1,2,3, ), 可以
得到
f(0 ) f(0 ) f(0 ) f(n )(0 ) 1 .
因此我们可以得到幂级数
1x1x2 1xn .
⑥
2!
n!
显然,这个幂级数的收敛区间为 (,+ ) . 至 于 数 ⑥ 是 否 f(x)以 ex为 和 ,收 函 敛 f数 (x 于 )ex, 还要考察函f(x数)ex 的麦克劳林公式中 项, 因为
所以 f(x) 1 1 1x 2x
(1xx2 xn )
1[1x(x)2 (x)n ]
2 22
2
1 2 2 2 2 21x 2 3 2 31x 2 2 n 2 n 1 11x n .
根据幂级数和的运算法则,其收敛半径应
取较小的一个,故 R = 1,因此所得幂级数的收 敛区间为 1 < x < 1 .
例7
幂级数. 解
常用的幂级数展开式

常用的幂级数展开式1. 什么是幂级数展开式幂级数是一种特殊的函数表示形式,它可以被展开为一个无穷序列的项。
幂级数展开式是将一个函数用幂级数表示的方法,可以将复杂的函数简化为无穷项的和,从而方便进行数学分析和计算。
幂级数展开式的一般形式为:f(x)=a0+a1x+a2x2+a3x3+⋯其中,f(x)是要展开的函数,x是自变量,系数a0,a1,a2,a3,⋯是展开式的项系数。
2. 常见的幂级数展开式2.1 泰勒级数展开式泰勒级数是幂级数的一种特殊形式,其展开式为:f(x)=∑f(n)(a) n!∞n=0(x−a)n其中,f(n)(a)表示函数f(x)在点a处的n阶导数。
泰勒级数展开式适用于将任何函数在某一点附近展开,并可以通过选取适当的展开点和截取适当的项来逼近原函数。
2.2 麦克劳林级数展开式麦克劳林级数是泰勒级数的一种特殊情况,展开式为:f(x)=∑f(n)(0) n!∞n=0x n麦克劳林级数展开式适用于将任何函数在原点附近展开,即展开点为a=0。
2.3 常见的函数的幂级数展开式以下是几个常见函数的幂级数展开式:•指数函数的展开式:e x=∑x n n!∞n=0•正弦函数的展开式:sinx=∑(−1)n (2n+1)!∞n=0x2n+1•余弦函数的展开式:cosx=∑(−1)n (2n)!∞n=0x2n •对数函数的展开式:ln(1+x)=∑(−1)n−1n∞n=1x n3. 幂级数展开的应用幂级数展开式在数学和物理的许多领域中有着广泛的应用。
3.1 数值计算幂级数展开式可以用于近似计算各种函数的值。
通过截取幂级数展开式的有限项,可以得到函数值的近似解,能够在计算机上进行快速高效的数值计算。
3.2 函数逼近幂级数展开式可以将任何函数逼近为一个无穷项的和,从而可以用有限的项来近似表示一个复杂的函数。
这在数值分析和计算机图形学中具有重要的应用,例如图像处理、曲线拟合等。
3.3 物理建模物理学中的许多现象和物理量可以用幂级数展开式来描述,例如电磁场、波动方程等。
初等函数的幂级数展开

(1)n xn
n0
(1 x 1)
从 0 到 x 积分, 得
x
ln(1 x) (1)n xn dx
n0
0
(1)n
n0 n 1
xn1 ,
11 xx11
上式右端的幂级数在 x =1 收敛 , 而 ln(1 x) 在 x 1有
定义且连续, 所以展开式对 x =1 也是成立的, 于是收敛 区间为
2!
称为二项展开式 .
m(m 1)(m n 1) xn n!
说明:
(1) 在 x=±1 处的收敛性与 m 有关 .
(2) 当 m 为正整数时, 级数为 x 的 m 次多项式, 上式 就是代数学中的二项式定理.
第8页/共17页
对应
m
1 2
,
1 2
,1
的二项展开式分别为
1 x 1 1 x 1 x2 13 x3 135 x4 2 24 246 2468
骤如下 :
①求函数及其各阶导数在 x0 = 0 处的值 ;
②写出麦克劳林级数 , 并求出其收敛半径 R ;
③判别在收敛区间(-R,
R)
内 lim
n
Rn
(
x)
是否为
0.
4
第5页/共17页
例1. 将函数
展开成 x 的幂级数.
解: f (n) (x) ex , f (n) (0) 1 (n 0,1,), 故得级数
12
第13页/共17页
内容小结
1. 函数的幂级数展开法 (1) 直接展开法 — 利用泰勒公式 ; (2) 间接展开法 — 利用幂级数的性质及已知展开 式的函数 .
13
第14页/共17页
2. 常用函数的幂级数展开式
函数的幂级数展开

f (x ) 在
定理 2 ( 充要条件 ) 设函数 f (x ) 在点 x0 有任意阶导数 . 则 f (x) 在区间 ( x0 r , x0 r ) ( r 0 ) 内等于其 Taylor 级数 ( 即可展 )的充要条件是: 对 x ( x0 , r ) , 有 lim Rn ( x) 0 . 其 n 中 Rn (x) 是 Taylor 公式中的余项. 证 把函数 f (x ) 展开为 n 阶 Taylor 公式, 有
1 ( n 1) Rn (x) f ( )( x ) n x, n!
在 0 与 x 之间.
Taylor 公式的项数无限增多时, 得
f ( x0 ) f ( n ) ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 ( x x0 ) n 2! n!
f ( n ) ( x) n! , n 1 (1 x) 1 在点 x 0 1 x
无限次可微. 求得
( x 1 ), f ( n ) (0) n!
2013-2-27
. 其 Taylor 级数为
4
1 x x x xn .
2 n
n 0
该幂级数的收敛域为 ( 1 , 1 ) . 仅在区间 ( 1 , 1 ) 内有 f (x) = x n .
a a
x
x ln a
x n ln n a , n! n 0
| x | .
2
2013-2-27
x 2 n 1 sin x ( 1 ) , (2n 1)! n 0
n
x( , ).
幂级数函数的幂级数展开法

1 1
x
1
1 2
x
13 24
x2
135 246
x3
1 3 5 7 2468
x4
( 1 x 1)
1 1 x x2 x3 (1)n xn
1 x
( 1 x 1)
1 1 x x2 xn 1 x
(1 x 1)
§6.3 幂级数
2. 间接展开法 利用一些已知的函数展开式及幂级数的运算性质, 将所给函数展开成 幂级数.
证:
lim
n
an 1 x n 1 an xn
lim an1 n an
x
1) 若 ≠0, 则根据比值审敛法可知:
当
x
1,
即
x
1
时,
原级数收敛;
当
x
1,
即
x
1
时,
原级数发散.
§6.3 幂级数
因此级数的收敛半径 R 1 .
2) 若 0, 则根据比值审敛法可知, 对任意 x 原级数
绝对收敛 , 因此 R ;
n0
(1 x 1)
从 0 到 x 积分, 得
x
ln(1 x) (1)n xn dx
n0
0
(1)n
n0 n 1
xn1 ,
11 xx11
上式右端的幂级数在 x =1 收敛 , 而 ln(1 x) 在 x 1有
定义且连续, 所以展开式对 x =1 也是成立的, 于是收敛
区间为
§6.3 幂级数
(k 0, 1, 2, )
得级数:
x
1 3!
x3
1 5!
x5
(1)n1
1 (2n1)!
x2n1
函数的幂级数展开

函数的幂级数展开函数的幂级数展开是数学中重要的概念之一,其应用广泛,涵盖了多个领域,包括工程、物理、计算机科学等。
本文将介绍函数的幂级数展开的定义、性质、推导和应用。
一、定义函数的幂级数展开是将一个函数表示成一个无穷级数的形式,即:f(x) = a0 + a1(x - c) + a2(x - c)^2 + ... +an(x - c)^n + ...其中,a0, a1, a2 ... an 是常数,叫做幂级数的系数,c 是展开点,x 是变量。
二、性质1. 唯一性:如果一个函数在某个点处的幂级数展开式存在,那么它的幂级数展开式唯一。
2. 收敛性:在幂级数的收敛区间内,幂级数展开式收敛,即根据函数的性质可以准确表达函数的值;在展开点之外,则可能发散或发生收敛半径发生变化。
3. 运算性质:幂级数具有良好的运算性质,如加、减、乘、除等运算。
三、推导1. 首先,在幂级数的收敛区间内,函数在展开点 c 处可以通过泰勒公式来展开,即:f(x) = f(c) + f'(c)(x - c) + f''(c)(x - c)^2 / 2! + ... + f^(n)(c)(x - c)^n / n! + Rn其中,f^(n) 表示函数的 n 阶导数,Rn 是余项。
2. 如果展开点 c = 0,则泰勒公式称为麦克劳林公式。
3. 将幂级数的展开式与麦克劳林公式相比较,可以得到幂级数的系数与函数的导数之间的关系,即:a0 = f(c), a1 = f'(c), a2 = f''(c) / 2! ... an = f^(n)(c) / n!4. 将幂级数的系数代入幂级数的展开式中,即可得到函数的幂级数展开式。
四、应用1. 近似计算:当某些函数难以直接计算时,可以通过幂级数展开对其建立近似计算模型。
例如,将正弦函数展开成其傅里叶级数,可以用来近似计算其值。
2. 函数的求导和积分:对于某些函数,其求导和积分可能更容易计算,此时可以通过对函数的幂级数展开式进行求导和积分,得到原函数的导数和积分的展开式。
七个常用幂级数展开式

七个常用幂级数展开式1 示例:二项式定理二项式定理是一阶微分方程处理问题的重要工具,它将幂级数表达式简化为一个函数。
二项式定理为$(a + b)^n =\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$,即一个多项式$x^n$可以通过 $x^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$ 来表达。
2 欧拉公式欧拉公式是一个著名的数学公式,它可以用幂级数表示,即$e^x= \sum_{n=0}^{\infty}\frac{1}{n!}x^n$。
这里x是任意实数,n是一个正整数,$n!$是n的阶乘。
3 泰勒三阶展开式泰勒三阶展开式它可以用幂级数表达,即$f(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+\cdots$。
其中f(x)是给定的函数,$f'(x)$是f的导函数,$f''(x)$是f的二阶导函数;而$a$是函数f的一个自变量。
4 高斯展开式高斯展开式也叫渐近级数,它可以用幂级数表示,即$f(x)=\sum_{n=0}^{\infty}a_n(x-x_0)^n$,其中a_n是正常序数$n=0,1,2,\cdots,$的一组常数,而$x_0$是 f的某一点。
5 拉格朗日幂级数拉格朗日幂级数是由法国数学家拉格朗日提出的,它可以用幂级数表示,即$f(x)=\sum_{n=0}^{\infty} a_n x^n$,其中a_n是正常序数$n=0,1,2,\cdots,$的一组常数,而x 是一个可以取任意值的自变量。
6 波动现象展开式波动现象展开式可以用幂级数表示,即$f(x)=\sum_{n=0}^{\infty} c_n x^n$,其中c_n是正常序数$n=0,1,2,\cdots,$的一组常数,而x 是一个可以取任意值的自变量。