微积分下第一分册7.6函数的幂级数展开
函数的幂级数展开

函数的幂级数展开幂级数具有良好性质。
如果一个函数在某一区间上能够表示成一个幂级数,将给理论研究和实际应用带来极大方便。
Taylor 级数由Taylor 公式,若函数f 在0x 的某个邻域上具有1+n 阶导数,那么在该邻域上成立)()(!)()(!2)())(()()(00)(200000x r x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= , 其中1000)1()()!1())(()(++-+-+=n n n x x n x x x f x r θ(10<<θ)为Lagrange 余项。
因此可以用多项式n n x x n x f x x x f x x x f x f )(!)()(!2)())(()(00)(200000-++-''+-'+ 来近似)(x f 。
自然会想到,增加这种多项式的次数,就可能会增加近似的精确度。
基于这种思想,若函数f 在0x 的某个邻域),(0r x O 上任意阶可导,就可以构造幂级数∑∞=-000)()(!)(n n n x x n x f , 这一幂级数称为f 在0x 点的Taylor 级数,记为~)(x f ∑∞=-000)()(!)(n n n x x n x f 。
称!)(0)(k x f a k k = ( ,2,1,0=k ) 为f 在0x 点的Taylor 系数。
特别地,当00=x 时,常称∑∞=0)(!)0(n n n x n f 为f 的Maclaurin 级数。
假设函数f 在0x 的某个邻域),(0r x O 上可表示成幂级数∑∞=-=00)()(n n n x x a x f , ),(0r x O x ∈,即∑∞=-00)(n n n x x a 在该邻域上的和函数为f (x )。
根据幂级数的逐项可导性,f 必定在),(0r x O 上任意阶可导,且对一切∈k N +,成立∑∞=--+--=k n k n n k x x a k n n n x f )()1()1()(0)( 。
函数的幂级数展开式

函数的幂级数展开式幂级数展开式在数学和物理学等领域中非常重要,可以用来近似计算函数的值、求解微分方程、分析函数的性质等。
幂级数是指形如∑(an)(x-a)^n的级数,其中an是常数系数,x是变量,a是展开点。
幂级数展开式可以认为是多项式的无穷级数,通过将无穷多项式项相加得到。
一个函数的幂级数展开式的一般形式为:f(x) = ∑(an)(x-a)^n其中,an是函数f(x)在展开点a处的n阶导数值除以n的阶乘,即:an = f^(n)(a) / n!这里,f^(n)(a)表示函数f(x)在点a处的n阶导数。
幂级数展开式的收敛性需要通过收敛半径来判断。
幂级数展开式在展开点a的收敛半径r为:r = 1 / lim sup( ,an,^(1/n) )其中,lim sup是上极限。
当,x-a,<r时,幂级数展开式收敛;当,x-a,>r时,幂级数展开式发散;当,x-a,=r时,幂级数展开式的收敛情况需要进一步判断。
幂级数展开式的收敛半径决定了展开式的适用范围。
当,x-a,<r时,可以通过前n项的有限求和来近似计算函数的值,对于其他点则需要通过对幂级数进行求和计算。
幂级数展开式的求解可以利用泰勒级数或母函数法等方法。
泰勒级数是一种特殊的幂级数展开形式,其中展开点a为0,并且每一项的系数an 与函数在展开点处的导数值相关。
幂级数展开式在许多函数中都有应用,例如指数函数、三角函数、对数函数等。
通过幂级数展开式,可以将这些函数在其中一点的展开为无穷项的级数,在一定范围内进行近似计算。
总之,函数的幂级数展开式是一种重要的数学工具,可以用来近似计算函数的值、求解微分方程、分析函数的性质等。
高等数学(下册)第7章第6讲函数的幂级数展开

sin x x 1 x3 1 x5 (1)n 1 x2n1 x (,) .
3! 5!
(2n 1)!
12
二、 函数的幂级数展开
2.间接展开法
间接展开法, 就是利用已知函数的幂级数展开式, 通过幂级 数运算(如四则运算、逐项求导、逐项积分等)以及变量代换等, 获得所求函数的幂级数展开式.这种方法不但计算简单, 而且可以 避免研究余项.由于函数的幂级数展开式是唯一的, 因此间接法与 直接法展成的幂级数是一致的.
2
f (n) (0) 顺序循环地取 0,1,0,1, (n 0,1,2,3,) ,
于是得到麦克劳林级数
x 1 x3 1 )!
它的收敛半径为 R , 因而此幂级数处处收敛.
11
二、 函数的幂级数展开 例 1 将函数 f (x) sin x 展开成 x 的幂级数.
f
( x0 2!
)
(
x
x0
)
2
f
(n) ( x0 n!
)
(
x
x0
)n
n0
f
(n) ( x0 n!
)
(x
x0
)n
称为函数 f (x) 在点 x0 处的泰勒级数,
特别地, 函数 f (x) 在 x0 0 处的泰勒级数
f (0) f (0)x f (0) x2 f (n) (0) xn f (n) (0) xn
第二步 求出函数 f (x) 及其各阶导数在 x 0处的值 f (0), f (0), f (0),, f (n) (0), ;
第三步 写出 f (x) 的麦克劳林级数
f (x) ~ f (0) f (0)x f (0) x2 f (n) (0) xn ,
幂级数展开

1
1
2
由于级数在CR1上一致收敛,由一致收敛级数的逐项可积 分性质得:
1 2 i
w ( )
CR1
z
d
1 2 i
a0
CR1
z
d
1 2 i
a1 ( z 0 )
CR1
z
d
1 2 i
a 2 ( z 0 )
k
证明: 取比收敛圆稍稍缩小的圆周CR1, 为其上的任 一点,级数的和记作 (3.2.9)
w ( ) a 0 a1 ( z 0 ) a 2 ( z 0 )
2
取CR1内任一点z, 1 a ( z ) 1 2 (i z 用有界函数 a a z ) 1 w ( ) 1 遍乘上式 i z 2 i z 2 i z 2 2 i z
解: R lim
k
级数在 z 1 绝对收敛
=
例2.求幂级数 1 z 2 z 4 z 6 的收敛圆,z为复变数 解:把 z 记作 t ,则级数为 1 t t 2 t 3 , t面上的
2
收敛半径
R lim
ak a k 1
k
1
则z面上的收敛半径为
其中, W ( z )
k 1
W (z)
wk ( z )
则级数在区域B上(或者曲线L)一致收敛于 W ( z ) W ) W ((zz) 称为和函数
,
注意: 一致收敛的概念是和一定的区域联系在一起
b.一致收敛的充要条件 对于B上(或L)上的点z, ,存在自然数
幂级数展开

f (z) ln z,
f '(z) 1 , z
f
''(z)
1! z2
,
f (1) ln 1 n2i,
f '(1) 1, f ''(1) 1,
可象单值函数那样在各单值 分支上作泰勒展开。
f
(3) (z)
2! z3 ,
f (3) (1) 2!,
y
f
(4)
(z)
3! z4
,
f (4) (1) 3!,
|
z
z0
|
|
z
z0 R
|
,
引入记号 R lim ak
a k k 1
若 | z z0 | 1 R
| z z0 | R
(3.2.3) (3.2.4)
则实幂级数 (3.2.2)收敛,复幂级数 (3.2.1)绝对收敛
若 | z z0 | R 则(3.2.2)发散
12
故当 z z0 R ,绝对收敛
解 f (z) (1 z)m ,
f (0) 1m ,
f '(z) m(1 z)m1,
f '(0) m1m ,
f ''(z) m(m 1)(1 z)m2 ,
f ''(0) m(m 1)1m ,
f (3) (z) m(m 1)(m 2)(1 z)m3, f (3) (0) m(m 1)(m 2)1m ,
级数收敛,
S
lim
n
Sn
S称为级数和;若极限不存在,
则称级数发散。
2、柯西收敛判据 (级数收敛的充分必要条件):
对于任给的小正数 ε 必有N 存在,使得 n>N 时,
函数的幂级数的展开与技巧.docx

1引言函数的幕级数展开在高等数学中有着重耍的地位,在研究泵级数的展开之 前我们务必先研究一下泰勒级数,因为泰勒级数在幕级数的展开屮有着重要的地 位。
一般情况,我们用拉格朗日余项和柯西余项来讨论幕级数的展开,几乎不用 积分型余项来讨论,今天我们的研究中就有着充分的体现。
2泰勒级数泰勒定理指出:若函数/在点兀。
的某个邻域内存在直至斤阶的连续导数,则/(x) = /(x 0) + /(x 0)(x-x 0) + /(x Q )^X这里心(兀)=。
((兀-兀)〃)称为皮亚诺型余项。
如果增加条件“/(X )有H + 1阶连续 导数”,那么心(0还可以写成三种形式(柯西余项) (积分型余项) 如果在(1)中抹去余项心(X ),那么在兀。
附近/可用(1)式中右边的多项式来近似代 替。
如果函数/在兀=兀0处有任意阶的导数,这吋称形式为:的级数为函数/在x 0的泰勒级数,对于级数(2)是否能够在X 。
附近确切地表达/, 或说/在心泰勒级数在心附近的和函数是否就是/,这是我们现在耍讨论的问 题。
下面我们先看一个例子:例1山由于函数/(%)= \ 八,心 °,(拉格朗日余项)心。
)+广(%)(-切+%(—订+・・・+匚糾 (兀一兀0)+…(2)= 广“+1)[兀+0(兀_观卄(]_0)〃 (兀_观)〔0, x = 0,在x = x0处的任何阶导数都为0,即/叫0) = 0/= 1,2,…,所以/在x = 0处的泰勒级数为:C C 0 2 . 0 “0 + 0 • X H X + -------- ------- X+…,2! nl显然,它在(- oo,+oo)上收敛,且其和函数S(X)= 0,由此看到对一切* 0都有/(X)H S(X),这说明具有任意阶导数的函数,其泰勒级数并不是都收敛于函数本身,只有lim R n (x) = 0HT8时才能够。
在实际应用上主要讨论在勺=0的展开式。
这时(2)也可以写成刑)+以乩+皿宀…+创乩"+…,1! 2! /1!称为麦克劳林级数。
函数的幂级数展开

| Rn( x) |
1 (1)n (n 1)!
n!
(1 )n1
x n1
(1)n x
n 1 1
n1
1 n1
0
(n ).
前页 后页 返回
当 1 x 0 时, 因拉格朗日型余项不易估计, 故改 用柯西型余项. 此时有
| Rn( x) |
(n 2) (n 0)
1
2x
ex 1 1 x 1 x2 L 1 xn L , x (, ).
1! 2!
n!
前页 后页 返回
例4 对于正弦函数 f ( x) sin x, 有
f
(n)
(
x
)
sin
x
nπ 2
.
n
1,
2,L
.
现在考察 f 的拉格朗日型余项 Rn( x).因为 n 时,
如果 f 能在点x0的某邻域上等于其泰勒级数的和函
数, 则称函数 f 在点 x0 的这一邻域内可以展开成泰
勒级数, 并称等式
前页 后页 返回
f (x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
L
f
(n) ( x0 n!
)
(
x
x0
)n
考察它的柯西型余项
前页 后页 返回
Rn (
x)
(
1)L n!
(
n)
x n1
第四节函数的幂级数展开

一,泰勒公式 线性代替:由微分的概念知道,如果y=f (x)在点
x0 处可导,则有 y = dy + o(x),即 f (x) f (x0 ) = f ′(x0 )(x x0 ) + o(x x0 )
当| x x0 | 很小时,有近似公式
f (x) ≈ f (x0 ) + f ′(x0 )(x x0 ) .
f (x) = ex 的马克劳林级数为 故函数 ∞ 1 1 2 1 n n ∑ x =1+ x + x +L+ x +L, ! 2! n! n=0n
收敛半径为
1 R = lim n! n→∞ 1 (n+1)!
= lim(n +1) = ∞
n→∞
其收敛区间为 (∞,+∞).
对任取定的x,则对于任何介于0与x之间的 ξ ,有
1 f (x) = f (x0 ) + f ′(x0 )(x x0 ) + f ′′(x0 )(x x0 )2 2! 1 (n) + + f (x0 )(x x0 )n + rn (x) = P (x) + rn (x), n n! 并称 n (x)为泰勒展开式的余项P (x)为泰勒多项式 r , n .
P (x0 ) = f (x0 ) (在x0处相等 ) 2 P′(x0 ) = f ′(x0 ) (在x0处有相同的切线 ) 2 P′′(x0 ) = f ′′(x0 ) (x0处两条曲线有相同的弯 曲方向 ) 2
由 P (x0 ) = a0, P′(x0 ) = a1 P′′(x0 ) = 2!a2 , 2 2 2 1 可得 a0 = f (x0 ), a1 = f ′(x0 ), a2 = f ′′(x0 ) 2! 1 所以 P (x) = f (x0 ) + f ′(x0 )(x x0 ) + f ′′(x0 )(x x0 )2. 2 2! 用 P (x) 在点 x0 附近来逼 f (x) P (x) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
( x0 2!
)
(
x
x0
)
2
f
(n) (x0 n!
)
(
x
x0
)
n
为f (x) 的泰勒级数 .
当x0 = 0 时, 泰勒级数又称为麦克劳林级数 .
定理 . 设函数 f (x) 在点 x0 的某一邻域
内具有
各阶导数, 则 f (x) 在该邻域内能展开成泰勒级数的充要
条件是 f (x) 的泰勒公式中的余项满足: lim Rn (x) 0.
对任何有限数 x , 其余项满足
e xn1 e x (n 1)!
n
( 在0与x 之间)
故 ex 1 x 1 x2 1 x3 1 xn ,
2! 3!
n!
例2. 将
解: f (n) (x)
展开成 x 的幂级数.
f (n) (0) (01),k ,
n 2k n 2k 1
(k 0, 1, 2, )
)
(
x
x0
)
2
f
(n) (x0 n!
)
(
x
x0
)n
Rn (x)
此式称为 f (x) 的 n 阶泰勒公式 ,其中
Rn (x)
f (n1) (
(n 1)!
)
(
x
x0
)
n1
( 在 x 与 x0 之间)
称为拉格朗日余项 .
若函数
的某邻域内具有任意阶导数, 则称
f (x0 )
f (x0 )(x x0 )
2. 常用函数的幂级数展开式
• ex 1 x 1 x2 1 xn ,
2!
n!
x (, )
•
ln(1 x) x 1 x2 2
1 x3 1 x4 34
(1)n n 1
xn1
x (1, 1]
• sin x x x3 x5 x7 (1)n x2n1
3! 5! 7!
(2n 1)!
3! 5!
(2n 1)!
类似可推出:
cos x 1 1 x2 1 x4 (1)n1 1 x2n
2! 4!
(2n)!
(1 x)m 1 m x m(m 1) x2 2!
m(m 1) (m n 1) xn n!
称为牛顿二项展开式 . 说明: (1) 在 x=±1 处的收敛性与 m 有关 . P250页 (2) 当 m 为正整数时, 级数为 x 的 m 次多项式, 上式 就是代数学中的二项式定理.
ቤተ መጻሕፍቲ ባይዱ
x (, )
• cos x 1 x2 x4 x6 (1)n x2n
2! 4! 6!
(2n)!
x (, ) • (1 x)m 1 mx m(m 1) x2
2!
m(m 1) (m n 1) xn x (1, 1) n!
得级数:
x
1 3!
x3
1 5!
x5
(1)n1
1 (2n1)!
x2n1
其收敛半径为 R , 对任何有限数 x , 其余项满足
sin(
(n
1)
2
)
(n 1)!
x n 1
n
sin x
x
1 3!
x3
1 5!
x5
(1)n1
1 (2n1)!
x2n1
sin x x 1 x3 1 x5 (1)n1 1 x2n1
展开成 x 的幂级数.
解:
f (x) 1 1 x
(1)n xn
n0
(1 x 1)
从 0 到 x 积分, 得
x
ln(1 x) (1)n xn dx
n0
0
(1)n
n0 n 1
xn1 ,
11 xx11
内容小结
1. 函数的幂级数展开法
(1) 直接展开法 — 利用泰勒公式 ;
(2) 间接展开法 — 利用幂级数的性质及已知展开 式的函数 .
判别在收敛区间(-R,
R)
内 lim
n
Rn
(
x)
是否为0.
例1. 将函数
展开成 x 的幂级数.
解: f (n) (x) ex , f (n) (0) 1 (n 0,1, ), 故得级数
1
x 1 x2 2!
1 x3 3!
1 xn n!
其收敛半径为
R lim
n
1 n!
1 (n 1)!
2. 间接展开法 利用一些已知的函数展开式及幂级数的运算性质, 将所给函数展开成 幂级数.
例3. 将函数
展开成 x 的幂级数.
解: 因为
1 1 x x2 (1)n xn 1 x 把 x 换成 x2 , 得
(1 x 1)
1 1 x2
1 x2
x4
(1)n x2n (1
x 1)
例4. 将函数
n
二、函数展开成幂级数
直接展开法 — 利用泰勒公式 展开方法
间接展开法 — 利用已知其级数展开式 的函数展开
1. 直接展开法
由泰勒级数理论可知, 函数 f (x) 展开成幂级数的步
骤如下 :
第一步 求函数及其各阶导数在 x = 0 处的值 ;
第二步 写出麦克劳林级数 , 并求出其收敛半径 R ;
第三步
第六节函数展开成幂级数
两类问题: 在收敛域内 求和 展开
和函数
本节内容: 一、泰勒 ( Taylor ) 级数 二、函数展开成幂级数
一、泰勒 ( Taylor ) 级数
若函数
的某邻域内具有 n + 1 阶导数, 则在
该邻域内有 :
f (x)
f (x0 ) f (x0 )(x x0 )
f
( x0 2!