行测指导:数字推理30种解题技巧

合集下载

公务员行测中的数字推理与解题技巧

公务员行测中的数字推理与解题技巧

公务员行测中的数字推理与解题技巧数字推理是公务员行测中的重要内容之一,它需要考生运用逻辑思维和数学知识进行推理和解题。

本文将介绍一些数字推理的基本方法和解题技巧,帮助考生更好地应对公务员行测中的数字推理题。

一、数字推理的基本方法在解决数字推理题时,考生首先需要明确题目给出的数字序列或者关系,并找到其中的规律。

下面介绍几种常见的数字推理方法。

1. 数列推理数列推理题是公务员行测中常见的题型,它要求考生根据已知的数字序列,推断出接下来的数字。

解决这类题目的关键在于找到数列中数字的变化规律。

常见的数列规律有等差数列和等比数列。

其中,等差数列的每个数字之间的差值相等,等比数列的每个数字之间的比值相等。

通过观察数列中数字间的关系,找出变化规律,即可准确推测出下一个数字。

2. 数字关系推理数字关系推理题要求考生从一组数字中找出相互之间的关系,进而推断出缺失的数字。

解决这类题目需要考生具备较强的逻辑思维能力。

常见的数字关系有加减乘除、平方立方等运算关系;还有数字的奇偶、大小关系等。

考生需要仔细观察数字间的变化规律,找出其中的逻辑关系,才能正确推断出缺失的数字。

3. 数字排列与组合推理数字排列与组合推理题要求考生从一组数字排列或者组合中找出符合一定条件的数字。

解决这类题目需要考生熟练掌握排列组合的知识。

在排列与组合的题目中,数字的顺序、重复与否等都可能是解题的关键。

考生需要根据题目给出的条件,灵活运用排列组合的规则,准确地确定符合条件的数字。

二、数字推理解题技巧除了掌握数字推理的基本方法,考生还可以借助一些解题技巧,提高解决数字推理题的效率。

1. 注意整体和局部在解决数字推理题时,考生既要关注数字序列的整体规律,又要注意其中的局部规律。

有时候,数字序列的整体规律并不明显,但是通过观察数字间的局部规律,也可以推断出接下来的数字。

2. 多角度观察考生要习惯从不同的角度观察数字推理题。

有时候,单一的数学运算规律并不能完全解释题目中的数字关系,此时考生可以从逻辑思维、几何形状等其他角度出发,寻找隐藏的规律。

行测数字推理题技巧

行测数字推理题技巧

行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。

通过观察规律,可以将下一个数字或者数字序列进行
推理。

2.数字运算:在数字推理题中,经常出现的是数字的运算关系。

可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。

3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。

4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。

5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。

可以通过这些限制条件进行推理。

6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。

7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。

行政职业能力倾向测验数字推理之解题技巧

行政职业能力倾向测验数字推理之解题技巧

数字推理之解题技巧》1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(注:前一就是高中数学常说的差后等差数列或等比数列)3)看各数的大小组合规律,作出合理的分组。

如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 , 40*40-74=1526 ,74*74-40=5436,这就是规律。

4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。

如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。

)6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。

行测数字推理题技巧

行测数字推理题技巧

行测数字推理题技巧
行测数字推理题是考验考生逻辑思维和数学能力的一个考试科目,一般都需要考生通过对数字规律的发现和推理来解决问题。

以下是一
些数字推理题的解题技巧。

1. 对于数字序列,首先需要看清楚序列中数字的规律是否有明
显的特点,比如数字之间的间隔、加减乘除等关系。

如果可以找到规律,就可以依据规律进行数学计算,得出答案。

2. 对于数字图形,需要先观察数字的排列顺序是否有规律,以
及数字之间的关系是什么。

然后需要分析图形中各个数字的位置和数量,通过计算来找出规律。

例如,可以统计数字在图形中出现的次数
及其位置,通过计算得出结果。

3. 对于数字的大小比较题,需要注意数字之间大小的差异和数
量的关系。

例如,如果题目中有两个数列,并且一个数列的数字都比
另一个数列的数字小,那么很可能需要找到两个数列之间数字的关系,例如倍数、比率、权重等等。

4. 对于数字的逻辑推理题,需要注意确定一些基本前提,以及
从基本前提中推出一些相关结论的能力。

例如如果已知不等式关系,
则需要基于此推断出更多的不等式关系,进而解题。

总之,通过对数字之间的关系和规律进行分析,发现规律,再通
过计算或逻辑推理求解问题,可以有效提高数字推理题的解题能力。

行政职业能力测试中数字推理的答题技巧

行政职业能力测试中数字推理的答题技巧

行政职业能力测试中数字推理的答题技巧数字推理是行政职业能力测试中的一个重要部分,它考察了考生的逻辑思维和数学能力。

在数字推理题目中,考生需要根据给定的数字序列或图形规律,推断出下一个数字或图形是什么。

下面是一些数字推理的答题技巧,希望对考生有所帮助。

1. 观察数字序列的规律数字推理题目中最常见的是数字序列题目,考生需要根据给定的数字序列推断出下一个数字是什么。

在解决这类题目时,考生需要仔细观察数字序列中的规律,找出其中的规律和特点。

例如,数字序列中是否存在递增或递减的趋势,是否存在重复的数字或数字组合,是否存在数字之间的乘法或加法关系等等。

只有找到了数字序列中的规律,才能准确地推断出下一个数字是什么。

2. 注意数字序列中的异常数字在数字序列中,有时会出现一些异常数字,这些数字与其他数字不符合规律,容易让考生产生困惑。

因此,考生需要注意数字序列中的异常数字,并尝试找出它们的特点和规律。

有时,这些异常数字可能是为了干扰考生而故意设置的,因此考生需要保持警惕,不要被这些数字所迷惑。

3. 观察图形的形状和颜色除了数字序列题目外,数字推理题目中还有一类是图形题目。

在这类题目中,考生需要根据给定的图形规律,推断出下一个图形是什么。

在解决这类题目时,考生需要仔细观察图形的形状和颜色,并找出它们之间的规律和特点。

例如,图形中是否存在对称或旋转的关系,是否存在颜色的变化或重复,是否存在图形之间的大小或位置关系等等。

只有找到了图形中的规律,才能准确地推断出下一个图形是什么。

4. 利用排除法在数字推理题目中,有时候考生无法准确地推断出下一个数字或图形是什么。

这时,考生可以利用排除法来缩小答案的范围。

例如,在数字序列中,如果考生无法找到数字之间的规律,可以先排除一些不可能的答案,例如数字太大或太小,或者不符合数字序列中其他数字的规律。

这样可以缩小答案的范围,提高答题的准确性。

5. 多做练习题最后,要想在数字推理题目中取得好成绩,考生需要多做练习题,熟练掌握数字推理的答题技巧。

公务员行政能力测试数字推理答题技巧(非常有用)

公务员行政能力测试数字推理答题技巧(非常有用)

公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。

自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。

所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。

相减,是否二级等差。

8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。

4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。

三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。

400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。

87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。

1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。

行测数字推理解题方法指导

行测数字推理解题方法指导

行测数字推理解题方法指导一、等差数列1.题型特征:数列呈现单调递增或者单调递减,并且前后变化差距小,大部分变化幅度大约在2倍以内。

2.主要考查点:一级等高,二级等高,三级等高较太少,以及等差变式这几种类型。

一级等差:后一项-前一项=固定值基准:9,16,23,30,37,a.42b.43c.44d.46解析:数列呈圆形单调递减,变化幅度在两倍以内,且后一项-前一项=7,所以括号里的值=37+7=44,恰当答案挑选c。

一级等差变式:后一项-前一项的差值呈现特殊数列。

基准:13,15,18,23,30,a.41b.43c.44d.46解析:数列呈圆形单调递减,变化幅度在两倍以内,且后一项-前一项=2,3,5,7,差值呈圆形质数列,所以后面的差值必须为11,则括号里的=30+11=41,恰当答案挑选a。

二级等差:后一项-前一项=第一差值,第一差值再相减=固定差值。

基准:2,17,29,38,44,a.45b.46c.47d.48解析:数列呈圆形单调递减,变化幅度大部分在两倍以内,优先考量等差数列。

二、和数列1.题型特征:大数字较多,两数之间变化陡峭。

2.主要考察点:横向:两项和数列及其变式,三项和及其变式;纵向:加和形成数列。

两项和数列:第一项+第二项=第三项。

例:12,18,,48,78a.20b.22c.26d.30解析:相邻两项在2倍以内,变化幅度平缓,优先考虑和数列。

12+18=30,18+30=48,30+48=78,符合规律,所以选d。

两项和数列变式:第一项+第二项常数=第三项;第一项+第二项数列=第三项。

例:4,7,12,20,33,,88a.54b.42c.49d.40解析:相邻两项在2倍以内,变化幅度平缓,优先考虑和数列。

4+7+1=12,7+12+1=20,20+33+1=54,所以应该选a。

三项和数列:前三项之和=后一项。

例:7,8,2,17,27,46,a.88b.90c.92d.94解析:相邻两项在2倍以内,变化幅度平缓,优先考虑和数列。

行政职业能力测试中数字推理的答题技巧

行政职业能力测试中数字推理的答题技巧

行政职业能力测试中数字推理的答题技巧一、数字推理的概述数字推理是行政职业能力测试中常见的一种题型,要求通过观察数字序列的规律,推断出下一个数字或找出一个不符合规律的数字。

掌握数字推理的答题技巧对于提高行政职业能力测试的得分很有帮助。

二、数字推理的类型数字推理题可以分为几种常见的类型:1. 数列推理数列推理要求考生根据一组有规律的数字或符号,找出其中的规律并推理出下一个数字或符号。

常见的数列推理有等差数列、等比数列、斐波那契数列等。

示例题目:1, 4, 7, 10, ?答案:132. 数字顺序数字顺序题要求考生按照一定的规则重新排列给定的数字序列。

常见的规则有按照数字的大小、奇偶性或者某个特定的数字规则进行排列。

示例题目:6, 9, 3, 8, ?答案:33. 数字替换数字替换题要求考生通过观察一组数字序列的规律,找出其中一个数字需要被替换成另一个数字。

示例题目:5, 9, 15, ?, 35答案:234. 数字图形数字图形题要求考生根据给定的数字图形,找出其中的规律并推理出下一个图形。

示例题目:133355555答案:1333555553331三、数字推理的解题技巧在行政职业能力测试中,数字推理题需要考生灵活运用不同的解题技巧。

下面列举了一些常用的解题技巧:1. 观察数字之间的关系仔细观察数字之间的关系,看是否存在某种规律。

可以从数字的大小、差值、乘积等方面入手,找出其中的规律。

2. 寻找常见的数列规律数列是数字推理题中最常见的类型之一,掌握各种常见的数列规律对于解题很有帮助。

例如,等差数列的规律是相邻两个数字的差相等,等比数列的规律是相邻两个数字的比相等。

3. 利用排除法在一些复杂的数字推理题中,可以通过排除法逐个排除不符合规律的选项,直到找到符合规律的选项为止。

4. 尝试多种解题方法如果一种解题方法无法找到规律,可以尝试其他的解题方法。

多角度思考有助于发现数字之间的关系。

四、答题技巧的实践与总结通过大量的练习和实践,掌握数字推理题的答题技巧才能得心应手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测指导:数字推理30种解题技巧一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。

【例】1、4、3、1、1/5、1/36、()A.1/92B.1/124C.1/262D.1/343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。

【例】1/162/132/58/74()A.19/3B.8C.39D.32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。

【例】33、32、34、31、35、30、36、29、()A.33B.37C.39D.41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。

取尾数列一般具有相加取尾、相乘取尾两种形式。

【例】6、7、3、0、3、3、6、9、5、()A.4B.3C.2D.1五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。

【例】448、516、639、347、178、()A.163B.134C.785D.896六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。

对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。

【例】0、9、26、65、124、()A.165B.193C.217D.239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。

【例】118、60、32、20、()A.10B.16C.18D.20八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。

【例】0、6、24、60、120、()A.180B.210C.220D.240九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。

【例】3、7、16、107、()A.1707B.1704C.1086D.1072十、当数列选项中有两个整数、两个小数时,答案往往是小数,且一般是通过乘除来实现的。

当然如果出现了两个正数、两个负数诸如此类的标准配置时,答案也是负数。

【例】2、13、40、61、()A.46.75B.82C.88.25D.121十一、数字推理如果没有任何线索的话,记得要选择相对其他比较特殊的选项,譬如:正负关系、整分关系等等。

【例】2、7、14、21、294、()A.28B.35C.273D.315十二、小数数列是整数与小数部分各自呈现规律,日期数列是年、月、日各自呈现规律,且注意临界点(月份的28、29、30或31天)。

【例】1.01、1.02、2.03、3.05、5.08、()A.8.13B.8.013C.7.12D.7.012十三、对于图形数列,三角形、正方形、圆形等其本质都是一样的,其运算法则:加、减、乘、除、倍数和乘方。

三角形数列的规律主要是:中间=(左角+右角-上角)×N、中间=(左角-右角)×上角;圆圈推理和正方形推理的运算顺序是:先观察对角线成规律,然后再观察上下半部和左右半部成规律;九宫格则是每行或每列成规律。

十四、注意数字组合、逆推(还原)等问题中“直接代入法”的应用。

【例】一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒百位与个位上的数的位置,则所成的新数是原数的3倍少39。

求这个三位数?A.196B.348C.267D.429十五、注意数学运算中命题人的基本逻辑,优先考虑是否可以排除部分干扰选项,尤其要注意正确答案往往在相似选项中。

【例】两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3∶1,另一个瓶子中酒精与水的体积比是4∶1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?A.31∶9B.7∶2C.31∶40D.20∶11十六、当题目中出现几比几、几分之几等分数时,谨记倍数关系的应用,关键是:前面的数是分子的倍数,后面的数是分母的倍数。

譬如:A=B×5/13,则前面的数A是分子的倍数(即5的倍数),后面的数B是分母的倍数(即13的倍数),A与B的和A+B则是5+13=18的倍数,A与B的差A-B则是13-5=8的倍数。

【例】某城市共有四个区,甲区人口数是全城的4/13,乙区的人口数是甲区的5/6,丙区人口数是前两区人口数的4/11,丁区比丙区多4000人,全城共有人口多少万?A.18.6万B.15.6万C.21.8万D.22.3万十七、当题目中出现了好几次比例的变化时,记得特例法的应用。

如果是加水,则溶液是稀释的,且减少幅度是递减的;如果是蒸发水,则溶液是变浓的,且增加幅度是递增的。

【例】一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?A.8%B.9%C.10%D.11%十八、当数学运算题目中出现了甲、乙、丙、丁的“多角关系”时,往往是方程整体代换思想的应用。

对于不定方程,我们可以假设其中一个比较复杂的未知数等于0,使不定方程转化为定方程,则方程可解。

【例】甲、乙、丙、丁四人做纸花,已知甲、乙、丙三人平均每人做了37朵,乙、丙、丁三人平均每人做了39朵,已知丁做了41朵,问甲做了多少朵?A.35朵B.36朵C.37朵D.38朵十九、注意余数相关问题,余数的范围(0≤余数≤除数)及同余问题的核心口诀,“余同加余,和同加和,差同减差,除数的最小公倍数作周期”。

【例】自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。

如果:100A.不存在B.1个C.2个D.3个二十、在工程问题中,要注意特例法的应用,当出现了甲、乙、丙轮班工作现象时,假设甲、乙、丙同时工作,找到将完成工程总量的临界点。

【例】完成某项工程,甲单独工作需要18小时,乙需要24小时,丙需要30小时。

现按甲、乙、丙的顺序轮班工作,每人工作一小时换班。

当工程完工时,乙总共干了多少小时?A.8小时B.7小时44分C.7小时D.6小时48分二十一、当出现两种比例混合为总体比例时,注意十字交叉法的应用,且注意分母的一致性,谨记减完后的差之比是原来的质量(人数)之比。

【例】某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口多少万?A.30万B.31.2万C.40万D.41.6万二十二、重点掌握行程问题中的追及与相遇公式,相遇时间=路程和/速度和、追击时间=路程差/速度差;唤醒运动中的:异向而行的跑到周长/速度和、同向而行的跑到周长/速度差;钟面问题的T/(1±1/12)。

【例】甲、乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,问A、B两地相距多少米?A.1350米B.1080米C.900米D.720米二十三、流水行船问题中谨记两个公式,船速=(顺水速+逆水速)/2、水速=(顺水速-逆水速)/2【例】一只船沿河顺水而行的航速为30千米/小时,已知按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为?A.1千米B.2千米C.3千米D.6千米二十四、题目所提问题中出现“最多”、“最少”、“至少”等字眼时,往往是构造类和抽屉原理的考核,注意条件限制及最不利原则的应用。

【例】四年级一班选班长,每人投票从甲、乙、丙三个候选人中选一人,已知全班共有52人,并且在计票过程中的某一时刻,甲得到17票,乙得到16票,丙得到11票。

如果得票最多的候选人将成为班长,甲最少得多少张票就能够保证当选?A.1张B.2张C.4张D.8张二十五、在排列组合问题中,排列、组合公式的熟练,及分类(加法原理)与分步(乘法原理)思想的应用。

并同概率问题联系起来,总体概率=满足条件的各种情况概率之和,分步概率=满足条件的每个步骤概率之积。

【例】盒中有4个白球6个红球,无放回地每次抽取1个,则第二次取到白球的概率是?A.2/15B.4/15C.2/5D.3/5二十六、重点掌握容斥原理,两个集合容斥用公式:满足条件1的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数,并注意两个集合容斥的倍数应用变形。

三个集合容斥文字型题目用画图解决,三个图形容斥用公式解决:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C二十七、注意“多1”、“少1”问题的融会贯通,数数问题、爬楼梯问题、乘电梯问题、植树问题、截钢筋问题等。

【例】把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?A.32分钟B.38分钟C.40分钟D.152分钟二十八、注意几何问题中的一些关键结论,两边之和大于第三边,两边之差小于第三边;周长相同的平面图形中,圆的面积最大;表面积相同的立体图形中,球的体积最大;无论是堆放正方体还是挖正方体,堆放或者挖一次都是多四个侧面;另外谨记“切一刀多两面”。

【例】若一个边长为20厘米的正方体表面上挖一个边长为10厘米的正方体洞,问大正方体的表面积增加了多少?A.100cm2B.400cm2C.500cm2D.600cm2二十九、看到“若用12个注水管注水,9小时可注满水池,若用9个注水管,24小时可注满水,现在用8个注水管注水,那么可用多少小时注满水池?”等类似排比句的出现,直接代入牛吃草问题公式,原有量=(牛数-变量)×时间,且注意牛吃草量“1”及变量X的变化形式。

【例】在春运高峰时,某客运中心售票大厅站满等待买票的旅客,为保证售票大厅的旅客安全,大厅入口处旅客排队以等速度进入大厅按次序等待买票,买好票的旅客及时离开大厅。

按照这种安排,如果开10个售票窗口,5小时可使大厅内所有旅客买到票;如果开12个售票窗口,3小时可使大厅内所有旅客买到票,假设每个窗口售票速度相同。

由于售票大厅入口处旅客速度增加到原速度的1.5倍,为了在2小时内使大厅中所有旅客买到票,按这样的安排至少应开售票窗口数为多少个?A.15B.16C.18D.19三十、记住这些好用的公式吧:裂项相加的(1/小-1/大)×分子/差。

日期问题的“一年就是一闰日再加一(加二)”。

等差数列的An=A1+(n-1)×d,Sn=((A1+An)×n)/2。

相关文档
最新文档