a倒立摆双闭环串级模糊控制设计与仿真
倒立摆模糊控制系统设计

倒立摆模糊控制系统设计摘要:本文针对倒立摆的运动控制问题,设计了一种模糊控制系统,用于实现倒立摆的平衡控制。
首先,对于倒立摆的动力学建模进行了分析,并通过控制算法确定了控制系统的目标和控制策略。
然后,根据倒立摆在不同状态下的响应特点,设计了合适的模糊控制规则,并调节了控制参数,以实现系统的优化控制。
最后,在实验中验证了该控制系统的有效性和稳定性。
关键词:倒立摆;模糊控制;动态建模;控制规则设计目标:实现倒立摆的平衡控制,使其能稳定地保持在竖直状态。
设计过程:一、动态建模倒立摆是一种非线性系统,因此需要对其进行动态建模。
考虑倒立摆的运动方程:mL2θ¨+mgLsinθ=up其中,m为摆球的质量,L为摆杆的长度,g为重力加速度,θ为摆杆与竖直方向的夹角,up为施加在摆杆末端的控制力。
将θ和θ¨分别记做y和v,则系统的状态方程可以表示为:y'=v二、控制算法倒立摆的控制目标是使其保持在竖直状态,即y=0,v=0。
根据控制算法的思想,需要设计一个合适的控制策略,使得系统能够在有限时间内达到目标状态并保持在该状态。
采用PD控制器设计控制策略,其中Kp和Kd分别表示比例增益和微分增益。
up=Kp(y-0)+Kd(v-0)三、模糊控制规则根据倒立摆在不同状态下的响应特点,设计了合适的模糊控制规则。
具体而言,将y 和v的取值范围划分为若干个模糊集合,对应于不同的控制动作。
例如,当y远离目标点0时,需要施加较大的控制力;而当y接近目标点时,应逐渐减小控制力以避免过度响应。
通过实验和调节控制参数,确定了合适的模糊控制规则和参数设置,以实现倒立摆的优化控制。
结果与讨论:通过实验验证,该模糊控制系统能够实现倒立摆的平衡控制,并且具有一定的鲁棒性和稳定性。
在控制参数设置上,应根据倒立摆的特点和实际应用需求,进行适当调整,以实现最优控制效果。
一阶直线倒立摆双闭环PID控制仿真报告

目录摘要 (2)一、一阶倒立摆系统建模 (3)1、对象模型 (3)2、电动机、驱动器及机械传动装置的模型 (4)二、双闭环PID控制器设计 (5)1、仿真验证 (6)2、内环控制器的设计 (9)3、系统外环控制器设计 (12)三、仿真实验 (15)1、绘图子程序 (15)2、仿真结果 (16)四、结论 (18)摘要本报告旨在借助Matlab 仿真软件,设计基于双闭环PID 控制的一阶倒立摆控制系统。
在如图0.1所示的“一阶倒立摆控制系统”中,通过检测小车的位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC )完成。
图0.1 一阶倒立摆控制系统分析工作原理,可以得出一阶倒立摆系统原理方框图:图0.2 一阶倒立摆控制系统动态结构图本报告将借助于“Simulink 封装技术——子系统”,在模型验证的基础上,采用双闭环PID 控制方案,实现倒立摆位置伺服控制的数字仿真实验。
一、一阶倒立摆系统建模1、对象模型如图1.1所示,设小车的质量为m 0,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向的力为F ,O 1为摆角质心。
θxyOFF xF x F yF yllxO 1图1.1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其中心的转动方程为θθθcos sin y l F l F J x-= (1-1) 2)摆杆重心的水平运动可描述为)sin (22x θl x dtd m F += (1-2)3)摆杆重心在垂直方向上的运动可描述为)cos (22y θl dtd m mg F =- (1-3)4)小车水平方向上的运动可描述为220dtxd m F F x =- (1-4)由式(1-2)和式(1-4)得F ml x m m =⋅-⋅++)sin (cos )(20θθθθ (1-5) 由式(1-1)、(式1-2)和式(1-3)得θθθsin g cos 2ml x ml ml J =⋅++ )( (1-6) 整理式(1-5)和式(1-6),得⎪⎪⎩⎪⎪⎨⎧++-+-⋅+⋅=-++-⋅+++=))((cos sin )(cos sin cos cos ))((cos sin sin )()(x 2022202222220222222m l J m m l m m l m m l m F m l l m m m m l J g l m m l J lm F m l J θθθθθθθθθθθθ(1-7) 以上式1-7为一阶倒立摆精确模型。
一阶倒立摆双闭环模糊控制

摘要本文讨论基于鲁棒性设计的一阶倒立摆双闭环控制问题。
以摆角为内环.以小车位置为外环利用鲁棒孔子系统理论进行模糊控制器设计及参数整定,使控制系统对于确定系统参数的变化具有较强的鲁棒性。
倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合等特性使得许多现代控制理论的研究人员一直将它视为研究对象。
论文首先介绍了模糊系统的理论基础,和模糊控制器的分析和设计,充分的理解了倒立摆智能控制系统研究与设计所需要的理论知识。
然后通过对倒立摆系统的分析建模,采用模糊推理系统,设计相应的模糊控制器,对倒立摆进行控制,最后将控制过程在MATLAB上加以仿真。
在MATLAB仿真中,应用模糊逻辑工具箱来设计模糊逻辑控制器,然后通过Simulink来建立模糊系统,最后得到仿真结果。
关键词:倒立摆,模糊控制,双闭环模糊控制器,MATLAB仿真。
ABSTRACTThis article discusses the question of inverted pendulum double loop control that based on robust design. Take the pivot angle as the inner ring , the car position as the outer ring, Carries on the fuzzy controller design and the parameter installation by use robust control system theory, enable the control system to have strong robustness that determine changes in system parameters. As the inverted pendulum system is unstable,multivariable, nonlinear and strongly coupling and so on, many modern control theory researchers regard it as the object of study. The thesis introduced the Fuzzy systems theory ,the analysis and design of fuzzy controller , understand the theory knowledge that needed in study of intelligent control system of inverted pendulum . Then use fuzzy inference system and design corresponding fuzzy controller to control Inverted pendulum by making model of analysis of the inverted pndulum system.Finally,simulate the control processing in MATLAB.The simulation in MATLAB,design Fuzzy logic controller by applicating fuzzy logic toolbox,then set up fuzzy systems by use Simulink and at last obtained simulation results.Key word:Inverted pendulum, fuzzy control, double closed loop fuzzy controller, MATLAB simulation.目录第一章绪论 (4)1.1倒立摆系统稳定性研究 (4)1.1.1 倒立摆系统稳定性研究的意义 (4)1.1.2 倒立摆研究的发展状况 (5)1.2 模糊控制的研究现状 (6)1.2.1模糊控制理论的产生 (6)1.2.2模糊控制的数学基础 (7)1.2.3模糊控制的研究现状 (8)1.2.4模糊控制理论的发展前景 (9)1.3 论文主要工作 (10)第二章:单支点倒立摆系统数学模型的建立及系统分析 (11)2.1建模机理 (11)2.2系统建模 (11)2.3 模型简化 (13)第三章:模糊控制的基本原理 (16)3.1 模糊集合与隶属函数 (16)3.2 模糊逻辑操作 (16)3.3 模糊规则与模糊推理 (17)3.4 模糊推理系统 (17)第四章:一阶倒立摆系统的双闭环模糊控制器的设计与仿真 (19)4.1 一阶倒立摆系统的双闭环模糊控制方案 (19)4.1.1 问题的提出 (19)4.1.2 模糊控制器的设计 (20)4.2 仿真实验 (23)4.2.1 MATLAB模糊逻辑工具箱 (23)4.2.2 一阶倒立摆系统数字仿真模型的建立 (26)4.3仿真实验结果 (28)第五章结论 (33)致谢 (34)参考文献: (35)附录: (36)中文翻译: (41)第一章绪论1.1倒立摆系统稳定性研究倒立摆控制系统是应用于自动控制理论实验室的经典实验装置。
基于MATLAB的倒立摆系统控制系统设计与仿真【毕业作品】

1 绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。
倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。
它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。
在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。
小车可沿一笔直的有界轨道向左或向右运动,同时摆可在垂直平面内自由运动。
直流电机通过传送带拖动小车的运动,从而使倒立摆稳定竖立在垂直位置。
图1.1一级倒立摆装置简图由图1.1中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆体组成。
导轨的一端固定有位置传感器,通过与之共轴的轮盘转动可以测量出沿导轨由图中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆运动的小车位移;小车通过轴承连接摆体,并在小车与摆体的连接处固定有共轴角度传感器,用以测量摆体的角度信号;并通过微分电路得到相应的速度和角速度信号;导轨的另一端固定有直流永磁力矩电机,直流电机通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传送到摆杆以实现整个系统的平衡。
倒立摆的种类很多,有悬挂式倒立摆、平行式倒立摆、和球平衡式倒立摆;倒立摆的级数可以是一级,二级,乃至更多级。
控制方法也是多种,可以通过模糊控制,智能控制,PID控制,LQR控制等来实现倒立摆的动态平衡,本文介绍的是状态反馈极点配置方法来实现一级倒立摆的控制。
1.2倒立摆的控制规律当前,倒立摆的控制规律可总结如下:(1)状态反馈H控制[1],通过对倒立摆物理模型的分析,建立倒立摆的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈和Kalnian滤波相结合的方法,实现对倒立摆的控制。
(2)利用云模型[2-3]实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。
基于模糊控制算法的倒立摆系统的研究

基于模糊控制算法的倒立摆系统的研究摘要:倒立摆是一个经典的控制系统研究对象,具有非线性、强耦合等特点,传统的控制方法在其控制中存在一定的困难。
因此,本研究基于模糊控制算法对倒立摆系统进行研究,旨在提高系统的控制性能和稳定性。
通过建立数学模型,设计模糊控制器,并进行仿真实验,分析模糊控制算法在倒立摆系统中的应用效果。
关键词:倒立摆,模糊控制,非线性,稳定性,控制性能1. 引言倒立摆作为一个非线性、强耦合的系统,其控制一直是控制理论研究领域的热点之一。
传统的控制算法,如PID控制,往往难以满足倒立摆系统的控制需求。
模糊控制算法因其对非线性系统具有较好的适应性而备受关注。
本研究旨在探索基于模糊控制算法的倒立摆控制方法。
2. 倒立摆系统建模倒立摆系统由一个可旋转的杆和一个质点组成,质点位于杆的一端,通过一个关节连接。
系统的运动受到重力和杆的惯性力的影响。
通过运动学和动力学方程,可以得到倒立摆系统的数学模型。
3. 模糊控制器设计为了实现对倒立摆系统的精确控制,本研究设计了一个模糊控制器。
模糊控制器的输入为系统的误差和误差变化率,输出为控制信号。
通过设定适当的模糊规则和隶属度函数,模糊控制器可以根据当前的系统状态和误差,生成合适的控制信号。
4. 仿真实验与分析通过Matlab/Simulink工具进行仿真实验,对比模糊控制算法和传统的PID控制方法在倒立摆系统中的控制效果。
实验结果表明,模糊控制算法具有较好的控制性能和稳定性,能够实现对倒立摆系统的精确控制。
5. 结论本研究基于模糊控制算法对倒立摆系统进行了研究。
通过建立数学模型和设计模糊控制器,实现了对倒立摆系统的控制。
仿真实验结果表明,模糊控制算法具有较好的控制性能和稳定性,能够满足倒立摆系统的控制需求。
未来的研究可以进一步优化模糊控制器的设计,提高系统的控制精度和响应速度。
倒立摆控制系统设计与仿真论文-要求与格式--未做完

倒立摆控制系统的设计与仿真分析研究班级 姓名 学号(完成后删除所有蓝色提示文字,电子版在12月26日前提交邮箱) 1. 问题的提出倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学与开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以与跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
考虑倒立摆系统,原理图如图1所示。
图1 倒立摆原理假设M = 2千克,m = 0.5千克,l = 1米,控制信号为牵引力u ,忽略地面摩擦力,摆轴旋转的摩擦力,本文对该系统进行建模、控制系统设计以与控制性能进行仿真研究,对熟悉使用现代控制工程的设计方法以与MATLAB 的应用具有重要的意义。
2. 系统建模对该倒立摆系统,若定义状态变量为x x x x x x ====4321,,,θθ 输出变量为3211,x x y x y ====θ先利用力学知识把倒立摆的模型建立起来。
[]s [],,{Txx x x Ax Bu y Cx Duθθθ••==+=+状态量输出量为Y=所以系统的状态方程为01000()10001000,,,[0]0010000101000g M m Ml Ml A B C D m g M M ⎡⎤⎡⎤⎢⎥⎢⎥+-⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦把M = 2kg ,m = 0.5kg ,l = 1m ,代入A 、B 、C ,得1122334412340100012.250000.5000102.450000.510000010x x x x ux x x x x x y x x x θ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎡⎤⎛⎫ ⎪== ⎪⎢⎥ ⎪⎣⎦⎝⎭⎪⎝⎭3. 控制系统的设计与仿真3.1.调节器问题的倒立摆设计与性能研究对该倒立摆系统,若要求闭环极点为123444,44,15,15j j μμμμ=-+=--=-=- 采用状态反馈方案 u KX =-,试确定状态反馈增益矩阵K 。
模糊控制在倒立摆中的MATLAB仿真应用

TAIYUAN UNIVERSITY OF SCIENCE & TECHNOLOGY题目:院(系):专业:学生姓名:学号:模糊控制在倒立摆中的仿真应用1、倒立摆系统简介倒立摆有许多类型,例如图1-1的a和b所示的分别是轮轨式一级倒立摆系统和二级倒立摆系统的模型。
倒立摆是一个典型的快速、多变量、非线性、本质不稳定系统,它对倒置系统的研究在理论上和方法论上具有深远的意义。
对倒立摆的研究可归结为对非线性多变量本质不稳定系统的研究,其控制方法和思路在处理一般工业过程中也有广泛的用途。
近些年来国内外不少专家学者对一级、二级、三级、甚至四级等倒立摆进行了大量的研究,人们试图寻找不同的控制方法实现对倒立摆的控制,以便检查或说明该方法的严重非线性和本质不稳定系统的控制能力。
2002年8月11日,我国的李洪兴教授在国际上首次成功实现了四级倒立摆实物控制,也标志着我国学者采用自己提出的控制理论完成的一项具有原创性的世界领先水平的重大科研成果。
图1-1 倒立摆模型(a)一级倒立摆模型(b)二级倒立摆模型倒立摆系统可以简单地描述为小车自由地在限定的轨道上左右移动。
小车上的倒立摆一端用铰链安装在小车顶部,另一端可以在小车轨道所在的垂直平面内自由转动,通过电机和皮带传动使小车运动,让倒立摆保持平衡并保持小车不和轨道两端相撞。
在此基础上在摆杆的另一端铰链其它摆杆,可以组成二级、三级倒立摆系统。
该系统是一个多用途的综合性试验装置,它和火箭的飞行及步行机器人的关节运动有许多相似之处,其原理可以用于控制火箭稳定发射、机器人控制等诸多领域。
倒立摆系统控制原理单级倒立摆系统的硬件包括下面几个部分:计算机、运动控制卡、伺服系统、倒立摆和测量元件,由它们组成的一个闭环系统,如图1-2所示,就是单级倒立摆系统的硬件结构图。
图1-2 单级倒立摆硬件结构图通过角度传感器可以测量摆杆的角度,通过位移传感器可以得到小车的位置,然后反馈给运动控制卡,运动控制卡与计算机双向通信。
倒立摆模糊控制系统仿真

倒立摆模糊控制系统仿真Champagne【摘要】在模糊系统控制模型中,倒立摆模型是一个较为典型的实例,针对多变量输入、非线性结构的倒立摆系统,可以通过matlab 仿真平台对具体的模型对象进行认识和研究。
首先是对这样一个具有实际物理意义的模型进行建模,通过对模型的数学分析来选择适当的模糊控制途径,最后通过仿真来获得更多的有关模型的信息。
本文站在一个初学者的角度,通过相关资料的检索以及matlab 的具体实践,用图形的方法来描述这种模型的处理过程。
这种方案实现了摆干角度与小车位置的双重控制的功能,而且实现的良好的动态性能以及稳态性能的输出。
验证了使用模糊控制方案对倒立摆模型进行描述和控制的有效性。
关键词:模糊控制 倒立摆 系统仿真 matlab倒立摆系统的控制是控制理论应用的一个典型范例,其结构简单、成本较低,便于用模拟或数字的方法进行控制。
其结构形式虽然多种多样,但无论何种结构就其本身而言,都是一个非最小相位、多变量、绝对不稳定的非线性系统。
由于倒立摆系统的绝对不稳定性,必须采用有效的措施控制其达到相对稳定的状态。
同时由于摩擦等因素的存在,使系统具有一定的不确定性。
因而需要寻找一种非传统的控制方式。
目前已经相对发展成熟的是模糊控制系统,而这种控制方式的典型应用之一就是倒立摆系统。
倒立摆系统的简化物理模型如下图所示:该系统的微分方程是:)()sin(lg)(/222t u m dt d ml ==+-τθθ其中m 是摆杆的质量,l 是摆长,θ是从垂直方向上的顺时针偏转角,τ=u(t)为作用于杆的逆时针扭矩,t 是时间,g 是重力加速度常数。
假设x1=θ,x2=d θ/dt 为状态变量,则由微分方程式给出的非线性系统的状态表达式为 21/x dt dx =)()/1()sin()/(/212t u ml x l g dt dx -=由于偏转角很小时,sin θ=θ,可以将状态空间线性化表示: 21/x dt dx =)()/1()/(/212t u ml x l g dt dx -=线性离散时间状态空间表达式可以用矩阵差分方程来表示: )()()1(211k x k x k x +=+ )()()()1(212k u k x k x k x -+=+两个输入变量的论域为[-2,2]和[-5,5]所以分别在两个输入变量的空间建立相应的隶属度函数。