2012年高考数学压轴题精炼四

合集下载

2012年高考数学真题汇编4 数列 理( 解析版).pdf

2012年高考数学真题汇编4 数列 理( 解析版).pdf

2012高考真题分类汇编:数列 一、选择题 1.【2012高考真题重庆理1】在等差数列中,,则的前5项和=A.7 B.15 C.20 D.25 【答案】B 【解析】因为,,所以,所以数列的前5项和,选B. 2.【2012高考真题浙江理7】设是公差为d(d≠0)的无穷等差数列an的前n项和,则下列命题错误的是 A.若d<0,则数列Sn有最大项 B.若数列Sn有最大项,则d<0 C.若数列Sn是递增数列,则对任意,均有 D. 若对任意,均有,则数列Sn是递增数列 【答案】C 【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.故选C。

3.【2012高考真题新课标理5】已知为等比数列,,,则( ) 【答案】D 【解析】因为为等比数列,所以,又,所以或.若,解得,;若,解得,仍有,综上选D. 4.【2012高考真题上海理18】设,,在中,正数的个数是( ) A.25 B.50 C.75 D.100 【答案】D 【解析】当1≤≤24时,>0,当26≤≤49时,<0,但其绝对值要小于1≤≤24时相应的值,当51≤≤74时,>0,当76≤≤99时,<0,但其绝对值要小于51≤≤74时相应的值,∴当1≤≤100时,均有>0。

5.【2012高考真题辽宁理6】在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=(A)58 (B)88(C)143 (D)176 【答案】B 【解析】在等差数列中,,答案为B 【点评】本题主要考查等差数列的通项公式、性质及其前n项和公式,同时考查运算求解能力,属于中档题。

解答时利用等差数列的性质快速又准确。

6.【2012高考真题四川理12】设函数,是公差为的等差数列,,则( ) A、 B、 C、 D、 【答案】D 【解析】,即 ,而是公差为的等差数列,代入,即 ,不是的倍数,. ,故选D. 7.【2012高考真题湖北理7】定义在上的函数,如果对于任意给定的等比数列, 是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数: ①;②;③;④. 则其中是“保等比数列函数”的的序号为 ① ② B.③ ④ C.① ③ D.② ④ ,①; ②;③;④ 8.【2012高考真题福建理2】等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为A.1B.2C.3D.4 【答案】B. 【解析】由等差中项的性质知,又.故选B. 9.【2012高考真题安徽理4】公比为等比数列的各项都是正数,且,则=( ) 【答案】B 【解析】. 10.【2012高考真题全国卷理5】已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前100项和为 (A) (B) (C) (D) 【答案】A 【解析】由,得,所以,所以,又,选A. 二、填空题 11.【2012高考真题浙江理13】设公比为q(q>0)的等比数列{an}的前n项和为Sn。

2012年高考数学压轴题跟踪训练4

2012年高考数学压轴题跟踪训练4

2012届高考数学压轴题跟踪训练41.(本小题满分12分)过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅PB PA (1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅FP FB FA λ?若存在,求出λ的值,若不存在,请说明理由.解法(一):(1)设)(),4,(),4,(21222211x x x x B x x A ≠由,42y x =得:2'x y =2,221x k x k PB PA ==∴ 4,,021-=∴⊥∴=⋅x x PB PA PB PA ………………………………3分 直线PA 的方程是:)(241121x x x x y -=-即42211x x x y -= ①同理,直线PB 的方程是:42222x x x y -= ②由①②得:⎪⎩⎪⎨⎧∈-==+=),(,142212121R x x x x y x x x ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x FA ),14,(222-=x x FB )1,2(21-+xx P4),2,2(2121-=-+=x x x x FP 42)14)(14(2221222121x x x x x x FB FA +--=--+=⋅ …………………………10分2444)()(22212212++=++=x x x x FP所以0)(2=+⋅FP FB FA故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅PB PA ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y由⎩⎨⎧=+=yx mkx y 42得:0442=--m kx x 016162=+=∆∴m k 即2k m -=…………………………3分即直线PA 的方程是:2k kx y -= 同理可得直线PB 的方程是:211kx k y --= 由⎪⎩⎪⎨⎧--=-=2211k x k y k kx y 得:⎪⎩⎪⎨⎧-=∈-=11y R k k x 故点P 的轨迹方程是).(1R x y ∈-=……………………………………6分 (2)由(1)得:)1,1(),1,2(),,2(22---kk P k k B k k A )11,2(),1,2(22--=-=kk FB k k FA)2,1(--=kk FP)1(2)11)(1(42222kk k k FB FA +--=--+-=⋅………………………………10分)1(24)1()(2222kk k k FP ++=+-=故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 2.(2012年沧州五校联考)(本小题满分14分)设函数x axxx f ln 1)(+-=在),1[+∞上是增函数. (1) 求正实数a 的取值范围; (2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+解:(1)01)(2'≥-=ax ax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分 (2)取b b a x +=,1,0,1>+∴>>bba b a ,一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,0)1()(=>+∴f b b a f0ln 1>+++⋅+-∴b b a b b a a b b a 即ba b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G ∴当1>x 时,0)1()(>>G x G∴x x ln > 即bba b b a +>+ln综上所述,.ln 1bba b b a b a +<+<+………………………………………………14分3.(本小题满分12分)如图,直角坐标系xOy 中,一直角三角形ABC ,90C ∠=,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,3BD DC =,ABC !的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.(1) 求双曲线E 的方程;(2) 若一过点(,0)P m (m 为非零常数)的直线与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且MP PN λ=,问在x 轴上是否存在定点G ,使()BC GM GN λ⊥-?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.x解:(1) 设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =.∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)解之得1a =,∴2,c b ==∴双曲线E 的方程为2213y x -=. (5分)(2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.设直线的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN λ=,得120y y λ+=. 即12yy λ=-① (6分)∵(4,0)BC =,1212(,)GM GN x t x t y y λλλλ-=--+-,∴()BC GM GN λ⊥-12()x t x t λ⇔-=-. 即12()ky m t ky m t λ+-=+-. ② (8分)把①代入②,得12122()()0ky y m t y y +-+=③ (9分)把x m ky -=代入2213y x -=并整理得 222(31)63(1)0k y kmy m -++-=其中2310k -≠且0∆>,即213k ≠且2231k m +>. 212122263(1),3131km m y y y y k k --+==--. (10分)代入③,得2226(1)6()03131k m km m t k k ---=--,xx化简得 kmt k =. 当1t m=时,上式恒成立. 因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥-.(12分)4.(本小题满分14分)已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p为大于1的常数),记12121C C C ()2n n n n nn na a a f n S ++++=.(1) 求n a ; (2) 试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); (3) 求证:2111(21)()(1)(2)(21)112n p p n f n f f f n p p -⎡⎤⎛⎫++-+++--⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦剟,(*n ∈N ). 解:(1) ∵(1)n n p S p pa -=-,① ∴11(1)n n p S p pa ++-=-.②②-①,得11(1)n n n p a pa pa ++-=-+,即1n n a pa +=.(3分)在①中令1n =,可得1a p =.∴{}n a 是首项为1a p =,公比为p 的等比数列,n n a p =. (4分)(2) 由(1)可得(1)(1)11n n n p p p p S p p --==--. 12121C C C n n n n n a a a ++++1221C C C (1)(1)n nn n n n n p p p p p =++++=+=+.∴12121C C C ()2n n n n nn na a a f n S ++++=1(1)2(1)nn n p p p p -+=⋅-, (5分)(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p +1111(1)2()n n n p p p p p +++-+=⋅-,且1p >,∴1110n n p p p ++->->,10p ->. ∴(1)f n +<1()2p f n p+,(*n ∈N ). (8分)(3) 由(2)知 1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ). ∴当2n …时,211111()(1)()(2)()(1)()2222n np p p p f n f n f n f p pp p-++++<-<-<<=. ∴221111(1)(2)(21)222n p p p f f f n p p p -⎛⎫⎛⎫++++++-+++ ⎪ ⎪⎝⎭⎝⎭…2111112n p p p p -⎡⎤⎛⎫++=-⎢⎥ ⎪-⎢⎥⎝⎭⎣⎦, (10分)(当且仅当1n =时取等号). 另一方面,当2n …,1,2,,21k n =-时,2221(1)(1)()(2)2(1)2(1)k n k k k n k n k p p p f k f n k p p p ---⎡⎤-+++-=+⎢⎥--⎣⎦1p p -⋅…1p p -=1p p -=.∵22k n k n p p p -+…,∴2222121(1)n k n k n n n p p p p p p ---+-+=-….∴12(1)()(2)2()2(1)nn n p p f k f n k f n p p -++-⋅=-…,(当且仅当k n =时取等号).(13分) ∴2121211111()[()(2)]()(21)()2n n n k k k f k f k f n k f n n f n ---====+-=-∑∑∑….(当且仅当1n =时取等号).综上所述,2121111(21)()()112n n k p p n f n f k p p --=⎡⎤⎛⎫++--⎢⎥∑ ⎪-⎢⎥⎝⎭⎣⎦剟,(*n ∈N ).(14分)。

2012年高考数学冲刺复习精练四

2012年高考数学冲刺复习精练四

冲刺复习:数学精练 四1 已知函数)4541(2)cos()sin()(≤≤+-=x xπx πx x f ,则f (x )的最小值为 ; 2.设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>,命题P 且Q 为假,P 或Q 为真,则实数a 的取值范围是 。

3.在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅AF AC AE AB ,则EF 与BC 的夹角的余弦值等于 ;4海滩上的一堆苹果是五个猴子的财产,它们要平均分配。

第一个猴子来了,它把苹果平均分成五堆还剩下一个。

它把剩下的一个仍到大海里,自己拿走了一堆;第二个猴子来了,它又把苹果平均分成5堆,又多了一个,它又仍掉一个,拿走了一堆;以后每个猴子来了都照此办理,则原来至少有 个苹果。

5 已知向量)23sin ,23(cos x x a = ,)2sin ,2(cos x x b -= ,且]23,2[ππ∈x(1)求||b a+的取值范围; (2)求函数||)(b a b a x f+-⋅=的最小值,并求此时x 的值6已知函数值不恒为0的单调函数()f x 满足)()()(,,y f x f y x f R y x ⋅=+∈,同时数列{}n a 满足()10a f =,)()2(1)(*1N n a f a f n n ∈--=+。

(1)数列{}n a 的前n 项和n S ; (2)令nn n n a a a b 2211...11+++=++,求数列n b 的最小值。

7如图所示几何体为组合体,由正三棱柱111ABC A B C -和三棱锥P ABC -组成。

正AA 1三棱柱111ABC A B C -中,AB =,12AA =;三棱锥P ABC -中,11P AB B B ∈平面,且PA PB ==(1)求证:11//PA A BC 平面;(2)求二面角1P AC C --平面角的正切值; (3)求点P 到平面11BCC B 的距离。

2012年高考数学30道压轴题

2012年高考数学30道压轴题

2012年高考数学30道压轴题训习1.椭圆的中心是原点O,它的短轴长为,相应于焦点()的准线与x轴相交于点,,过点的直线与椭圆相交于、两点。

(1)求椭圆的方程及离心率;(2)若,求直线的方程;(3)设(),过点且平行于准线的直线与椭圆相交于另一点,证明. (14分)2.已知函数对任意实数x都有,且当时,。

(1)时,求的表达式。

(2)证明是偶函数。

(3)试问方程是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。

当3.(本题满分12分)如图,已知点F(0,1),直线L:y=-2,及圆C:。

(1)若动点M到点F的距离比它到直线L的距离小1,求动点M的轨迹E的方程;(2)过点F的直线g交轨迹E于G(x1,y1)、H(x2,y2)两点,求证:x1x2为定值;(3)过轨迹E上一点P作圆C的切线,切点为A、B,要使四边形PACB的面积S最小,求点P的坐标及S的最小值。

4.以椭圆=1(a>1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.5 已知,二次函数f(x)=ax2+bx+c及一次函数g(x)=-bx,其中a、b、c∈R,a>b>c,a+b+c=0.(Ⅰ)求证:f(x)及g(x)两函数图象相交于相异两点;(Ⅱ)设f(x)、g(x)两图象交于A、B两点,当AB线段在x轴上射影为A1B1时,试求|A1B1|的取值范围.6 已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为-3。

(1)求a、b的值;(2)求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立;(3)令。

是否存在一个实数t,使得当时,g(x)有最大值1?7 已知两点M(-2,0),N(2,0),动点P在y轴上的射影为H,︱︱是2和的等比中项。

(1)求动点P的轨迹方程,并指出方程所表示的曲线;(2)若以点M、N为焦点的双曲线C过直线x+y=1上的点Q,求实轴最长的双曲线C的方程。

2012年高考数学压轴题19套

2012年高考数学压轴题19套

数学压轴题集1. 已知函数()ln ,()(0)af x xg x a x==>,设()()()F x f x g x =+ (1)求()F x 的单调区间; (2)若以()((0,3]y F x x =∈)图像上任意一点00(,)P x y 为切点的切线的斜率12k ≤恒成立, 求实数a 的最小值;(3)若对所有的[,)x e ∈+∞都有()xfx ax a ≥-成立,求实数a 的取值范围.解:(1)()()()ln (0),aF x f x g x x x x =+=+>'221()(0)a x a F x x x x x-=-=>.………2分 因为0a>由'()0(,)F x x a >⇒∈+∞,所以()F x 在上单调递增;由'()0(0,)F x x a <⇒∈,所以()F x 在(0,)a 上单调递减. ………………………………………………………………5分 (2)''0002201()(03),()(03)2x a x a F x x k F x x x x --=<≤==≤<≤恒成立,………7分 即200max 1(),2ax x ≥-+当01x =时取得最大值12。

所以,12a≥,所以min 12a =.……10分 (3)因为xe ≥,所以ln ln 1x x x x ax a a x ≥-⇔≤-,令ln (),[,)1x x h x x e x =∈+∞-,则'2ln 1()(1)x x h x x --=-.………………………………………………………………12分 因为当xe ≥时,'1(ln 1)10x x x--=->,所以ln 1ln 120x x e e e --≥--=->,所以'()0h x >,所以min()()1e h x h e e ==-,所以 1ea e ≤-.………………………16分 2.已知数列{}na 中,11=a, a a a a ,1(12≠-=为实常数),前n 项和n S 恒为正值,且当2≥n 时,1111+-=n n n a a S .(1)求证:数列{}nS 是等比数列;(2)设n a 与2+n a 的等差中项为A ,比较A 与1+n a 的大小;(3)设m 是给定的正整数,2=a.现按如下方法构造项数为m 2有穷数列{}n b :当m m m k2,,2,1 ++=时,1+⋅=k k k a a b ;当m k ,,2,1 =时,12+-=k m k b b .求数列{}nb 的前n 项和为),2(*∈≤N n m n T n .解:(1)当3≥n时, Nn n n n nnS S S S a a S ---=-=+-+11111111,化简得112+-=n n n S S S )3(≥n ,又由11=a ,12-=a a 得31111a a a--=, 解得)1(3-=a a a ,∴2321,,1a S a S S ===,也满足112+-=n n n S S S ,而n S 恒为正值,∴数列{}nS 是等比数列. 4 分(2){}nS 的首项为1,公比为a ,1-=n na S.当2≥n 时,21)1(---=-=n n n n a a S S a ,∴⎩⎨⎧≥-==-2,)1(1,12n a a n a n n . 当1=n 时,221312331333[()]222248n a a aa A a a a ++-+-=-==-+≥,此时1+>n a A .…6分当2≥n时, 12121)1(2)1()1(2--+++---+-=-+=-n nn n n n n a a a a a a a a a a A2)1(2)12()1(2322---=+--=n n a a a a a a .∵nS 恒为正值 ∴0>a 且1≠a ,若10<<a ,则01<-+n a A ,若1.>a ,则01>-+n a A .综上可得,当1=n 时, 1+>n a A ;当2≥n时,若10<<a ,则1+<n a A ,若1.>a ,则1+>n a A . 10 分(3)∵2=a∴⎩⎨⎧≥==-2,21,12n n a n n ,当m k m 21≤≤+时, 3212-+=⋅=k k k k a a b .若*∈≤N n m n ,,则由题设得1212221,,,+--===n m n m m b b b b b b=+++=+++=+--1212221n m m m n n b b b b b b T3)21(241)41(22222141341245434n m n m n m m m ----------=--=+++ .13 分 若*∈≤≤+N n m n m ,21,则n m m m n b b b T T ++++=++ 213212122142223)21(2-+---++++-=n m m m m 41)41(23)21(212214--+-=----m n m m m 3)12(2212-=-m m . 综上得⎪⎪⎩⎪⎪⎨⎧≤≤+-≤≤-=---m n m m n T m m n m n21,3)12(21,3)21(2212214. 16 分 3.A 是定义在[2,4]上且满足如下两个条件的函数()x Φ组成的集合:①对任意的[1,2]x ∈,都有(2)(1,2)x Φ∈; ②存在常数L (01)L <<,使得对任意的12,[1,2]x x ∈,都有1212(2)(2)x x L x x Φ-Φ≤-(1)设3()1,[2,4]x x x Φ=+∈,证明:()x A Φ∈;(2)设()x A Φ∈,如果存在0(1,2)x ∈,使得00(2)x x =Φ,那么,这样的0x 是唯一的;(3)设()x A Φ∈,任取1(1,2),x ∈令1(2),1,2,,n n x x n +=Φ=证明:给定正整数k ,对任意的正整数p ,不等式1211k k p k L x x x x L-+-≤--成立.证明:(1)对任意3[1,2],(2)12,[1,2],x x x x ϕ∈=+∈于是333(2)5x ϕ≤≤,…………2分又331352<<<,所以(2)(1,2)x ϕ∈。

高考数学压轴题精炼四

高考数学压轴题精炼四

2012高考数学压轴题精炼四1.(本小题满分14分)已知f(x)=222+-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x 1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x)=x 2-ax -2, 方法一: ϕ(1)=1-a -2≤0,① ⇔ ⇔-1≤a ≤1,ϕ(-1)=1+a -2≤0.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0∴A={a|-1≤a ≤1}. 方法二:2a ≥0, 2a <0, ①⇔ 或ϕ(-1)=1+a -2≤0 ϕ(1)=1-a -2≤0⇔ 0≤a ≤1 或 -1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0∴A={a|-1≤a ≤1}. (Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,∴ 从而|x 1-x 2|=212214)(x x x x -+=82+a .x 1x 2=-2,∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt+(m 2-2),方法一:g(-1)=m 2-m -2≥0,② ⇔g(1)=m 2+m -2≥0, ⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.方法二:当m=0时,②显然不成立;当m ≠0时,m>0, m<0,②⇔ 或g(-1)=m 2-m -2≥0 g(1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.2.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围.本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ① 得y '=x.∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1), 方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点x 0=221x x +=-11x , ∴y 0=21x 12-11x (x 0-x 1).消去x 1,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+2021x +1(x ≠0).方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +, 得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2), 则x 0=2121x x y y --=k l =-11x , ∴x 1=-01x , 将上式代入②并整理,得y 0=x 02+2021x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+2021x +1(x ≠0).(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b).分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'. y=21x 2 由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③y=kx+by 1+y 2=2(k 2+b),则y 1y 2=b 2.方法一:∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b =2. ∵y 1、y 2可取一切不相等的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二: ∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2bb k +. 当b>0时,||||||||SQ ST SP ST +=b 22)(2b b k +=b b k )(22+=b k 22+2>2; 当b<0时,||||||||SQ ST SP ST +=-b 22)(2bb k +=b b k -+)(22. 又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>b b b -+-)2(2=2. ∵当b>0时,bk 22可取一切正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x b y -. 则x 1y 2-bx 1=x 2y 1-bx 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b=122212122121x x x x x x -⋅-⋅=-21x 1x 2.∴||||||||SQ ST SP ST +=||||||||21y b y b +|1|21x x -|1|21x x -||12x x +||21x x ≥2. ∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 3.(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分.解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元);②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元) ③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元); ④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.4.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列(I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示); (II )设;)(:,,2,1,1A b A b b n A a b n n n n n +-==-=+证明 (III )若 ,2,121||=≤n b nn 对都成立,求a 的取值范围. 本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→ .24,0.24,122++=∴>+±=+=a a A A a a A A a A 又解得 (II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由 都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b A b A A b A a b n n n n n n n n (III ).21|)4(21|,21||21≤++-≤a a ab 得令 .,2,121||,23.23,14.21|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a n n (i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(k k b k k n ≤≥= k k k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+ 故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k.212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k k k k k k k b a A b A b A A b A a a a a a a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b nn 5.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知a R ∈,函数2()||f x x x a =-.(Ⅰ)当2a =时,求使()f x x =成立的x 的集合;(Ⅱ)求函数()y f x =在区间[12],上的最小值. 本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力. 满分14分.解:(Ⅰ)由题意,2()2f x x x =-.当2x <时,2()(2)f x x x x =-=,解得0x =或1x =;当2x ≥时,2()(2)f x x x x =-=,解得1x =.综上,所求解集为{011+,,. (Ⅱ)设此最小值为m .①当1a ≤时,在区间[12],上,32()f x x ax =-. 因为 22()323()03f x x ax x x a '=-=->,(12)x ∈,, 则()f x 在区间[12],上是增函数,所以(1)1m f a ==-. ②当12a <≤时,在区间[12],上,2()()0f x x x a =-≥,由()0f a =知 ()0m f a ==.③当2a >时,在区间[12],上,23()f x ax x =-. 22()233()3f x ax x x a x '=-=-. 若3a ≥,在区间(12),内()0f x '>,从而()f x 为区间[12],上的增函数, 由此得 (1)1m f a ==-.若23a <<,则2123a <<. 当213x a <<时,()0f x '>,从而()f x 为区间2[1]3a ,上的增函数; 当223a x <<时,()0f x '<,从而()f x 为区间2[2]3a ,上的减函数. 因此,当23a <<时,(1)1m f a ==-或(2)4(2)m f a ==-. 当723a <≤时,4(2)1a a -≤-,故(2)4(2)m f a ==-; 当733a <<时,14(2)a a -<-,故(1)1m f a ==-. 综上所述,所求函数的最小值 111274(2)23713a a a m a a a a -≤⎧⎪<≤⎪⎪=⎨-<≤⎪⎪->⎪⎩,当时;0,当时;,当时;,当时. 6.(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,,,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,其中A B ,为常数. (Ⅰ)求A 与B 的值;(Ⅱ)证明:数列{}n a 为等差数列;(Ⅲ)1对任何正整数m n ,都成立.本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力. 解:(Ⅰ)由已知,得111S a ==,2127S a a =+=,312318S a a a =++=.由1(58)(52)n n n S n S An B +--+=+,知2132372122S S A B S S A B --=+⎧⎨-=+⎩,, 即 28248A B A B +=-⎧⎨+=-⎩,, 解得 20A =-,8B =-.(Ⅱ)方法1由(Ⅰ),得 1(58)(52)208n n n S n S n +--+=--, ① 所以 21(53)(57)2028n n n S n S n ++--+=--. ② ②-①,得 21(53)(101)(52)20n n n n S n S n S ++---++=-, ③ 所以 321(52)(109)(57)20n n n n S n S n S ++++-+++=-. ④ ④-③,得 321(52)(156)(156)(52)0n n n n n S n S n S n S ++++-+++-+=. 因为 11n n n a S S ++=-, 所以 321(52)(104)(52)0n n n n a n a n a ++++-+++=. 又因为 520n +≠,所以 32120n n n a a a +++-+=, 即 3221n n n n a a a a ++++-=-,1n ≥. 所以数列{}n a 为等差数列.方法2由已知,得111S a ==,又1(58)(52)208n n n S n S n +--+=--,且580n -≠, 所以数列{}n S 是唯一确定的,因而数列{}n a 是唯一确定的. 设54n b n =-,则数列{}n b 为等差数列,前n 项和(53)2n n n T -=.于是 1(1)(52)(53)(58)(52)(58)(52)20822n n n n n n n T n T n n n +++---+=--+=--, 由唯一性得 n n b a =,即数列{}n a 为等差数列. (Ⅲ)由(Ⅱ)可知,15(1)54n a n n =+-=-. 要证1, 只要证51mn m n a a a >++因为 54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++,故只要证 5(54)12520()16mn mn m n ->+-+++即只要证 202037m n +->因为 558m n a a m n +=+- 558(151529)m n m n <+-++-202037m n =+-,所以命题得证.。

2012年高考真题分类汇编(全析全解)04:三角函数

2012年高考真题分类汇编(全析全解)04:三角函数

2012年高考真题理科数学解析汇编:三角函数一、选择题1 .(2012年高考(天津理))在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .24252 .(2012年高考(天津理))设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3 .(2012年高考(新课标理))已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是 ( )A .15[,]24B .13[,]24C .1(0,]2D .(0,2]4 .(2012年高考(浙江理))把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是5 .(2012年高考(重庆理))设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为( )A .3-B .1-C .1D .36 .(2012年高考(上海理))在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( )A .锐角三角形.B .直角三角形.C .钝角三角形.D .不能确定.7 .(2012年高考(陕西理))在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为 ( )A B C .12D .12-8 .(2012年高考(山东理))若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ= ( )A .35B .45 C.4D .349 .(2012年高考(辽宁理))已知sin cos αα-=,α∈(0,π),则tan α=( )A .-1 B.2-C.2D .110.(2012年高考(江西理))若tan θ+1tan θ=4,则sin2θ= ( )A .15B .14C .13D .1211.(2012年高考(湖南理))函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .12.(2012年高考(大纲理))已知α为第二象限角,sin cos 3αα+=,则cos 2α= ( ) A.3-B.9-C.9D.3二、填空题13.(2012年高考(重庆理))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =______14.(2012年高考(上海春))函数()sin(2)4f x x π=+的最小正周期为_______.15.( 2012年高考(江苏))设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为____. 数()y f x '=的16.(2012年高考(湖南理))函数f(x)=sin (x ωϕ+)的导函部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,2则ω=______ ;(2)若在曲线段 ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC内的概率为_______.17.(2012年高考(湖北理))设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C =_________.18.(2012年高考(福建理))已知ABC ∆得三边长成公比为的等比数列,则其最大角的余弦值为_________.19.(2012年高考(大纲理))当函数sin (02)y x x x π=≤<取得最大值时,x =_______________.20.(2012年高考(北京理))在△ABC 中,若2a =,7b c +=,1cos 4B =-,则b =___________. 21.(2012年高考(安徽理))设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>三、解答题22.(2012年高考(天津理))已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.23.(2012年高考(浙江理))在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B cos C .(Ⅰ)求tan C 的值;(Ⅱ)若a 求∆ABC 的面积.24.(2012年高考(重庆理))(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分)设()4cos()sin cos(2)6f x x x x πωωωπ=--+,其中.0>ω(Ⅰ)求函数()y f x = 的值域 (Ⅱ)若()f x 在区间3,22ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.25.(2012年高考(四川理))函数2()6coscos 3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形. (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()f x =,且0102(,)33x ∈-,求0(1)f x +的值.26.(2012年高考(上海理))海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海 里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时 两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?27.(2012年高考(陕西理))函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值.28.(2012年高考(山东理))已知向量(sin ,1),cos ,cos 2)(0)3Am x n x x A ==> ,函数()f x m n =⋅ 的最大值为6. (Ⅰ)求A;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.29.(2012年高考(辽宁理))在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值.30.(2012年高考(江西理))在△ABC中,角A,B,C 的对边分别为a,b,c.已知,,sin()sin()444A b C cB a πππ=+-+=.(1)求证:2B C π-=(2)若求△ABC 的面积.31.(2012年高考(江苏))在ABC ∆中,已知3AB AC BA BC =.(1)求证:tan 3tan B A =;(2)若cos C =求A 的值.32.(2012年高考(湖北理))已知向量(cos sin ,sin )x x x ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 在区间3π[0,]5上的取值范围.33.(2012年高考(广东理))(三角函数)已知函数()2cos 6f x x πω⎛⎫=+⎪⎝⎭(其中0ω>x ∈R )的最小正周期为10π. (Ⅰ)求ω的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,56535f απ⎛⎫+=- ⎪⎝⎭,5165617f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.34.(2012年高考(福建理))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos48sin(18)cos48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.35.(2012年高考(大纲理))(注意..:.在试卷上作答无效........) ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1,2A C B a c -+==,求C .36.(2012年高考(北京理))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递增区间.37.(2012年高考(安徽理))设函数2())sin 24f x x x π=++ (I)求函数()f x 的最小正周期;(II)设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.2012年高考真题理科数学解析汇编:三角函数参考答案一、选择题 1. 【答案】A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8s i n =10s i nc o s B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=725. 2. 【答案】A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定. 【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.3. 【解析】选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂ 得:315,2424224πππππωπωω+≥+≤⇔≤≤4. 【答案】A【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x +1)+1,再向下平移1个单位长度得:y 3=cos(x +1).令x =0,得:y 3>0;x =12π-,得:y 3=0;观察即得答案.5. 【答案】A【解析】tan tan 3tan tan 3,tan tan 2tan()31tan tan 12αβαβαβαβαβ++==⇒+===-+-【考点定位】此题考查学生灵活运用韦达定理及两角和的正切公式化简求值.6. [解析] 由条件结合正弦定理,得222c b a <+,再由余弦定理,得0cos 2222<=-+abc b a C ,所以C 是钝角,选C.7. 解析:由余弦定理得,222221cos 242a b c a b C ab ab +-+==≥当且仅当a b =时取“=”,选C.8. 【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812sin 12cos 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.9. 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A 【解析二】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中.10. D 【解析】本题考查三角恒等变形式以及转化与化归的数学思想.因为221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===,所以.1sin 22θ=. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式s i n t a nc o s θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等.11. 【答案】B【解析】f(x)=sinx-cos(x+6π)1sin cos sin )226x x x x π=-+=-,[]sin()1,16x π-∈- ,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.12. 答案A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用.首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题.【解析】s i n c o s 3αα+=,两边平方可得121sin 2sin 233αα+=⇒=- α是第二象限角,因此sin 0,cos 0αα><,所以cos sin 3αα-===-22cos 2cos sin (cos sin )(cos sin )3ααααααα∴=-=+-=-法二:单位圆中函数线+估算,因为α是第二象限的角,又1sin cos 2αα+所以“正弦线”要比“余弦线”长一半多点,如图,故2cos α的“余弦线”应选A .二、填空题 13. 【答案】145c =【解析】由35412c o s ,c o ss i n,s i n 513513AB A B ==⇒==,由正弦定理s i n s i na bAB =得43sin 13512sin 513b A a B ⨯===,由余弦定理2222142cos 25905605a c b bc A c c c =+-⇒-+=⇒= 【考点定位】利用同角三角函数间的基本关系求出sin B 的值是本题的突破点,然后利用正弦定理建立已知和未知之间的关系,同时要求学生牢记特殊角的三角函数值. 14. π15.【考点】同角三角函数,倍角三角函数,和角三角函数. 【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++. ∵4cos 65απ⎛⎫+= ⎪⎝⎭,∴3sin 65απ⎛⎫+= ⎪⎝⎭.∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .∴7cos 2325απ⎛⎫+= ⎪⎝⎭.∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭247=2525 16. 【答案】(1)3;(2)4π 【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为)时cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b .设曲线段ABC与x 轴所围成的区域的面积为S则()()sin()sin()2bb aaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABC S P S ππ=== . 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω,(2)几何概型,求出三角形面积及曲边形面积,代入公式即得. 17.考点分析:考察余弦定理的运用.解析:由222()()a b c a b c ab a b c ab +-+-=⇒+-=-根据余弦定理可得22212cos 223a b c C C ab π+-==-⇒=18.【答案】4-【解析】设最小边为a ,,2a ,由余弦定理得,最大角的余弦值为222cos 4α==- 【考点定位】此题主要考查三角形中的三角函数,等比数列的概念、余弦定理,考查分析推理能力、运算求解能力.19.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.20. 【答案】4【解析】在ABC ∆中,得用余弦定理22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得2,4,3a b c ===,答案为4.【考点定位】 本题考查的是解三角形,考查余弦定理的应用.利用题目所给的条件列出方程组求解.21. 【解析】正确的是①②③①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒<③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<三、解答题22. 【命题意图】本题考查两角和与差的正弦公式、二倍角的余弦公式,三角函数的最小周期,单调性等知识.()=sin 2coscos 2sin sin 2cos cos 2sin cos 23333f x x x x x x ππππ++-+sin 2cos 2)4x x x π=+=+所以,()f x 的最小正周期22T ππ==. (2)因为()f x 在区间[,]48ππ-上是增函数,在区间[,]84ππ上是减函数,又()14f π-=-,()()184f f ππ==,故函数()f x 在区间[,]44ππ-最小值为1-.【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.23. 【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ) ∵cos A =23>0,∴sin A ,C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C 又由正弦定理知:sin sin a cA C=,故c =对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b (舍去).∴∆ABC 的面积为:S .【答案】(Ⅰ). 24. 【考点定位】本题以三角函数的化简求值为主线,三角函数的性质为考查目的的一道综合题,考查学生分析问题解决问题的能力,由正弦函数的单调性结合条件可列32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,从而解得ω的取值范围,即可得ω的最在值.解:(1)()14cos sin sin cos 222f x x x x x ωωωω⎛⎫=++ ⎪ ⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 25. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cos ωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos)34([sin 320⨯+⨯=+++=ππππππx x567=[点评]本题主要考查三角函数的图像与性质同三角函数的关系、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查树形结合、转化等数学思想.26. [解](1)5.0=t 时,P 的横坐标x P =77=t,代入抛物线方程24912x y = 中,得P 的纵坐标y P =3 由|AP |=2949,得救援船速度的大小为949海里/时由tan∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=tt v因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船27.解析:(1)∵函数()f x 的最大值为3,∴13,A +=即2A =∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期为T π= ∴2ω=,故函数()f x 的解析式为sin(2)16y x π=-+(2)∵()2sin()1226f απα=-+=即1sin()62πα-=∵02πα<<,∴663πππα-<-<∴66ππα-=,故3πα=28.解析:(Ⅰ)⎪⎭⎫ ⎝⎛+=+=+=⋅=62sin 2cos 22sin 232cos 2sin cos 3)(πx A x A x A x A x x A n m x f , 则6=A ;(Ⅱ)函数y=f(x)的图象像左平移12π个单位得到函数]6)12(2sin[6ππ++=x y 的图象, 再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g .当]245,0[π∈x 时,]1,21[)34sin(],67,3[34-∈+∈+ππππx x ,]6,3[)(-∈x g . 故函数()g x 在5[0,]24π上的值域为]6,3[-. 另解:由)34sin(6)(π+=x x g 可得)34cos(24)(π+='x x g ,令0)(='x g ,则)(234Z k k x ∈+=+πππ,而]245,0[π∈x ,则24π=x ,于是367sin6)245(,62sin 6)24(,333sin 6)0(-======πππππg g g , 故6)(3≤≤-x g ,即函数()g x 在5[0,]24π上的值域为]6,3[-. 29. 【答案及解析】(1)由已知12=+,++=,=,cos =32B AC A B C B B ππ∴ (2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A CB 解法二:2=b ac ,222221+-+-=cos ==222a c b a c ac B ac ac,由此得22+-=,a c ac ac 得=a c所以===3A B C π,3sin sin =4A C 【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果. 30. 【解析】解:(1)证明:由 sin()sin()44b Cc B a ππ+-+=及正弦定理得:sin sin()sin sin()sin 44B C C B A ππ+-+=,即sin )sin )B C C C B B -+=整理得:sin cos cos sin 1B C B C -=,所以sin()1B C -=,又30,4B C π<< 所以2B C π-=(2) 由(1)及34B C π+=可得5,88B C ππ==,又,4A a π==所以sin 5sin 2sin ,2sin sin 8sin 8a B a Cbc A A ππ====,所以三角形ABC 的面积151sin sin cos 28888242bc A πππππ===== 【点评】本题考查解三角形,三角形的面积,三角恒等变换、三角和差公式以及正弦定理的应用.高考中,三角解答题一般有两种题型:一、解三角形:主要是运用正余弦定理来求解边长,角度,周长,面积等;二、三角函数的图像与性质:主要是运用和角公式,倍角公式,辅助角公式进行三角恒等变换,求解三角函数的最小正周期,单调区间,最值(值域)等.来年需要注意第二种题型的考查.31. 【答案】解:(1)∵3AB AC BA BC =,∴cos =3cos AB AC A BA BC B,即cos =3cos AC A BC B . 由正弦定理,得=sin sin AC BCB A,∴sin cos =3sin cos B A A B . 又∵0<A B <π+,∴cos 0 cos 0A >B >,.∴sin sin =3cos cos B AB A即tan 3tan B A =.(2)∵ cos 0C <C <π=,∴sin C =∴tan 2C =. ∴()tan 2A B π⎡-+⎤=⎣⎦,即()tan 2A B +=-.∴tan tan 21tan tan A BA B+=-- .由 (1) ,得24tan 213tan AA=--,解得1tan =1 tan =3A A -,. ∵cos 0A >,∴tan =1A .∴=4A π.【考点】平面微量的数量积,三角函数的基本关系式,两角和的正切公式,解三角形.【解析】(1)先将3AB AC BA BC =表示成数量积,再根据正弦定理和同角三角函数关系式证明.(2)由cos C =可求tan C ,由三角形三角关系,得到()tan A B π⎡-+⎤⎣⎦,从而根据两角和的正切公式和(1)的结论即可求得A 的值.32.考点分析:本题考察三角恒等变化,三角函数的图像与性质.解析:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z .又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --故函数()f x 在3π[0,]5上的取值范围为[12-. 33.解析:(Ⅰ)210T ππω==,所以15ω=.(Ⅱ)515652cos 52cos 2sin 353625f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以3s in 5α=.5151652cos 52cos 656617f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以8c o s 17β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以4c o 1s i n 5α==,15sin 17β=,所以()4831513co s co sc o s s i n s i n 51751785αβαβαβ+=-=⨯-⨯=-. 34. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin30sin )sin (cos30cos sin30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=+++-22333sin cos 444αα=+= 35. 【命题意图】本试题主要考查了解三角形的运用,给出两个公式,一个是边的关系,一个角的关系,而求解的为角,因此要找到角的关系式为好. 【解析】由()A B C B A C ππ++=⇔=-+,由正弦定理及2a c =可得sin 2sin A C =所以cos()cos cos()cos(())cos()cos()A C B A C A C A C A C π-+=-+-+=--+cos cos sin sin cos cos sin sin 2sin sin A C A C A C A C A C =+-+=故由cos()cos 1A C B -+=与sin 2sin A C =可得22sin sin 1A C =而C 为三角形的内角且2a c c =>,故02C π<<,所以1sin 2C =,故【点评】该试题从整体来看保持了往年的解题风格,理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题.,思路也比较容易想,,得到两角的二元一次方程组,36. 考生应该觉得非常容易入手.解:()f x =2(sin cos )cos x x x-=sin 21x --x -}Z ,最小正周期为π; ,)k k Z π∈,3(,]8k k k Z πππ+∈. 112sin 2(1cos 2)22x x x -+-11sin 222x =-π 21sin 222x当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩。

2012高考数学压轴题精炼一

2012高考数学压轴题精炼一

2012高考数学压轴题精炼一1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在说明理由. 解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: …(1分) 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =+=+(222222211321a ab ac ∴=+=+=+∴=-=++= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '''''∴=∴=-=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1131123222x DC AP CH a x a +∴===-=-+ ()()()22222221111211323-2344246222DH DC CH x y x a a x a a a DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+=-+⎣⎦⎣⎦'==-+=∴=== 当时,为定值; 的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}nb 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n,不等式1120111111n n n a b b b +≤⎛⎫⎛⎫⎛⎫+++⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分) ()()()()()()27274275421,43527227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴== 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012高考数学压轴题精炼四1.(本小题满分14分) 已知f(x)=222+-x a x (x ∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax =222)2()2(2+---x ax x ,∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设ϕ(x)=x 2-ax -2, 方法一:ϕ(1)=1-a -2≤0, ① ⇔ ⇔-1≤a ≤1, ϕ(-1)=1+a -2≤0.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0∴A={a|-1≤a ≤1}. 方法二:2a ≥0,2a <0,①⇔ 或ϕ(-1)=1+a -2≤0 ϕ(1)=1-a -2≤0⇔ 0≤a ≤1 或 -1≤a ≤0 ⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f '(1)=0∴A={a|-1≤a ≤1}. (Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,∴ 从而|x 1-x 2|=212214)(x x x x -+=82+a .x 1x 2=-2,∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立, 即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ② 设g(t)=m 2+tm -2=mt+(m 2-2), 方法一:g(-1)=m 2-m -2≥0, ② ⇔g(1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}. 方法二:当m=0时,②显然不成立; 当m ≠0时,m>0, m<0, ②⇔ 或g(-1)=m 2-m -2≥0 g(1)=m 2+m -2≥0⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.2.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围.本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0. 由y=21x 2, ①得y '=x.∴过点P 的切线的斜率k 切= x 1, ∴直线l 的斜率k l =-切k 1=-11x ,∴直线l 的方程为y -21x 12=-11x (x -x 1),方法一:联立①②消去y ,得x 2+12x x -x 12-2=0.∵M 是PQ 的中点 x 0=221x x +=-11x ,∴ y 0=21x 12-11x (x 0-x 1).消去x 1,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).方法二: 由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x ,将上式代入②并整理,得 y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b). 分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则 =+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'.y=21x 2由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③ y=kx+b y 1+y 2=2(k 2+b),则y 1y 2=b 2.方法一:∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b=2.∵y 1、y 2可取一切不相等的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞).方法二: ∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2bb k+.当b>0时,||||||||SQ ST SP ST +=b22)(2bb k+=b b k)(22+=bk 22+2>2;当b<0时,||||||||SQ ST SP ST +=-b22)(2bb k+=bb k-+)(22.又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0, 于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>bb b -+-)2(2=2.∵当b>0时,bk 22可取一切正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞).方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x b y -.则x 1y 2-bx 1=x 2y 1-bx 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b=122212122121x x x x x x -⋅-⋅=-21x 1x 2.∴||||||||SQ ST SP ST +=||||||||21y b y b +|1|21x x -|1|21x x -||12x x +||21x x ≥2.∵||12x x 可取一切不等于1的正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞).3.(本小题满分12分)某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85. 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少.(总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分.解:①不采取预防措施时,总费用即损失期望为400×0.3=120(万元);②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×0.1=40(万元),所以总费用为45+40=85(万元) ③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元); ④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×0.015=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.4.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列(I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示);(II )设;)(:,,2,1,1A b A b b n A a b n n n n n +-==-=+证明(III )若 ,2,121||=≤n b nn 对都成立,求a 的取值范围.本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→.24,0.24,122++=∴>+±=+=a a A A a a A Aa A 又解得(II ).11,11A b a A b a a a A b a n n nn n n ++=++=+=++得由都成立对即 ,2,1)(.)(11111=+-=+-=++-=++-=∴++n A b A b b A b A b Ab AAb A a b n n n n nn n n(III ).21|)4(21|,21||21≤++-≤a a a b 得令.,2,121||,23.23,14.21|)4(21|22都成立对时现证明当解得 =≤≥≥≤-+∴≤-+∴n b a a a a a a nn(i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(kk b k k n ≤≥=kk k k k A b A A b A b b 21||1|)(|||||1⨯+≤+=+故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k.212121||,23.2||,1212||||.2,14,23,422411222++=⨯≤≥≥+≥-≥-≥+∴≥∴≤-+≥-+=++=k kk k kk k b a A b A b A A b A a a a aa a a A 时故当即时而当由于即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b nn5.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知a R ∈,函数2()||f x x x a =-.(Ⅰ)当2a =时,求使()f x x =成立的x 的集合; (Ⅱ)求函数()y f x =在区间[12],上的最小值.本小题主要考查运用导数研究函数性质的方法,考查分类讨论的数学思想和分析推理能力. 满分14分.解:(Ⅰ)由题意,2()2f x x x =-.当2x <时,2()(2)f x x x x =-=,解得0x =或1x =; 当2x ≥时,2()(2)f x x x x =-=,解得1x =+综上,所求解集为{011+,,. (Ⅱ)设此最小值为m .①当1a ≤时,在区间[12],上,32()f x x ax =-.因为22()323()03f x x ax x x a '=-=->,(12)x ∈,,则()f x 在区间[12],上是增函数,所以(1)1m f a ==-.②当12a <≤时,在区间[12],上,2()()0f x x x a =-≥,由()0f a =知()0m f a ==.③当2a >时,在区间[12],上,23()f x ax x =-.22()233()3f x ax x x a x '=-=-.若3a ≥,在区间(12),内()0f x '>,从而()f x 为区间[12],上的增函数, 由此得 (1)1m f a ==-. 若23a <<,则2123a <<.当213x a <<时,()0f x '>,从而()f x 为区间2[1]3a ,上的增函数;当223a x <<时,()0f x '<,从而()f x 为区间2[2]3a ,上的减函数.因此,当23a <<时,(1)1m f a ==-或(2)4(2)m f a ==-.当723a <≤时,4(2)1a a -≤-,故(2)4(2)m f a ==-;当733a <<时,14(2)a a -<-,故(1)1m f a ==-.综上所述,所求函数的最小值111274(2)23713a a a m a a a a -≤⎧⎪<≤⎪⎪=⎨-<≤⎪⎪->⎪⎩,当时;0,当时;,当时;,当时.6.(本小题满分14分,第一小问满分2分,第二、第三小问满分各6分)设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,,,且1(58)(52)123n n n S n S An B n +--+=+= ,,,,,其中A B ,为常数. (Ⅰ)求A 与B 的值;(Ⅱ)证明:数列{}n a 为等差数列;(Ⅲ)1对任何正整数m n ,都成立. 本小题主要考查等差数列的有关知识、不等式的证明方法,考查思维能力、运算能力. 解:(Ⅰ)由已知,得111S a ==,2127S a a =+=,312318S a a a =++=. 由1(58)(52)n n n S n S An B +--+=+,知2132372122S S A B S S A B --=+⎧⎨-=+⎩,,即 28248A B A B +=-⎧⎨+=-⎩,,解得 20A =-,8B =-. (Ⅱ)方法1由(Ⅰ),得 1(58)(52)208n n n S n S n +--+=--, ① 所以 21(53)(57)2028n n n S n S n ++--+=--. ② ②-①,得 21(53)(101)(52)20n n n n S n S n S ++---++=-, ③ 所以 321(52)(109)(57)20n n n n S n S n S ++++-+++=-. ④ ④-③,得 321(52)(156)(156)(52)0n n n n n S n S n S n S ++++-+++-+=. 因为 11n n n a S S ++=-,所以 321(52)(104)(52)0n n n n a n a n a ++++-+++=. 又因为 520n +≠,所以 32120n n n a a a +++-+=, 即 3221n n n n a a a a ++++-=-,1n ≥. 所以数列{}n a 为等差数列. 方法2由已知,得111S a ==,又1(58)(52)208n n n S n S n +--+=--,且580n -≠, 所以数列{}n S 是唯一确定的,因而数列{}n a 是唯一确定的. 设54n b n =-,则数列{}n b 为等差数列,前n 项和(53)2n n n T -=.于是 1(1)(52)(53)(58)(52)(58)(52)20822n n n n n n n T n T n n n +++---+=--+=--,由唯一性得 n n b a =,即数列{}n a 为等差数列. (Ⅲ)由(Ⅱ)可知,15(1)54n a n n =+-=-. 要证1->, 只要证51m n m n a a a >++.因为 54mn a mn =-,(54)(54)2520()16m n a a m n mn m n =--=-++,分享 互助 传播 故只要证5(54)12520()16m n m n m n ->+-+++ 即只要证202037m n +->因为558m n a a m n ≤+=+- 558(151529)m n m n <+-++-202037m n =+-,所以命题得证.。

相关文档
最新文档