雨量预报分析的评价模型-数学建模

合集下载

雨量预报分析的评价模型数学建模

雨量预报分析的评价模型数学建模

雨量预报分析的评价模型数学建模雨量预报是一种重要的气象预报,用于预测未来一段时间内降水的情况。

准确的雨量预报对于农业、水利、交通等行业的决策与管理具有重要的参考价值。

评价雨量预报分析模型的有效性和精度是提高气象预报准确性的关键。

本文将介绍雨量预报分析评价模型的数学建模方法。

一、问题的提出针对雨量预报分析评价的问题,我们首先需要明确预报模型的性质,即预报模型的目标和任务。

通常来说,雨量预报的目标是通过利用历史观测数据和其他气象因素,建立一个数学模型,预测未来一段时间内的降水量。

预报模型通常采用时间序列分析、回归分析、神经网络等方法进行建模。

评价预报模型的目标是对预测结果的准确性进行评估,从而确定预报模型的好坏程度,为实际的预报工作提供科学依据。

二、评价指标的选择在评价雨量预报分析模型时,我们通常使用以下几个指标来评价其准确性:1.预报误差:预报误差是指预报结果与实际观测结果之间的差异。

常见的预报误差指标有均方根误差(RMSE)、平均绝对误差(MAE)等。

这些指标可以用来评估预报结果的整体误差水平。

2.相关系数:相关系数衡量了预报结果与实际观测结果之间的相关性。

通过评估相关系数可以确定预报模型是否具有一定的预测能力。

3.偏差分析:偏差分析主要是对预测结果的偏差进行评估。

可以通过统计偏差的分布情况和变化趋势,评估预报模型对不同时空尺度的预测能力。

三、数学模型的建立为了评价雨量预报分析模型的准确性,我们可以建立以下数学模型:1.假设预报结果为y,实际观测结果为x,预报误差为δ,则预报误差的计算可以使用均方根误差(RMSE):RMSE = sqrt(sum((y-x)^2)/n)2. 相关系数的计算可以使用皮尔逊相关系数(Pearson correlation coefficient),用来评估预报结果与实际观测结果之间的相关程度:r = sum((x-x_mean)*(y-y_mean)) / sqrt(sum((x-x_mean)^2)*sum((y-y_mean)^2))3.偏差分析可以使用直方图和箱线图等方法来进行可视化分析,评估预报模型在不同时空尺度上的偏差情况。

数学建模-淋雨模型

数学建模-淋雨模型

摘要步入雨季,降雨天气逐渐开始在人们的日常生活中频繁出现起来,与此同时,突如其来的雨水也常常带给无准备的人们淋成落汤鸡的窘境。

面对骤雨,大多数人在通常情况下会选择快速奔跑以希求淋雨最少。

然而这样真的能淋雨最少吗?以此日常情景为背景提出了四个问题,本文运用几何知识、物理知识等方法成功解决了这四个问题,得到了在不同的降雨条件下人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。

并针对不同降雨条件给出了淋雨量最少的方法。

针对问题一,条件给出:不考虑雨的方向,降雨淋遍全身;确定淋雨量为人体表面积与单位面积降雨量及淋雨时间之积针对问题二,根据已知条件(雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ),对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。

并对函数求导分析最小淋雨量对应速度。

针对问题三,在雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α的条件下,对雨线的速度分别沿水平、竖直方向正交分解,并综合考虑人的速度与雨线速度的制约关系,建立模型,得出函数模型。

并对函数分析最小淋雨量对应速度。

以总淋雨量为纵轴,速度v为横轴,对函数用Excel 作图(考虑α的影响),并解释结果的实际意义。

针对问题四,综合考虑前三种情况的共同作用,并基于前三种模型进行修正。

最后,对所建立的模型和求解方法的方法的优缺点给出了客观的评价,并指出误差所在。

关键字:淋雨量雨速大小雨速方向跑步速度路程远近一、问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步m:速度为v,按以下步骤进行讨论](1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

雨量预报方法的模糊评价模型--2005高教社杯全国大学生数学建模竞赛题目之一

雨量预报方法的模糊评价模型--2005高教社杯全国大学生数学建模竞赛题目之一

雨量预报方法的模糊评价模型--2005高教社杯全国大学生数
学建模竞赛题目之一
杨金山;耿玉菊;马小女
【期刊名称】《衡水学院学报》
【年(卷),期】2006(8)1
【摘要】对气象部门来说,准确、及时、有效地预报降雨量,需要有较优秀的预报方法.为此有必要构建一种评价某气象台所使用的2种不同降雨量预测方法精确性的模型,同时也应该在模型中考虑到公众的感受.为此,建立了一种模糊评价模型,并用MATLAB做了仿真.隶属度函数为:μ(x)=e-a(x-b).而后,创建了一种距离函数来表征预测与实际降雨量之间的差距,最后用距离和的最小作为评价函数.
【总页数】4页(P25-28)
【作者】杨金山;耿玉菊;马小女
【作者单位】衡水学院,数学与计算机科学系,河北,衡水,053000;衡水学院,数学与计算机科学系,河北,衡水,053000;衡水学院,数学与计算机科学系,河北,衡水,053000【正文语种】中文
【中图分类】TP273+.4
【相关文献】
1.2016年“高教社杯”全国大学生数学建模竞赛题目 [J],
2.NBA赛程的分析和评价——2008高教社杯全国大学生数学建模竞赛题目 [J], 马明远
3.2012高教社杯全国大学生数学建模竞赛题目 [J],
4.2012高教社杯全国大学生数学建模竞赛题目 [J], ;
5.2016年“高教社杯”全国大学生数学建模竞赛题目 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

全国大学生数学建模竞赛优秀论文选之雨量预报方法的评价2

全国大学生数学建模竞赛优秀论文选之雨量预报方法的评价2

雨量预报方法的评价摘要本文首先对两种雨量预报方法做出准确性的评价。

对位于东经120度、北纬32度附近的整个研究区域以及产生雨量的各种因素进行仔细分析之后,利用已知网格点降雨量的预报数据,进行合理的二维插值计算,从理论上得出非网格点降雨量的预报值;然后将这些理论值和各个观测点降雨量的准确值,经过求解得出两个方案在各个预报时段的偏差;在得到了偏差之后,利用偏差的平方和描述总的偏离程度,对每个时段进行权值的比较,再对两个方案进行多层次分析,从而做出权重的比较,最后利用MALTAB 等数学软件,得出两个方案的总偏差分别为:.0;方案一:928523.0;方案二:998061由此说明,就气象部门对该地区雨量预报的准确度来说,方案一优于方案二。

在此基础上,我们又加入公众对雨量分级预报的感受度等因素,把对该地区降雨量的研究从定量的方法转换成定性的方法。

对各个观测点实测的降雨量和理论降雨量相互对比,得到了各个观测点在每个时段的预报准确度,再利用多层次分析法得到了两个预报方案各自总的准确度为:.0;方案一:940791.0;方案二:997773由此说明,加入公众对雨量分级预报的感受度等因素之后,雨量预报方案二的准确度大于方案一的准确度。

因为在每个公众的心里,对各个时段预报的准确度有着不一样的权重,因此就需要对各个时段预报等级的准确度有不一样的预报要求。

我们在模型求解中提出了漏报率、空报率、错报率以及恶劣天气错报率,从而计算出两个预报方案各自对公众生产和生活的影响,综合得出它们的两个方案各自失误指数:方案一的综合失误指数:0.00060521;方案二的综合失误指数:0.000487213由此可以知道两种预报方法在失误方面差别不大,说明他们都具有良好的科学性,只是相对而言,第二种预报方法的失误方面稍微小一点。

关键词准确度多层次分析漏报率空报率恶报率一、问题的重述雨量预报对农业生产、城市工作和生活都有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。

数学建模C题论文

数学建模C题论文

191])()([),(20200y y x x r z y x z -+--=c y b x a y x y x z +⋅+⋅++=22),(4753⨯41i D i D 20.000160.001162021421339915152112032534791410.1 6660.1 2.5 2.666.11212.12525.16060.1/mcm05/probX 53⨯47Y 53⨯47k n m Z ⨯53⨯47 k n m Z ⨯~53⨯47i n m k H ⨯m m n k n 21n +120i n m k S ⨯i D126 18319719141164512X Y⎪⎪⎪⎭⎫ ⎝⎛=⨯⨯⨯⨯⨯⨯47532531534712111..................x x x x x x X ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................y y y y y y),(y x Z =mnk ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯),(...),,(),,(............),(...),,(),,(4753475325325315315347147121211111y x f y x f y x f y x f y x f y x f ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................Z Z Z Z Z Z 1=imnk Z ~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~Z Z Z Z Z Z i imnkH ∆mnk Z i mnk Z ~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯ii i i i i h h h h h h 47532531534712111............... (2)i mnkS∆∑∑=⨯=⨯4712531)(47531j i ji i hi D ∆∑=16411641i mnk S 4i i imnk H 5347imnk S mnk H i D 41 2),(y x Z = ),(y x Z =i D nk m ⨯ i mnk H mnk Z i mnk Z ~1~mnk Z 2~mnk Z 1mnk H 2mnk H imnkS∆∑∑=⨯=⨯4712531)(47531j ij i i h1mnk S 2mnk S⑤ 用i D ∆∑=16411641i mnk S 计算出1D 与2D ,则1D 和2D 的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方法二好.所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:1mnkS =[0.9247218269e-1, .165797962696, 0.9247218269e-1,0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174]2mnkS := [0.921412432e-1, .1098068392, 0.2234955063e-1,0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1,.2851304286,2.792810527, .2612701098, .2381007694, .2613774987] (2) 方法一的均方差为:1D := .8311398371方案二的均方差: 2D = .8417760978得1D <2D .主要程序与运行结果为: (1) 局域曲面拟合程序> solve({0.3=0.6-r*(0.045^2+0.042^2)},{r});> z1:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z2:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z3:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z4:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> solve({0.15=0.3-r*(0.045^2+0.042^2)},{r});> z4:=0.3-39.58828187*[(x-118.1833)^2+(y-31.0833)^2];> solve({5.1=10.2-r*(0.045^2+0.042^2)},{r});> z1:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z2:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z3:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z4:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> solve({0.1=0.2-r*(0.045^2+0.042^2)},{r});> z4:=0.2-26.39218791*[(x-118.4000)^2+(y-30.6833)^2];>z4:=solve({118.9833^2+30.6167^2+a*118.9833+b*30.6167+c=0.7000,118.5833^ 2+30.0833^2+a*118.5833+b*30.0833+c=1.8000,119.4167^2+30.8833^2+a*119.41 67+b*30.8833+c=0.5});> solve({0.05=0.1-r*(0.045^2+0.042^2)},{r});> z1:=0.1-13.19609396*[(x-119.4167)^2+(y-30.8833)^2];>> solve({2.9=5.8-r*(0.045^2+0.042^2)},{r});> z4:=0.1-765.3734495*[(x-118.2833)^2+(y-29.7167)^2];(2)均方差求值程序:>sq1:=[0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.258680 6182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0. 2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539 943168,0.2715902174];> sum1:=add(i,i=sq1);> ave1:=sum1/17;>ve1:=[.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222 900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.522 2900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.52 22900020];>sq2:=[0.0921412432,0.1098068392,0.022********,0.01592933205,0.285130428 6,0.2851304286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.261 3774987,0.0518*******,0.2851304286,2.792810527,0.2612701098,0.238100769 4,0.2613774987];(2)数据模拟图程序:> with(linalg):> l:=matrix(91,7,[58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000, 58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,58249, 32.2000,120.0000,12.3000, 2.4000, 5.6000, 0.0000,58251, 32.8667,120.3167, 5.2000, 0.1000, 0.0000, 0.0000, 58252, 32.1833,119.4667, 0.4000, 3.2000, 4.8000, 0.0000, 58254, 32.5333,120.4500, 0.0000, 0.0000, 0.0000, 0.0000, 58255, 32.3833,120.5667, 1.1000,18.5000, 0.5000, 0.0000, 58264, 32.3333,121.1833,35.4000, 0.1000, 0.2000, 0.0000, 58265, 32.0667,121.6000, 0.0000, 0.0000, 0.0000, 0.0000, 58269, 31.8000,121.6667,31.3000, 0.7000, 2.8000, 0.1000, 58333, 31.9500,118.8500, 8.2000, 8.5000,16.9000, 0.1000, 58334, 31.3333,118.3833, 4.9000,58.1000, 9.0000, 0.1000, 58335, 31.5667,118.5000, 5.4000,26.0000,11.0000, 0.8000, 58336, 31.7000,118.5167, 3.6000,27.8000,15.3000, 0.6000, 58337, 31.0833,118.1833, 7.0000, 6.4000,15.3000, 0.2000, 58341, 31.9833,119.5833,11.5000, 5.4000,16.1000, 0.0000, 58342, 31.7500,119.5500,32.6000,37.9000, 5.8000, 0.0000, 58343, 31.7667,119.9333,20.7000,24.3000, 5.3000, 0.0000, 58344, 31.9500,119.1667,12.4000, 5.9000,16.3000, 0.0000, 58345, 31.4333,119.4833,21.8000,18.1000, 9.8000, 0.1000, 58346, 31.3667,119.8167, 0.1000,12.7000, 5.1000, 0.2000, 58349, 31.2667,120.6333, 1.1000, 5.1000, 0.0000, 0.0000, 58351, 31.8833,120.2667,22.9000,15.5000, 6.2000, 0.0000, 58352, 31.6500,120.7333,15.1000, 5.4000, 2.4000, 0.0000, 58354, 31.5833,120.3167, 0.1000,12.5000, 2.4000, 0.0000, 58356, 31.4167,120.9500, 5.1000, 4.9000, 0.4000, 0.0000, 58358, 31.0667,120.4333, 2.4000, 3.4000, 0.0000, 0.8000, 58359, 31.1500,120.6333, 1.5000, 3.8000, 0.5000, 0.1000, 58360, 31.9000,121.2000, 5.6000, 3.2000, 2.9000, 0.1000, 58361, 31.1000,121.3667, 3.5000, 0.6000, 0.2000, 0.7000, 58362, 31.4000,121.4833,33.0000, 4.1000, 0.9000, 0.0000, 58365, 31.3667,121.2500,17.7000, 2.2000, 0.1000, 0.0000, 58366, 31.6167,121.4500,75.2000, 0.4000, 1.5000, 0.0000, 58367, 31.2000,121.4333, 7.2000, 2.8000, 0.2000, 0.2000, 58369, 31.0500,121.7833, 3.2000, 0.3000, 0.0000, 0.3000, 58370, 31.2333,121.5333, 7.0000, 3.4000, 0.2000, 0.2000, 58377, 31.4667,121.1000, 7.8000, 7.2000, 0.3000, 0.0000, 58426, 30.3000,118.1333, 0.0000, 0.0000,17.6000, 6.2000, 58431, 30.8500,118.3167, 5.1000, 2.3000,16.5000, 0.1000, 58432, 30.6833,118.4000, 3.6000, 1.4000,20.5000, 0.2000, 58433, 30.9333,118.7500, 2.1000, 3.4000, 8.5000, 0.2000, 58435, 30.3000,118.5333, 0.0000, 0.0000,13.6000, 8.5000, 58436, 30.6167,118.9833, 0.0000, 0.0000, 5.3000, 0.5000, 58438, 30.0833,118.5833, 0.0000, 0.0000,27.6000,21.8000, 58441, 30.8833,119.4167, 0.1000, 1.6000, 1.6000, 1.0000, 58442, 31.1333,119.1833, 3.0000, 8.8000, 5.4000, 0.2000, 58443, 30.9833,119.8833, 0.1000, 2.7000, 0.1000, 0.9000,58446, 30.9667,119.6833, 0.0000, 0.1000, 5.1000, 2.5000, 58448, 30.2333,119.7000, 0.0000, 0.0000,15.1000, 6.9000, 58449, 30.0500,119.9500, 0.0000, 0.0000,23.5000, 8.2000, 58450, 30.8500,120.0833, 0.0000, 0.7000, 0.0000, 4.1000, 58451, 30.8500,120.9000, 0.5000, 0.1000, 0.0000, 3.8000, 58452, 30.7833,120.7333, 0.3000, 0.0000, 0.0000, 3.0000, 58453, 30.0000,120.6333, 0.0000, 0.0000, 0.0000,18.2000, 58454, 30.5333,120.0667, 0.0000, 0.0000, 0.5000, 4.9000, 58455, 30.5167,120.6833, 0.0000, 0.0000, 0.0000, 4.6000, 58456, 30.6333,120.5333, 0.0000, 0.0000, 0.0000, 4.2000, 58457, 30.2333,120.1667, 0.0000, 0.0000, 2.0000,12.6000, 58459, 30.2000,120.3167, 0.0000, 0.0000, 0.0000,15.0000, 58460, 30.8833,121.1667, 1.2000, 0.1000, 0.0000, 2.3000, 58461, 31.1333,121.1167, 4.0000, 1.4000, 0.4000, 0.2000, 58462, 31.0000,121.2500, 2.7000, 0.3000, 0.4000, 1.7000, 58463, 30.9333,121.4833, 1.7000, 0.1000, 0.0000, 0.8000, 58464, 30.6167,121.0833, 0.0000, 0.0000, 0.0000, 3.6000, 58467, 30.2667,121.2167, 0.0000, 0.0000, 0.0000, 1.8000, 58468, 30.0667,121.1500, 0.0000, 0.1000, 5.1000, 2.5000, 58472, 30.7333,122.4500, 0.3000, 0.6000, 0.0000, 4.9000, 58477, 30.0333,122.1000, 0.0000, 0.0000, 0.0000, 0.0000, 58484, 30.2500,122.1833, 0.0000, 0.0000, 0.0000, 0.0000, 58530, 29.8667,118.4333, 0.0000, 0.0000,27.5000,23.6000, 58531, 29.7167,118.2833, 0.0000, 0.0000, 3.7000,11.5000, 58534, 29.7833,118.1833, 0.0000, 0.0000, 9.3000, 6.5000, 58542, 29.8167,119.6833, 0.0000, 0.0000, 0.0000,27.6000, 58550, 29.7000,120.2500, 0.0000, 0.0000, 0.0000, 4.9000, 58562, 29.9667,121.7500, 0.0000, 0.0000, 0.0000, 0.9000]);> lat:=col(l,2);> lon:=col(l,3); > sd1:=col(l,4);> sd2:=col(l,5); > sd3:=col(l,6); > sd4:=col(l,7);> abc1:=seq([lat[i],lon[i],sd1[i]],i=1..91);> abc2:=seq([lat[i],lon[i],sd2[i]],i=1..91);> abc3:=seq([lat[i],lon[i],sd3[i]],i=1..91);> abc4:=seq([lat[i],lon[i],sd4[i]],i=1..91);> with(plots):> pointplot3d([abc1],color=green,axes=boxed);> surfdata([abc1],labels=["x","y","z"],axes=boxed);> with(stats):> with(fit):> with(plots):fx1:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc1]);> plot3d(fx1,x=25..35,y=119..135);> pointplot3d([abc2],color=blue,axes=boxed);> surfdata([abc2],labels=["x","y","z"],axes=boxed);>fx2:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc2]);> plot3d(fx2,x=25..35,y=119..135);> pointplot3d([abc3],color=red,axes=boxed)> surfdata([abc3],labels=["x","y","z"],axes=boxed);>fx3:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc3]);> surfdata([abc4],labels=["x","y","z"],axes=boxed);>fx4:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc4]);五.如何在评价方法中考虑公众感受的数学模型建立.1660.1 2.5 2.666.11212.12525.16060.1z } 1.00 {0≤≤=z z R } 5.21.0 {1≤≤=z z R } 66.2 {2≤≤=z z R } 121.6 {3≤≤=z z R } 251.12 {4≤≤=z z R } 601.25 {5≤≤=z z R } 1.60 {6≥=z z R 0ˆR 1ˆR 2ˆR 3ˆR 4ˆR 5ˆR 6ˆR } 1)( {ˆ000R z z z R ∈≤=,μ} 1)( {ˆ111R z z z R ∈≤=,μ} 1)( {ˆ222R z z z R ∈≤=,μ } 1)( {ˆ333R z z z R ∈≤=,μ} 1)( {ˆ444R z z z R ∈≤=,μ} 1)( {ˆ555R z z z R ∈≤=,μ } 1)( {ˆ666R z z z R ∈≤=,μ)(z i μ i 1z ∈i R i R )(z i μ i 16i R ˆ i 1 2)(z i μ i 1⎩⎨⎧≤<+-≤≤=1.006.0 , 5.22506.00, 1)(0z z z z μ)(1z μ] 2369277587.0e [2369277587.0112)3.1(----z 5.21.0≤≤z )(2z μ] 20555762126.0e [20555762126.0112)3.4(----z 66.2≤≤z)(3z μ] 2287787270.0e [2287787270.0119.5)05.9(2----z 121.6≤≤z )(4z μ] 70397557815.0e[70397557815.0119.12)55.18(2----z 251.12≤≤z)(5z μ] 00475951221.0e[00475951221.011100)55.42(2----z 601.25≤≤z)(6z μ2)]5.60(5 [11--+z 1.60≥z 74)(z i μ及iR ˆ i =0,1,…,6合并可得} 0 {≥=z z R 上的模糊集合} , 1)( {ˆR z z z R∈≤=μ.其中R 是论域,)(z μ是模糊集合R ˆ的隶属函数,由)(z i μ分段合)(z μ小雨的隶属函数图特大暴雨隶属函数图大暴雨隶属函数图暴雨隶属函数图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<≤<≤<≤<≤≤=60)(6025)(2512)(126)(65.2)(5.21.0)(1.00)()(6543210z z z z z z z z z z z z z z t μμμμμμμμ 5 353⨯47imnkZ ~)(z μ53⨯47=M mnk⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................μμμμμμ=M imnk~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~μμμμμμi ),(y x Z =i mnk ∏∆mnk M =M i mnk~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯i i i i i i 47532531534712111..................λλλλλλ 6imnkΓ∆∑∑=⨯=⨯4712531)(47531j i j i i λ i Ω∆∑=16411641i imnkΓ 8 i 2i i i mnk ∏5347imnk Γi mnk ∏i Ω411Ω2Ω 1Ω2Ω1D 2D19811999。

雨量预报方法的评价模型

雨量预报方法的评价模型

雨量预报方法的评价摘要雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量做出预报是一个很困难的问题,广受世界各国关注。

我国某地气象台和气象研究所正在研究6小时雨量预报方法,由于受到学科发展水平的限制,目前国内外降雨数值预报水平还不高.为了使预报方法更为准确,使天气预报更好的服务于公众生活,我们用数学模型来分析研究这一问题.文中我们建立了比较两种预测降雨量方法优劣的数学模型.即根据2491个网格点的纬度、经度和降水量的预测值,采用二维插值的方式,分别对91个观测站点的降雨量进行预测,利用Matlab 软件中的griddata 函数:ij r =griddata ),,1,1,1(y x z y x ij m =griddata ),,2,1,1(y x z y x然后将其与实测值对比,求出预测值与实际值之间的误差,利用Matlab 软件中的矩阵范数函数normN1=PA -2=norm(P A -)=405.3782,N2=2P B -=norm(P B -)=416.1976根据范数的含义,所得范数越小,即误差越小.因为有N1<N2,故可得出结论: 第一种方法比第二种方法预测雨量的准确性更高.为了解决如何在评价方法中考虑公众的感受的问题,我们将第一题中通过二维插值得到的91个气象站41天的预测值用分级形式输出,即无雨、小雨、中雨、大雨、暴雨、大暴雨、特大暴雨.将两种方法输出的雨量预报情况与实际降雨量情况进行比较,111P A H -= 112P B H -=统计出每种方法准确预报、空报、漏报的次数,误报次数越少的,对应的方法准确性应越高,公众对其可信度越高.程序运算结果得到:预测值等于实测值代表观测站点预报准确,预测值大于实测值代表观测站点空报的次数或对天气状况预测过于恶劣,预测值小于实测值代表观测站点漏报的次数或对天气恶劣状况估计不足.得到两种预测方法的准确率分别为80.7625%,79.8780%.可见运用第一种方法时,误报的次数较少,准确率较高,故第一种方法较好. 为了使雨量预报方法准确性更高,适用范围更广,我们给出了改进建议.一、问题重述雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量做出预报是一个很困难的问题,广受世界各国关注.我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上.同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的.气象部门希望建立一种科学评价预报方法好坏的数学模型与方法.气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据.雨量用毫米做单位,小于0.1毫米视为无雨.(1)请建立数学模型来评价两种6小时雨量预报方法的准确性;(2)气象部门将6小时降雨量分为6等:0.1-2.5毫米为小雨,2.6-6毫米为中雨,6.1-12毫米为大雨,12.1-25毫米为暴雨,25.1-60毫米为大暴雨,大于60.1毫米为特大暴雨.若按此分级向公众预报,如何在评价方法中考虑公众的感受?二、模型假设1.天气变化状况是局部连续的.2.各个观测站点设备及测量水平相同,不存在技术上的误差.三、符号约定1x——网格点的纬度构成的矩阵1y——网格点的经度构成的矩阵1z——采用第一种预测方法时,网格点处的降雨量预测值2z——采用第二种预测方法时,网格点处的降雨量预测值r——按照第一种预测方法,第i天,第j个时段的预测结果,是一个91维的列向量.ij(i=1,2……,41;j=1,2,3,4)m——按照第二种预测方法,第i天,第j个时段的预测结果,是一个91维的列向量.ij(i=1,2……,41;j=1,2,3,4)p——第l个气象站点在第j个时段降雨量的实测值lj(l=1,2……,91;j=1,2,3,4)四、模型的建立与求解1.两种预测方法的优劣比较衡量一种降水量预测方法的优劣,依据就是由这种方法预报的天气状况能够准确的反映实际的天气变化.因此我们可以这样建立模型:将题目中给出的预测和实测两种数据导入Matlab 软件.lat ,lon 数据导入后作为两个矩阵的形式,代表网格点的相应位置;其余数据为相应网格点处降雨量的预测值.根据上述对应关系,我们可以对已经给出的预测值采用二维插值的方式,找出它们之间的关系:),(y x f z =,分别对91个观测站点的降雨量进行预测,然后将预测值与实测值对比;利用矩阵范数,得到预测值与实际值之间的误差,将这两个误差相比,误差小的,相应的预测方法就比较准确.算法步骤:以2002年6月18日第一时段为例. 第一步,题目中给出了两种不同的预报方法,按照这两种不同方法,对已知网格点的预测值进行二维插值,得到91个观测站点在这天的4个时段中的降雨量预测值.网格点及对应降雨量关系为纬度 经度 预测值 实测值lat lon f6181_dis1 020618.six 的第四列----------第一种预测方法 lat lon f6181_dis2 020618.six 的第四列----------第二种预测方法 取矩阵lat x =1,矩阵lon y =1,矩阵1z =f6181_dis1,观测站点的纬度为x ,经度为y , 各观测点的降雨量预测值z 与纬度、经度存在如下函数关系:),(y x f z = 利用Matlab 二维插值函数griddata ,即得观测站点降雨量预测值:11r =griddata ),,1,1,1(y x z y x11r 表示在第一天的第一时段,利用第一种预测方法,通过二维插值得到的91个观测站点降雨量的预测值.同理令lat x =1,lon y =1,2z =f6181_dis2,气象站的纬度为x ,经度为y ,得:11m =griddata ),,2,1,1(y x z y x11m 表示在第一天的第一时段,利用第二种预测方法,通过二维插值得到的91个观测站点降雨量的预测值.具体程序见程序附页. 将该过程用表格表示如表1下:表1将各观测站点降雨量的观测值与实测值进行比较,然后通过它们的误差来判别两种方法的优劣.同理,利用相同的方法可以得到91个站点在41天中4个时段的预测值(共414⨯个91维列向量),即11r ,12r ,13r ,14r ,21r …………411r ,412r ,413r ,414r (用第一种预测方法) 11m ,12m ,13m ,14m ,21m …………411m ,412m413m ,414m (用第二种预测方法)第二步,观测站点降雨量的预测值与实测值的比较.按照时段的不同,将上述插值结果写为一个4)4191(⨯⨯的矩阵,其中行数表示天数,列数表示四个不同时间段,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯=4,413,412,411,412423222114131211r r r r r r r r r r r r A , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯=4,413,412,411,412423222114131211m m m m m m m m m m m m B将6月18日的实测数据中的4个时段观测值写为以下矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯=4,913,912,911,9124232221141312111p p p p p p p p p p p p P 按照同样的方式,则41天的全部实测数据写为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯=4121P P P P ,P 为4)4191(⨯⨯的矩阵求两种方法的预测值与实测值之间的矩阵范数P A -2和2P B -,即预测值与实测值之间的误差.利用Matlab 软件中的矩阵范数函数norm 求其2-范数:第一种预测方法的2-范数:N1=norm(P A -) 第二种预测方法的2-范数:N2=norm(P B -) 运算后得到:N1=405.3782N2=416.1976范数越小,即误差越小.因为有N1<N2,故可得出结论: 第一种方法比第二种方法预测雨量的准确性更高. 2.在评价方法中考虑公众的感受气象因素在人们的生产生活中有着重要的影响.在生产活动中,农民只有按照天气变化规律选择作物的种植,才能获得丰收;工厂商家只有对天气状况充分估计,才能减少不必要的损失,降低成本,最大程度的获得经济效益.在人的日常生活里,天气状况更是影响着人们的身体健康和工作出行.作为一项服务工作,预测方法只有符合实际天气状况、具有更高的准确率时,才能更符合公众的需要,使人们能够面对恶劣天气,及时采取有效措施.由题意可知,气象部门将6小时降雨量分为6等,将其赋值如下: 0——不下雨1——0.1-2.5毫米为小雨 2——2.6-6毫米为中雨 3——6.1-12毫米为大雨 4——12.1-25毫米为暴雨 5——25.1-60毫米为大暴雨 6——大于60.1毫米为特大暴雨 算法思想:利用C++程序(见程序页),对第一题中两种方法分别得到的预测值进行处理,按照给定分级输出,即如下转化方式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯=4,413,412,414,412423222114131211r r r r r r r r r r r r A →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯=14,4113,4112,4114,411241231221211141131121111r r r r r r r r r r r r A 1ijr 为91维列向量,其各项取值为0,1,2,3,4,5,6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯=4,413,412,411,412423222114131211m m m m m m m m m m m m B ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋯⋯⋯⋯=→14,4113,4112,4111,411241231221211141131121111m m m m m m m m m m m m B 1ijm 为91维列向量,其各项取值为0,1,2,3,4,5,6⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯=4121P P P P →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋯=14112111P PP P1i P 中各个元素的取值为0,1,2,3,4,5,6算法步骤:同样,以2002年6月18日第一时段为例,调用程序,将第一天四个时段的所有插值结果运行后输出,转化后的结果为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=11411311211111r r r r A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=11411311211111m m m m B ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋯=14112111P P P P 同理可得到41天的转化输出结果.令111P A H -= 112P B H -=在程序中加入计数器,使用累加的方式,将1H ,2H 中不为零的元素个数输出,结果如下:表2预测值等于实测值代表观测站点预报准确;预测值大于实测值代表观测站点空报的次数或对天气状况预测过于恶劣; 预测值小于实测值代表观测站点漏报的次数或对天气恶劣状况估计不足. 令39524761+=n =2871,45125522+=n =3003则1n ,2n 就代表分别采用两种方法时,各自误报的次数.同时可以得到两种预测方法的准确率分别为80.7625%,79.8780%.可见运用第一种方法时,误报的次数较少,准确率较高,故第一种方法较好.五、模型优化与改进在本题中,采集的数据点集中于东经120度、北纬32度的地区,同时气象观测站的设置也是不均匀的,因此容易出现以下缺点:1.仅在这一地区的天气预报中可以比较出所给出的两种方法的优劣,而没有充分的依据证明比较准确的方法在更大面积上的适用性.2.气象站设置不均匀,使得给出的实测数据分布并不均匀,在插值时会导致某些点偏离过大,不适合总体评价时使用,浪费财力物力.3.在夏季一些天气变化迅速的季节,天气状况值只在很小范围内具有连续性,这时预测方法不再适用.模型改进:1.将预测工作比较合理的分配给各气象预测站点,每个气象预测站点在该站点周围地区均匀设施测量点,这样在插值逼近的时候既能全面涉及较大地区,又能充分利用所测数据;或者利用卫星云图,根据卫星云图上云带的位置、强度、移动及发展情况,结合天气形势,直接预报降水等级,减少计算误差.2.本题研究6小时预报方法,6小时滚动预报因为没有对应可靠的数值预报产品及14h、02h常规高空资料,因此参考资料以卫星云图为主,综合考虑实况雨量、常规天气资料,进行人工经验外推制作.六、参考文献[1] 陈公宁,沈嘉骥,计算方法导引,北京:北师大出版社,2000.1[2] 谢兆鸿,范正森,王艮远,数学建模技术,北京:中国水利水电出版社,2003[3] 王沫然,MATLAB与科学计算,北京:电子工业出版社,2003.9[4] 姜启源,谢金星,叶俊,数学模型,北京:高等教育出版社,2003.8[5] 安康气象,中短期天气预报质量检验办法, ,2005.9.17[6] 中国知网,三峡工程明渠截流设计洪水分析,,2005.9.18程序页二维插值在Matlab软件中的程序:x1=lat;y1=lon;z1=f6181_dis1;z2=f6181_dis2;s=A020618;x=s(:,2);y=s(:,3);r1=griddata(x1,y1,z1,x,y)r2=griddata(x1,y1,z2,x,y)测量值与降雨量分级的转化程序(C++语言)#include"iostream"#include"fstream"using namespace std;int main(){ifstream indate1;ofstream outdate1;indate1.open ("chazhi1.txt");outdate1.open ("result11.txt");cout<<"降雨量分七个等级,小于0.1的为0级,无雨;大于0.1且小于2.5的为1级,小雨;大于2.6且小于6的为2级,中雨;大于6.1且小于12的为3级,大雨;";cout<<"大于12.1且小于25的为4级,暴雨;大于25.1且小于60的为5级,大暴雨;大于60.1的为6级,特大暴雨。

数学建模淋雨模型.doc

数学建模淋雨模型.doc

数学建模淋雨模型.doc淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m ,厚 c=0.2m ,设跑步的距离d=1000m ,跑步的最大速度v m=5m/s,雨速 u=4m/s ,降雨量ω =2cm/h ,及跑步速度为 v,按以下步骤进行讨论 [17] :(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量 ;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图 1. 建立总淋雨量与速度v及参数 a, b, c, d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

计算θ=0,θ =30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2. 建立总淋雨量与速度v及参数a,b,c,d, u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v 为横轴,对( 3)作图(考虑α的影响),并解释结果的实际意义 .(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:淋雨量(V )=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间( t) =跑步距离( d)÷人跑步速度(v)②由①② 得:淋雨量(V)=ω×S×d/v三、模型假设四、(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚 c=0.2m.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω =2cm/h,记跑步速度为 v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;五、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω× S×d/vω=2cm/h=2×10-2 /3600 (m/s)将相关数据代入模型中,可解得:S =2.2 (㎡)=V0.00244446 (cm3)=2.44446 (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ .,则淋雨量只有两部分:顶部淋雨量和前部淋雨量 . (如图 1)设雨从迎面吹来时与人体夹角为. ,且0°< <90 °,建立a,b,c,d,u,,之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为u sin 且方向与 v 相反,故人相对于雨的水平速度为:则前部单位时间单位面积淋雨量为:又因为前部的淋雨面积为: a b ,时间为: d/v于是前部淋雨量 V 2为:即:V 2 a b d u sin v / u v ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量,且与v 无关,所以顶部单位时间单位面积淋雨量为cos ,顶部面积为 b c ,淋雨时间为 d / v ,于是顶部淋雨量为:V 1 b c d cos / v ②由①②可算得总淋雨量:代入数据求得:由 V (v)函数可知:总淋雨量( V )与人跑步的速度( v)以及雨线与人的夹角()两者有关。

降雨量预测的简单方法---数学建模论文

降雨量预测的简单方法---数学建模论文

摘要首先,本文运用SAS和Excel两种软件工具对两种方法预测到的数据进行定量分析比较,采用绝对误差法让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差,求绝对值,再加总总的绝对值误差,建立了模型(1),得出了数据预测的方法一比方法二效果较好的结论。

其次,考虑到绝对误差法的局限性,进一步采用相对误差法对模型(1)进行改进,让每一天每一个站点每一个时段预测到的数据与相应的实际的数据作差的绝对值除于相对应的真实时段的数据,建立了模型(2);由于有些数据为0的缘故,对模型(2)进一步改进得到模型(3),仍然得出方法一优于方法二的结论。

最后,本文对模型进行了评价。

关键词:绝对误差法相对误差法SAS Excel一、问题重述FORECAST中的文件名为<f日期i>_dis1和<f日期i>_dis2,例如f6181_dis1中包含2002年6月18日采用第一种方法预测的第一时段数据(其2491个数据为该时段各网格点的数据),而f6183_dis2中包含2002年6月18日采用第二种方法预测的第三时段数据。

MEASURING中包含了41个名为<日期>.SIX的文件,如020618.SIX表示2002年6月18日晚上21点开始的连续4个时段各站点的实测数据,这些文件的数据格式是:站号纬度经度第1段第2段第3段第4段58138 32.9833 118.5167 0.0000 0.2000 10.1000 3.1000 58139 33.3000 118.8500 0.0000 0.0000 4.6000 7.4000 58141 33.6667 119.2667 0.0000 0.0000 1.1000 1.4000 58143 33.8000 119.8000 0.0000 0.0000 0.0000 1.8000 58146 33.4833 119.8167 0.0000 0.0000 1.5000 1.9000……根据已有的数据用模型判断这两种预测方法的优劣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雨量预报分析的评价模型一、摘要我们将FORECAST 文件夹中的数据按日期先后顺序导入Matlab ,建立53×47×164的三维矩阵rain1和rain2;把MEASURING 文件夹中的数据以同样方法导入91×7×41的三维矩阵temp 中,然后建立循环将temp 矩阵中每一层的后4列提取,另存入一个91×164的rain3矩阵;在命令窗中直接导入预测点的经度和纬度存入矩阵lon 和lat 中,导入实测点的经度和纬度存入矩阵lon1和lat1中,并对其作图,得到实测点和预测点的经纬度图。

整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,根据气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,其中,预测中的零全部记为0,得到两个预报等级矩阵。

针对问题(1),利用插值基点为散乱节点的插值函数griddata [1]在Matlab 中进行三次样条插值处理,将91个观测站点41天164个时段的雨量情况进行预测。

利用残差平方和21()nij i i weap wear ξ==-∑以及平均误差11n ij ii avg weap wear n ==-∑来作为评价的标准。

残差平方和ξ与平均误差avg 值较小的一种预测方法作为较好的预报方法。

残差平方和以及平均误差数值越小,表明预报越准确度越高。

预测方法一的残差平方和为174290.00,平均误差为0.4553。

预测方法二的残差平方和为195580.00,平均误差为0.4753。

雨量预报方法一的准确性更高一些。

针对问题(2),两个预报等级矩阵,继续利用残差平方和以及平均误差来作为评价的标准。

残差平方和以及平均误差数值越小,表明预报越准确度越高,相应公众感受就越好。

预测方法一的残差平方和为2774,平均误差为0.1730。

预测方法二的残差平方和为2806,平均误差为0.1745。

雨量预报方法一的准确性更高一些。

由于残差平方和与平均误差难以反映真实汇报的准确度,我们将模型改进优化。

把矩阵中相应的降雨量值转化为其所对应等级值,得到两个预报等级矩阵,将两个预报等级矩阵与实测等级矩阵做差值运算,得到两个等级差矩阵,对等级差作绝对值处理,进行等级差统计。

我们利用预测准确度检验法对两种预报进行评价。

预测准确度(H )等于预报正确次数(R )(即运算之差为0的情况)和预测次数(T )之比,即100%RH T=⨯。

准确度越高,表明预报准确度越高,相应公众感受就越好。

预报1的预报准确度为83.26%高于预报2的准确度83.11%,公众更易接受第一种预报方法。

关键字:散乱节点插值 残差平方和 平均误差 预报等级矩阵 预测准确度二、问题重述雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。

我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。

同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的。

气象部门希望建立一种科学评价预报方法好坏的数学模型与方法。

气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据。

预报数据在文件夹FORECAST中,实测数据在文件夹MEASURING中,其中的文件都可以用Windows系统的“写字板”程序打开阅读。

FORECAST中的文件lon.dat和lat.dat分别包含网格点的经纬度,其余文件名为<f日期i>_dis1和<f日期i>_dis2,例如f6181_dis1中包含2002年6月18日晚上20点采用第一种方法预报的第一时段数据(其2491个数据为该时段各网格点的雨量),而f6183_dis2中包含2002年6月18日晚上20点采用第二种方法预报的第三时段数据。

MEASURING中包含了41个名为<日期>.SIX的文件,如020618.SIX表示2002年6月18日晚上21点开始的连续4个时段各站点的实测数据(雨量),这些文件的数据格式是:站号纬度经度第1段第2段第3段第4段58138 32.9833 118.5167 0.0000 0.2000 10.1000 3.1000 58139 33.3000 118.8500 0.0000 0.0000 4.6000 7.4000 58141 33.6667 119.2667 0.0000 0.0000 1.1000 1.4000 58143 33.8000 119.8000 0.0000 0.0000 0.0000 1.8000 58146 33.4833 119.8167 0.0000 0.0000 1.5000 1.9000 ……雨量用毫米做单位,小于0.1毫米视为无雨。

(1)请建立数学模型来评价两种6小时雨量预报方法的准确性;(2)气象部门将6小时降雨量分为6等:0.1—2.5毫米为小雨,2.6—6毫米为中雨,6.1—12毫米为大雨,12.1—25毫米为暴雨,25.1—60毫米为大暴雨,大于60.1毫米为特大暴雨。

若按此分级向公众预报,如何在评价方法中考虑公众的感受?三、名词和符号说明四、模型假设:假设题目中全部数据真实可靠,忽略误差; :假设观测站所在位置的经纬度准确无误; :假设天气预报针对的位置在所给网格点附近; :假设雨量在各网点之间的变动是连续的;五、问题分析针对问题1,我们将两种预测方法的所有预测值构造成两个以有序时间段对应的预测值为列,以网格点的个数为行的2491×164矩阵,对于91观测站点41天的实测值做同样的处理,构造成91×164的矩阵。

这样,繁琐的数据经过预处理后就整理成了三个矩阵。

由于观测站点相应位置没有两种预测方法对应的预测值,无法直接进行评价,我们采用了三次样条插值的方法进行插值预处理,到了91个观测站点两种预测方法的相应时刻的预测值,然后将两种预测方法雨量预测值与雨量实测值进行比较,从而判断出两种预测方法的准确性。

针对问题2,我们根据要求的雨量分级方式来考虑观众的感受。

我们将问题1中91个观测站点预测处理后雨量预测值构成的两个91×164矩阵和实际雨量观测值构成的91×164这个三个矩阵分别采用雨量等级记法构造出三个新的矩阵,然后分别把两个预测值构成的降雨量等级矩阵和观测值构成的等级矩阵对应元素相减并取绝对值,并进行等级统计,再利用预测准确度检验法进行判断,准确度越高说明我们预报的误差越小,表明预测方法更准确。

1L 2L 3L 4L六、模型建立1、数据预处理(1)针对问题1根据上面的分析,我们先对数据进行预处理。

处理方法为:把FORECAST文件夹中的第一种和第二种预测方式得到的数据分开两个文件夹,分别以记事本格式按照日期的先后顺序有序的导入Matlab的workspace工作空间中,然后建立m文件编辑公式将两部分的数据导入53×47×164的三维矩阵rain1和rain2中;把MEASURING文件夹中的数据以同样方法导入91×7×41的三维矩阵temp中,然后建立循环将temp矩阵中每一层的后4列提取,另存入一个91×164的rain3矩阵;在命令窗中直接导入预测点的经度和纬度存入矩阵lon和lat中,导入实测点的经度和纬度存入矩阵lon1和lat1中,并对其作图,如图5-1。

实现的matlab 语句已呈现在附录2.1中。

图5-1 预测点(彩色实线)与实测点(蓝色孤点)由于三维矩阵无法用表格的形式呈现,我们分别截取了rain1和rain2矩阵的第一层呈现在下表5-1和5-2中,rain3是二维矩阵,将其数据呈现在表5-3中:由问题1我们可以整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,再根据问题2中气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,其中,预测中的零全部记为0,得到两个预报等级矩阵,如下表5-4和5-5:2、模型建立与求解(1)针对问题1由于91个观测站点没有相应的预测值,因此不能够直接对实测值进行评价,属于离散的散乱节点,我们利用插值基点为散乱节点的插值函数griddata [1]在Matlab 中进行三次样条插值处理,插值函数griddata 为:(,,,1,1,'')weap griddata lat lon wea lat lon cubic = [1] 其中lon 表示预测点的经度值,lat 表示预测点的纬度值,wea 表示预测点的已知的预测值,1lat 表示观察站点的纬度值,1lon 表示观察站点的经度值,cubic 表示三次样条插值的参数选项,weap 观察站点的预测值。

将91个观测站点41天164个时段的雨量情况进行预测之后,我们可以建立模型来评价这两种预测方法。

这里我们利用残差平方和ξ[2]以及平均误差avg [3]来作为评价的标准:21(),nij i i weap wear ξ==-∑ 1,2j = [2]11,nij i i avg weap wear n ==-∑ 1,2j = [3]最后,我们根据ξ和avg 的值进行评价,取值越大,表明预报的值准确性越低。

因此,残差平方和ξ与平均误差avg 值较小的一种预测方法作为较好的预报方法。

利用公式(1),我们在Matlab 中应用编程求解,程序代码见附录2.2。

求解之后得到91个观测点41天164个时段的预测值,整理成91×164矩阵,然后把预测矩阵和实测矩阵对应元素值相减取平方作残差平方和,再作平均误差,最后结果如下表5-6:由此可知,雨量预报方法一的准确性更高一些。

(2)针对问题2由问题1我们可以整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,再根据问题2中气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,其中,预测中的零全部记为0,得到两个预报等级矩阵,继续利用残差平方和以及平均误差来作为评价的标准。

残差平方和以及平均误差数值越小,表明预报越准确度越高,相应公众感受就越好。

由结果可知,预测方法一的准确度更高。

七、模型优化针对问题2,由于残差平方和与平均误差难以反映真实汇报的准确度,我们将模型改进优化。

由问题1我们可以整理得到91个观测点41天的预测值和测量值对应的两个91×164矩阵,再根据问题2中气象部门将降雨的等级分为6个等级的分法,把矩阵中相应的降雨量值转化为其所对应等级值,得到两个预报等级矩阵,将两个预报等级矩阵与实测等级矩阵做差值运算,得到两个等级差矩阵,对等级差作绝对值处理后,我们就可以从中进行等级差统计。

相关文档
最新文档