三角形内角与外角专题(简)

合集下载

新人教版数学八年级上册 小专题(二) 三角形内角和与外角的几种常见应用

新人教版数学八年级上册  小专题(二) 三角形内角和与外角的几种常见应用

小专题( 二)三角形内角和与外角的几种常见应用三角形的内角和为180°,三角形的中线、高线、角平分线是三角形的三条特殊线段,它们之间形成的特殊角与三角形的内角之间存在一定的数量关系,是考试命题中的热点,也是一些探究题的命题素材.解题时注意利用转化的思想和数形结合的思想来求解,学习时注意及时总结规律.类型1三角形内角和定理的应用三角形内角和定理的应用一般都需要将不相邻的角转化成同一个三角形中的内角,在解题时要关注“8字形”中对顶角相等的关系.1.( 青海中考)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于( C)A.150°B.180°C.210°D.270°2.已知在△ABC中,∠ABC-∠ACB=20°,∠ACB的度数是∠BAC度数的求∠ABC的度数.解:设∠ACB=x,则∠ABC=x+20°,∠BAC=2x,∵∠ABC+∠ACB+∠BAC=180°,∴x+20°+x+2x=180°,解得x=40°,∴∠ABC=60°.类型2三角形外角性质定理的应用三角形外角性质定理的应用也需要用到“转化”思想去解题,在解题时运用恰当可以达到事半功倍的效果,难点在于在众多的三角形中正确找出某个三角形的外角并灵活运用转化思想解题.3.如图,图中x的值为( B)A.50B.60C.70D.754.如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A等于( A)A.40°B.50°C.60°D.70°5.如图,EP平分∠AED,FP平分∠AFB,ED与FB相交于点C,请你找出∠P,∠A,∠ECF之间的一个确定的数量关系式,并说明理由.解:∠A+∠ECF=2∠P.理由:延长EP交AF于点G,则∠EPF=∠PGF+∠AFP.∵∠PGF=∠A+∠AEP,∴∠EPF=∠A+∠AEP+∠AFP.∵∠ECF=∠CDF+∠CFD,∠CDF=∠A+∠AED,又∵EP平分∠AED,FP平分∠AFB,∴∠ECF=∠A+∠AED+∠CFD=∠A+2∠AEP+2∠AFP,∴∠A+∠ECF=2∠A+2∠AEP+2∠AFP=2∠EPF.类型3三角形内角和与外角性质定理的综合应用这类题一般都是不规则的多边形,解决此类问题除了运用前面介绍的转化思想之外,还可以借助辅助线,结合平行线的性质等知识综合解决问题.6.已知三角形的三个内角的比为1∶3∶6,则它对应的三个外角的比为( C)A.1∶3∶6B.6∶3∶1C.9∶7∶4D.3∶5∶27.如图,七角星中∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.8.如图,在△ABC中,∠B=∠C,D是BC边上任意一点,点E在AC边上,且∠ADE=∠AED. ( 1 )若∠BAD=40°,求∠EDC的度数;( 2 )若∠EDC=15°,求∠BAD的度数;( 3 )根据上述两小题的答案,试写出∠EDC与∠BAD的关系.解:( 1 )∵∠B=∠C=( 180°-∠BAC)=90°-BAC,∴∠ADC=∠B+∠BAD=130°-BAC.∵∠DAC=∠BAC-∠BAD=∠BAC-40°,∴∠ADE=∠AED=( 180°-∠DAC)=110°-BAC,∴∠EDC=∠ADC-∠ADE=130°-BAC--=20°.( 2 )∵∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∴∠ADC=∠ADE+∠EDC=∠AED+∠EDC=2∠EDC+∠C.∵∠B=∠C,∠EDC=15°,∴∠BAD=2∠EDC=30°.( 3 )∠EDC=BAD.类型4三角形特殊线段形成的角解决这类题的关键在于梳理三种特殊线段各自的特征.( 1 )角平分线的特征:所分成的两个角相等;( 2 )中线的特征:所分成的两个三角形面积相等;( 3 )高线的特征:所分成的两个三角形都是直角三角形.9.如图,BP是△ABC中∠ABC的平分线,CP是△ABC的外角∠ACM的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P等于( C)A.70°B.80°C.90°D.100°10.如图,已知AD是△ABC的角平分线( ∠ACB>∠B),EF⊥AD于点P,交BC的延长线于点M.求证:( 1 )如果∠ACB=90°,则∠M=∠1;( 2 )∠M=( ∠ACB-∠B).证明:( 1 )∵AD是△ABC的角平分线,∴∠1=∠2.∵EF⊥AD,∴∠2+∠AFP=90°.∵∠ACB=90°,∴∠M+∠CFM=90°.∵∠CFM=∠AFP,∴∠M=∠2=∠1.( 2 )∵EF⊥AD,AD平分∠BAC,∴∠APE=∠APF=90°,∠1=∠2.又∵∠AEF=90°-∠1,∠AFE=90°-∠2,∴∠AEF=∠AFE.∵∠CFM=∠AFE,∴∠AEF=∠AFE=∠CFM.∵∠AEF=∠B+∠M,∠CFM=∠ACB-∠M,∴∠B+∠M=∠ACB-∠M,即∠M=( ∠ACB-∠B).11.在△ABC中,∠A=64°,角平分线BP,CP相交于点P.( 1 )如图1,若BP,CP是两内角的平分线,则∠BPC=122°;( 2 )如图2,若BP,CP是两外角的平分线,则∠BPC=58°;( 3 )如图3,若BP,CP分别是一内角和一外角的平分线,则∠BPC=32°;( 4 )由( 1 )( 2 )( 3 )可知∠BPC与∠A有着密切的数量关系,请写出你的发现.解:( 4 )若BP,CP是两内角的平分线,则∠BPC=90°+A;若BP,CP是两外角的平分线,则∠BPC=90°-A;若BP,CP分别是一内角和一外角的平分线,则∠BPC= A.。

(完整版)三角形内角和外角练习题

(完整版)三角形内角和外角练习题

规律方法指导1.三角形内角和为180°,三角形三个外角的和是360°,这是在做题时题设不用加以说明的已知条件;在三个角中已知其中两个角的度数便能求第三个角的大小.2.在一个三角形中最多只能有一个钝角或者一个直角,最少有两个锐角.3.三角形内角和定理和三角形外角的性质是求角度数及有关的推理论证时经常使用的理论依据.外角的性质应用:①证明一个角等于另两个角的和;②作为中间关系式证明两角相等;③证明角的不等关系.4.利用作辅助线求解问题,会使问题变得简便.经典例题透析类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,则其最大内角的度数为()A.60° B.75° C.90° D.120°举一反三:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。

类型二:利用三角形外角性质证明角不等2.如图所示,已知CE是△ABC外角∠ACD的平分线,CE交BA延长线于点E。

求证:∠BAC >∠B。

举一反三:【变式】如图所示,用“<”把∠1、∠2、∠A联系起来________。

类型三:三角形内角和定理与外角性质的综合应用3.如图,求∠A+∠B+∠C+∠D+∠E的度数.举一反三:【变式】如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°。

类型四:与角平分线相关的综合问题4.如图9,△ABC中,∠ABC、∠ACB的平分线相交于点D.(1)若∠ABC=70°,∠ACB=50°,则∠BDC=________;(2)若∠ABC+∠ACB=120°,则∠BDC=________;(3)若∠A=60°,则∠BDC=________;(4)若∠A=100°,则∠BDC=________;(5)若∠A=n°,则∠BDC=________.举一反三:【变式1】如图10,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF 交于G,若∠BDC= 140°,∠BGC=110°,求∠A的大小.80【变式2】如图11, △ABC的两个外角的平分线相交于点D,如果∠A=50°,求∠D.【变式3】如图12,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,则∠AEB的度数是_____.【变式4】(2009北京四中期末)如图所示,△ABC的外角∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠F的度数。

2.三角形的内角外角及正多边形的内角和

2.三角形的内角外角及正多边形的内角和

三角形的内角外角及多边形的内角1.三角形内角与外角定理及性质⑴三角形的内角和定理:三角形的内角和为180°,直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角. 三角形的一个外角和与之相邻的内角互补.例1.如图,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,求∠DAF的度数.例2.如图,有一块直角三角板XYZ放置在△ABC中,三角板的两条直角边XY和XZ恰好分别经过点B 和点C.(1)若∠A=30°,则∠ABX+∠ACX的大小是多少?(2)若改变三角板的位置,但仍使点B、点C在三角板的边XY和边XZ上,此时∠ABX+∠ACX的大小有变化吗?请说明你的理由.例3.如图,求证:∠BOC=∠A+∠B+∠C.变式练习1.如图,∠1+∠2+∠3+∠4的度数为________.2.如图,点D,E分别是AB,AC上的点,连接BE,CD,若∠B=∠C,则∠AEB与∠ADC的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEB C.∠ADC<∠AEB D.不确定第2题第3题3.如图,B处在A处的南偏西60°方向,C处在A处的南偏东20°方向,C处在B处的正东方向,求∠ACB 的度数4.如图,已知在△ABC中,∠ABC与∠ACB的平分线相交于点O,若∠BOC=140°,求∠A的度数.5.如图,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为第5题第7题第8题6.已知△ABC中,∠A,∠B,∠C的外角度数之比为2∶3∶4,则这个三角形是()A.直角三角形B.等边三角形C.钝角三角形D.等腰三角形7.如图,∠1、∠2、∠3、∠4恒满足的关系是()A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠34.如图,△ABC中,∠B和∠C的外角平分线相交于点D,则∠BDC=()A.12(90°-∠A) B.90°-∠A C.12(180°-∠A) D.180°-∠A1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.2.多边形的内角:多边形相邻两边组成的角叫做它的内角.3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.4.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.5.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.6.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,7公式(1)多边形内角和公式:n 边形的内角和等于(2)n -·180° (2)多边形的外角和:多边形的外角和为360°.(3)多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.例 4.下列说法:①等腰三角形是正多边形;②等边三角形是正多边形;③长方形是正多边形;④正方形是正多边形.其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个例5.如图,△ABC ,△ADE 及△EFG 都是等边三角形,D 和G 分别为AC 和AE 的中点,若AB =4时,则图形ABCDEFG 外围的周长是( ) A .12 B .15 C .18 D .21变式练习1.一个正多边形的一个内角为162°,则这个多边形的边数为 .2.过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形共有k 条对角线,则(m -k)n 为多少?3. 如图,图中分别是正方形、正五边形、正六边形,试求出∠1,∠2,∠3的度数。

三角形的外角与内角和计算技巧

三角形的外角与内角和计算技巧

三角形的外角与内角和计算技巧一、三角形的外角1.定义:三角形的一个外角是指与三角形的一个内角不在同一直线上的角。

a)三角形的外角等于它不相邻的两个内角之和。

b)三角形的外角大于任何一个不相邻的内角。

c)外角与它相邻的内角互补(即外角加相邻内角等于180°)。

2.计算方法:a)已知三角形的两个内角,求第三个内角的外角:用180°减去这两个内角的和。

b)已知三角形的一个内角和一个外角,求另一个内角:用180°减去这个外角。

二、三角形的内角和1.定理:三角形的三个内角和等于180°。

a)画出任意一个三角形,将其分为两个三角形。

b)每个小三角形的内角和都是180°,因此,整个三角形的内角和是360°。

c)由于两个小三角形的公共角被计算了两次,所以将其减去一次,得到三角形的内角和为180°。

2.计算方法:a)已知三角形的两个内角,求第三个内角:用180°减去这两个内角的和。

b)已知三角形的三个内角,验证内角和是否等于180°。

三、外角与内角和的联系1.每个三角形的三个外角和等于360°。

2.三角形的外角与它相邻的内角互补,即外角加相邻内角等于180°。

3.利用外角可以转换求解内角,利用内角和定理可以验证外角的计算结果。

四、应用拓展1.利用三角形外角性质解决几何问题,如证明线段平行、求解三角形面积等。

2.利用内角和定理求解三角形的问题,如求解三角形的角度、边长等。

3.外角与内角和的知识在实际生活中的应用,如测量土地面积、建筑物的设计等。

通过以上知识点的学习,学生可以掌握三角形外角与内角和的计算技巧,并能运用到实际问题中。

习题及方法:1.习题:已知三角形ABC的内角A、B分别为90°和45°,求三角形ABC的外角D的度数。

答案:外角D的度数为180° - 90° - 45° = 45°。

《三角形的内角和及外角定理》热点专题高分特训(含答案)

《三角形的内角和及外角定理》热点专题高分特训(含答案)

A.40° B.24° C.50° D.45° 答案:A 解题思路:
试题难度:三颗星知识点:三角形外角定理 8.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC 的度数为()
A.30° B.45° C.60° D.75° 答案:A 解题思路:
试题难度:三颗星知识点:角度的计算 6.如图,一个直角三角形纸片 ABC,剪去直角后,得到一个四边形 GBCH, 则∠1+∠2=( )
A.90° B.180° C.240° D.270° 答案:D 解题思路:
试题难度:三颗星知识点:三角形的内角和 7.如图,在四边形 ABCD 中,∠A=62°,∠B=38°,∠BCD=140°,则∠D 的度数为) (
三角形的内角和及外角定理(人教版)
一、单选题(共 12 道,每道 8 分) 1.已知△ABC 中,∠B 是∠A 的 2 倍,∠C 比∠A 大 20°,则∠A 等于( ) A.30° B.40° C.60° D.80° 答案:B 解题思路:
试题难度:三颗星知识点:三角形内角和 2.如图,在△ABC 中,∠B=67°,∠C=33°,AD 是△ABC 的角平分线, 则∠CAD 的度数为( )
试题难度:三颗星知识点:三角形的内角和 4.如图,在△ABC 中,∠B=∠C,FD⊥BC 于点 D,DE⊥AB 于点 E,∠AFD=158°, 则∠EDF=( )
A.79° B.68° C.44° D.42° 答案:B 解题思路:
试题难度:三颗星知识点:角度的计算 5.如图,在△ABC 中,∠BAC=4∠1=4∠C,BD⊥CA 于点 D,则∠DBA=) (
A.40° B.45° C.50° D.55° 答案:A 解题思路:
试题难度:三颗星知识点:三角形的内角和 3.如图,在△ABC 中,AE 平分∠BAC,AD⊥BC 于点 D,若∠BAC=128°,∠C=36°,பைடு நூலகம்则∠DAE 的度数为( )

三角形的内角和与外角和关系(基础)知识讲解

三角形的内角和与外角和关系(基础)知识讲解

三角形的内角和与外角和关系(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角和1.三角形内角和定理:三角形的内角和为180°.2.结论:直角三角形的两个锐角互余.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理、证明经常使用的理论依据.另外,在证明角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .∵ AB ∥CD (已作),∴ ∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∵∠ACB+∠1+∠2=180°(平角定义),∴∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .∵DF ∥AC (已作),∴∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).∵DE ∥AB (已作).∴∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).∴∠A=∠2(等量代换).又∵∠1+∠2+∠3=180°(平角定义),∴∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,∵1l ∥3l (已作).∴∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又∵1l ∥2l (已作),∴∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).∴∠5+∠2+∠6+∠3=180°(等量代换).又∵∠2+∠3=∠ACB ,∴∠BAC+∠ABC+∠ACB=180°(等量代换).【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC 中,已知∠A+∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.【思路点拨】题中给出两个条件:∠A+∠B =80°,∠C =2∠B ,再根据三角形的内角和等于180°,即∠A+∠B+∠C =180°就可以求出∠A ,∠B 和∠C 的度数.【答案与解析】解:由∠A+∠B =80°及∠A+∠B+∠C =180°,知∠C =100°.又∵ ∠C =2∠B ,∴ ∠B =50°.∴ ∠A =80°-∠B =80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C =180°.本题可以设∠B =x ,则∠A =80°-x ,∠C =2x 建立方程求解.【高清课堂:与三角形有关的角 例1、】举一反三:【变式】已知,如图 ,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,求∠DBC 的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段与点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于()A、40°B、65°C、75°D、115°【答案】B【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°类型三、三角形的内角、外角综合4.如图所示,已知DE分别交△ABC的边AB、AC于D、E,交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【思路点拨】要求∠BDF的度数,应从三角形内角和与三角形的外角出发,若将∠BDF看成△BDF的内角,只需求∠F的度数即可.【答案与解析】解:∵∠CEF=∠AED=48°,∠BCA=∠CEF+∠F,∴∠F=∠BCA-∠CEF=74°-48°=26°,∴∠BDF=180°-∠B-∠F=180°-67°-26°=87°.【总结升华】三角形内角和与外角是进行与角有关的计算或证明的重要工具,本题也可将∠BDF看成△ADE的外角来求解.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG;理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB,∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°,又∵∠4=∠1+∠2,∴∠4+∠3=90°,又∵ PG⊥BC,∴∠3+∠5=90°,∴∠4=∠5,即∠BPD=∠CPG.。

三角形内角和、外角定理(含详细解答)

三角形内角和、外角定理(含详细解答)

三角形内角和、外角和定理一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36 B.72 C.108 D.14410.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A .37 B.57 C.77 D.97二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= _________度.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_________.13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_________度.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=_________度.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于_________.(2)请证明以上命题.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_________.19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:_________.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.三角形内角和、外角和定理参考答案与试题解析一.选择题(共10小题)1.(2013•泉州)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A .等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形内角和定理.分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解答:解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.2.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A .等腰三角形B.直角三角形C.锐角三角形D.钝角三角形考点:三角形内角和定理.专题:方程思想.分析:已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.点评:本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.3.(2012•河源)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A .150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题).专题:压轴题.分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A .40°B.45°C.50°D.55°考点:三角形内角和定理.分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.解答:解:∵∠B=67°,∠C=33°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣67°﹣33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.点评:本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.5.(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A .360°B.250°C.180°D.140°考点:三角形内角和定理;多边形内角与外角.分析:先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.解答:解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.点评:此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.6.(2012•梧州)如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,则∠DAE的度数是()A .10°B.12°C.15°D.18°考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE﹣∠CAD,代入数据进行计算即可得解.解答:解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.故选A.点评:本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.7.(2011•日照)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A .70°B.80°C.90°D.100°考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.点评:本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.8.(2011•台湾)如图中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()A .∠2=∠4+∠7 B.∠3=∠1+∠6 C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°考点:三角形内角和定理;对顶角、邻补角;三角形的外角性质.分析:根据对顶角的性质得出∠1=∠AOB,再用三角形内角和定理得出∠AOB+∠4+∠6=180°,即可得出答案.解答:解:∵四条互相不平行的直线L1、L2、L3、L4所截出的七个角,∵∠1=∠AOB,∵∠AOB+∠4+∠6=180°,∴∠1+∠4+∠6=180°.故选C.点评:此题主要考查了对顶角的性质以及三角形的内角和定理,正确的应用三角形内角和定理是解决问题的关键.9.(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A .36 B.72 C.108 D.144考点:三角形内角和定理;解二元一次方程组;对顶角、邻补角.专题:计算题.分析:由∠A+∠B+∠C=180°,得到2(∠A+∠C)+2∠B=360°,求出∠B=72°,根据∠B的外角度数=180°﹣∠B即可求出答案.解答:解:∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,∴∠B的外角度数是180°﹣∠B=108°,故选C.点评:本题主要考查对二元一次方程组,三角形的内角和定理,邻补角等知识点的理解和掌握,能根据三角形的内角和定理求出∠B的度数是解此题的关键.10.(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A .37 B.57 C.77 D.97考点:三角形内角和定理.专题:推理填空题.分析:根据钝角三角形有一内角大于90°且三角形内角和为180°,①∠C>90°,②∠B>90°,分类讨论解答.解答:解:∵钝角三角形△ABC中,∠A=27°,∴∠B+∠C=180°﹣27°=153°,又∵△ABC为钝角三角形,有两种可能情形如下:①∠C>90°,∴∠B<153°﹣90°=63°,∴选项A、B合理;②∠B>90°,∴选项D合理,∴∠B不可能为77°.故选C.点评:本题考查了钝角三角形的定义及三角形的内角和定理,体现了分类讨论思想.二.填空题(共4小题)11.(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角.专题:几何图形问题.分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.12.(2013•河池)如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是56°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.解答:解:∵△BOC中,∠BOC=118°,∴∠1+∠2=180°﹣118°=62°.∵BO和CO是△ABC的角平分线,∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,在△ABC中,∵∠ABC+∠ACB=124°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.故答案为:56°.点评:本题考查的是角平分线的定义,三角形内角和定理,即三角形的内角和是180°.13.(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.解答:解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又a∥b,∴∠3=∠ABC=70°.点评:本题考查了平行线与三角形的相关知识.14.(2003•金华)如图,平面镜A与B之间夹角为120°,光线经过平面镜A反射后射在平面镜B上,再反射出去,若∠1=∠2,则∠1=30度.考点:三角形内角和定理;角平分线的定义.专题:压轴题.分析:因为入射角等于反射角,所以∠1=∠2=(180°﹣120°)÷2.解答:解:如图所示,作出入射光线的法线,根据“入射角等于反射角”可知∠1=∠3,∠2=∠4,∵∠1=∠2,∠AOB=120°,∴1=∠2=(180°﹣120°)÷2=30°.故答案为:30°.点评:此题由题意得出“入射角等于反射角”是关键.三.解答题(共16小题)15.(2014•六盘水)(1)三角形内角和等于180°.(2)请证明以上命题.考点:三角形内角和定理;平行线的性质.专题:证明题.分析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.解答:解:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.16.(2001•海南)如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD的度数.考点:三角形内角和定理;三角形的外角性质;等腰三角形的性质.分析:要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.解答:解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.点评:此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.17.(2000•内蒙古)如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.18.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.考点:三角形的外角性质;三角形内角和定理.专题:压轴题.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.19.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;平行线的性质;三角形内角和定理.专题:综合题;压轴题.分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据三角形的外角性质,把角转化到四边形中再求解.解答:解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.点评:本题是信息给予题,利用平行线的性质和三角形的一个外角等于和它不相邻的两个内角的和解答.20.(2013•响水县一模)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠ADC和∠ACD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.点评:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.21.已知:如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=120°,求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和定理和三角形的外角性质即可解决.解答:解:∵∠BAC=120°,∴∠2+∠3=60°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=60°,∠2=20°.∴∠DAC=120°﹣20°=100°.点评:注意三角形的内角和定理以及推论的运用,还要注意角之间的等量代换.22.如图,求∠A+∠B+∠C+∠D+∠E的度数和.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解答:解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∠B+∠E+∠4=180°,即∠B+∠E+∠A+∠D+∠C=180°.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,试求∠DAC,∠ADC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,和三角形的一个外角等于与它不相邻的两个内角的和,可求∠1=39°,∠3=78°,所以∠DAC=24°,∠ADC=∠3=78°.解答:解:∵∠1=∠2,∴∠3=∠1+∠2=2∠1=∠4,∴2∠3+∠CAD=2∠1+2∠2+∠BAC﹣∠1=4∠1+63°﹣∠1=3∠1+63°=180°,∴∠1=39°=∠2,∠3=∠4=78°,∴∠DAC=63°﹣∠1=63°﹣39°=24°,∠ADC=∠3=78°.点评:本题考查三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;以及三角形的一个外角等于与它不相邻的两个内角的和.24.已知:如图所示,∠ABC=66°,∠ACB=54°,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求:∠ABE,∠ACF和∠BHC的度数.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.解答:解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.点评:本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.25.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAC及∠BOA.考点:三角形的外角性质;三角形内角和定理.专题:计算题.分析:先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.解答:解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°∴∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.点评:本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.26.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.27.一个零件的形状如图,按规定∠A=90°,∠C=25°,∠B=25°,检验已量得∠BDC=150°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.考点:三角形的外角性质.分析:根据三角形外角的性质求出∠BDC的度数,与测量所得的度数对比即可得出结论.解答:解:如图,∠CDE是△ADC的外角,∠BDE是△ABD的外角,∵∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,∴∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠DAB,即∠BDC=∠B+∠C+∠A=25°+25°+90°=140°.检验已量得∠BDC=150°,就判断这个零件不合格.点评:考查了三角形的外角性质,三角形的外角等于和它不相邻的两个内角的和.28.一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是30°和20°,李叔叔量得∠BDC=142°,就判定这个零件不合格,你能说出其中的道理吗?考点:三角形的外角性质.分析:连接AD并延长,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠1=∠B+∠BAD,∠2=∠C+∠CAD,然后求出∠1+∠2的度数,根据零件规定数据,只有140°才是合格产品.解答:解:如图,连接AD并延长,∴∠1=∠B+∠BAD,∠2=∠C+∠CAD,∵∠A=90°,∠B=30°,∠C=20°,∴∠BDC=∠1+∠2,=∠B+∠BAD+∠DAC+∠C,=∠B+∠BAC+∠C,=30°+90°+20°,=140°,∵140°≠142°,∴这个零件不合格.点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.29.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.考点:三角形的外角性质;三角形内角和定理.分析:连接BE,由三角形内角和外角的关系可知∠C+∠D=∠CBE+∠DEB,由四边形内角和是360°,即可求∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.解答:解:如图连接BE.∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,∴∠C+∠D=∠CBE+∠DEB,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F.又∵∠A+∠ABE+∠BEF+∠F=360°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.点评:本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.30.如图,在三角形ABC中,∠A=35°,求∠1+∠2+∠3+∠4的度数和.考点:三角形的外角性质;三角形内角和定理.分析:根据三角形的内角和是180°,可分别求出∠1+∠2=∠3+∠4=145°,即可求出∠1+∠2+∠3+∠4的度数和.解答:解:∵∠A=35°,在△ABC中,∠A+∠1+∠2=180°,∴∠1+∠2=180°﹣∠A=145°,同理可证∠3+∠4=145°,∴∠1+∠2+∠3+∠4=290°.点评:本题考查了三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.。

三角形的内角与外角的关系

三角形的内角与外角的关系

三角形的内角与外角关系专题分析例1如图1-40所示.在△ABC中,∠B的平分线与∠C的外角平分线交于D,且∠D=30°.求∠A的度数.分析∠D位于△BCD中,∠A位于△ABC中,它们位于两个不同的三角形之中,欲利用三角形内角和定理解决问题,就必须寻求两个三角形中内角之间的关系,角平分线的条件为我们提供了信息,事实上∠解由已知,∠D=30°.在△BCD中,∠CBD+∠BCD=180°-30°=150°.①因为BD是∠ABC的平分线,所以又因为CD是∠ACE的平分线,所以从而由①,②,③即所以所以∠A=60°.说明解决本题的关键在于两条角平分线架起了△ABC与△BCD之间的桥梁,完成了从已知向未知的过渡.细心审题,发现已知与所求之间的联系,常是解题的重要前提.例2如图1-41所示.∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度数.分析如果我们能注意到所给的一系列等角条件正反映了内角与外角的关系,问题就不难解决.例如在∠ACB=∠DCE中,∠ACB是△ABC的一个内角,∠DCE是△ACD的外角.∠ADC=∠EDF及∠CED=∠FEG两个等式两边的角也是类似情况,这就为我们利用外角定理解题创造了机会.解在△ABC中,∠A=10°,∠ABC=90°,所以∠ACB=80°.因为∠DCE=∠ACB=80°,在△ACD中,∠DCE是它的一个外角,所以∠DCE=∠A+∠ADC,80°=10°+∠ADC,所以∠ADC=70°,∠EDF=∠ADC=70°.在△ADE中,∠EDF是它的一个外角,所以∠EDF=∠A+∠AED,70°=10°+∠AED,所以∠AED=60°,∠FEG=∠AED=60°.在△AEF中,∠FEG是它的一个外角,所以∠FEG=∠A+∠F,所以∠F=∠FEG-∠A=60°-10°=50°.例3如图1-42所示.△ABC的边BA延长线与外角∠ACE的平分线交于D.求证:∠BAC>∠B.分析三角形的外角定理的意义中已暗含着“三角形的外角大于三角形中与此外角不相邻的内角”的意义.证明有关三角形角的不等问题可从此下手.证∠BAC是△ACD的一个外角,因为∠BAC=∠1+∠D,所以2∠BAC=2∠1+2∠D=∠ACE+2∠D>∠ACE①(因为CD是∠ACE的平分线).又∠ACE是△ABC的一个外角,所以∠ACE=∠B+∠BAC.②由②,③2∠BAC>∠B+∠BAC,所以∠BAC>∠B.由于多边形可以分割为若干个三角形,因而多边形的内角和可以转化为三角形内角和来计算.下面我们来求n(n≥3的自然数)边形的内角和.例4.n边形的内角和等于(n-2)·180°.分析我们不妨先从具体情况入手.当n=4时,如图1-43所示.四边形ABCD用一条对角线可以分割成两个三角形,因此四边形ABCD的内角和=三角形ABC的内角和+三角形ACD的内角和=2×180°=360°.当n=5时,如图1-44所示.五边形ABCDE用两条对角线可以分割为三个三角形.类似于n=4的情况,可证明:五边形ABCDE的内角和=3×180°=540°.由这两个具体实例,我们可以找到n边形的内角和的证明方法.证在n边形A1A2A3…A n中,以A1为一个端点,连接对角线A1A3,A1A4,…,A1A n-1,共有(n-1)-3+1=n-3条对角线,将这个n边形分割成n-2个三角形.显然,这n-2个三角形的内角“合并”起来恰是这个n边形的n个内角,如图1-45所示.所以n边形的内角和=(n-2)×180°.说明(1)从具体的简单的问题入手常能找到解决复杂问题的思路.如本题从n=4,5入手,找到将多边形分割为三角形的方法(这是一个本质的方法),从而可以推广到n为任意自然数的范围中去.(2)各条边都相等,各个内角都相等的多边形称为正多边形.由本例自然可以推出正n 边形每一个内角的大小.设正n边形的一个内角大小为a,则n边形的内角和=na=(n-2)×180°,所以例如正五边形的内角的度数为正十边形的内角度数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2 三角形的复习(1)
一、填空题
1.直接根据图示填空:
(1)∠α=_________ (2)∠α=_________ (3)∠α=_________;
(4)∠α=_________ (5)∠α=_________ (6)∠α=_________.
(1) (2) (3)
(4
) (5) (6)
2
在△ABC 中, ∠A -∠B =36°,∠C =2∠B ,则∠A = ,∠B = ,∠C = 。

4、将一副直角三角尺如图放置,已知AE BC ∥,则AFD ∠的度数是_______.
5、如图,将一等边三角形剪去一个角后,12 ∠
∠= . 6、如图,∠A=50°,∠B=40°,∠C=30°,则∠BDC=_______
7.如图,在△ABC 中,AD 是BC 边上的高,AE 平分∠BAC ,∠B=42°,∠C=70°,则∠DAE= _________ .
二、解答题
1、在△ABC 中,已知∠A =21∠B =3
1∠C ,请你判断三角形的形状。

α38°62°
20°α°30°25°150°α70°α°70°60°20°α20°135°45°α
D
C B A
2 .如图,△ABC 中,∠A=80°,∠B 、∠C 的角平分线相交于点O,∠ACD=30°,•求∠DOB 的度数.
3、如图,△ABC 中,∠A=90°,∠C 的平分线交AB 于D,已知∠DCB=2∠B.•求∠ADC 的度数.
4、如图,在△ABC 中,∠1=∠2,∠3=∠4,∠BAC =54°,求∠DAC 的度数。

5、如图,BP 是∠ABC 的平分线,DP 是∠CDA 的平分线,BP 与DP 交于P ,
若∠A =40°,∠C =76°,求∠P 的大小
6、如图,在四边形ABCD 中,∠C 与∠D 的平分线相交于P ,
且∠A =60°,∠B =80°,求∠P 的度数.
D
C
B
A
_O
_D
_C _B _A
B
D C 2 4 3 1 A D C B A P D C B A P。

相关文档
最新文档