概率论与数理统计公式表

合集下载

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。

其中概率论是研究随机事件发生的可能性或概率的科学。

而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。

本文将整理概率论与数理统计中常用的公式。

一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。

2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。

3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。

2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。

3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)

f (x) ,对任意实数 x ,有
x
F (x) f (x)dx

则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函
数或密度函数,简称概率密度。
密度函数具有下面 4 个性质:
1° f (x) 0 。
f (x)dx 1


P(X x) P(x X x dx) f (x)dx
第 1 章 随机事件及其概率
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行
(1)排列组合公 式
排列的可能数。
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进
行组合的可能数。
加法原理(两种方法均能完成此事):m+n
某件事由两种方法来完成,第一种方法可由 m 种方法完成,
第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方
(1)pij≥0(i,j=1,2,…);
(2)
pij 1.
ij
对 于 二 维 随 机 向 量 (X,Y) , 如 果 存 在 非 负 函 数
f (x, y)( x , y ) ,使对任意一个其邻边分别平行
于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有
P{(X ,Y) D} f (x, y)dxdy,
为标准正态分布,记为 X ~ N (0,1) ,
其密度函数记为
(x)
1
x2
e2
2

x ,
分布函数为
(x) 1
x
t2
e 2 dt 。
2
( x) 是不可求积函数,其函数值,已

概率论与数理统计公式大全

概率论与数理统计公式大全
概率论与数理统计公式大全
第一章 随机事件和概率 (1)排 从m个人中挑出n个人进行排列的可能数。 列组合公 从m个人中挑出n个人进行组合的可能数。 式 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完 成,第二种方法可由n种方法来完成,则这件事可由m+n (2)加 种方法来完成。 法和乘法 乘法原理(两个步骤分别不能完成这件事):m×n 原理 某件事由两个步骤来完成,第一个步骤可由m种方法完 成,第二个步骤可由n 种方法来完成,则这件事可由 m×n 种方法来完成。 (3)一 重复排列和非重复排列(有序) 些常见排 对立事件(至少有一个) 列 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验 (4)随 的可能结果不止一个,但在进行一次试验之前却不能断 机试验和 言它出现哪个结果,则称这种试验为随机试验。 随机事件 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出 这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一 个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 来表 (5)基 示。 本事件、 基本事件的全体,称为试验的样本空间,用 表示。 样本空间 一个事件就是由 中的部分点(基本事件 )组成的集合。 和事件 通常用大写字母A,B,C,…表示事件,它们是 的子 集。 为必然事件,Ø为不可能事件。
那么A、B、C相互独立。 对于n个事件类似。 设事件 满足 1° 两两互不相容, , (15)全 2° , 概公式 则有 。 设事件 , ,…, 及 满足 1° , ,…, 两两互不相容, >0, 1,2,…, , 2° , , (16)贝 则 叶斯公式 ,i=1,2,…n。 此公式即为贝叶斯公式。 ,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率 规律,并作出了只有两种可能结果, 发生或 不发生; u 次试验是重复进行的,即 发生的概率每次均一样; u 每次试验是独立的,即每次试验 发生与否与其他次 (17)伯 试验 发生与否是互不影响的。 努利概型 这种试验称为伯努利概型,或称为 重伯努利试验。 用 表示每次试验 发生的概率,则 发生的概率为 ,用 表 示 重伯努利试验中 出现 次的概率, ,。 第二章 随机变量及其分布 (1)离 设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个 散型随 值的概率,即事件(X=Xk)的概率为 机变量 P(X=xk)=pk,k=1,2,…, 的分布 则称上式为离散型随机变量 的概率分布或分布律。有时 律 也用分布列的形式给出: 。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。
①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:
A=B。
A、B 中至少有一个发生的事件:A B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可
(6)事件 的关系与
表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
j 1
此公式即为贝叶斯公式。
P(Bi ) ,( i 1,2 ,…,n ),通常叫先验概率。P(Bi / A) ,( i 1,2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
(17)伯努 利概型
“由果朔因”的推断。
我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一样; 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
P( X k) q k1 p, k 1,2,3, ,其中 p≥0,q=1-p。
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
1
概率论与数理统计 公式(全)
均匀分布
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b] 上为常数 1 ,即

概率论与数理统计公式大全

概率论与数理统计公式大全

第1 章随机事件及其概率第二章随机变量及其分布x 2 x1P(x 1 X x 2 )2 1ba其中 0 ,则称随机变量 X 服从参数为 的指数分布。

X 的分布函数为1 e x,x 0,F (x)记0,住积分公式:0,x<0。

x n e xdx n!几何 分布 均匀 分布P(X k) q p,k 1,2,3, ,其中 p ≥ 0, q=1-p 。

随机变量 X 服从参数为 p 的几何分布,记为 G(p) 。

设随机变量 X 的值只落在 [a ,b ]内,其密度函数f(x)在[a ,b ]上为常数 1,即 ba1, f (x)b a,0,a ≤x ≤b其他,b) 。

0,x<a ,xaxbaa ≤x ≤bF(x) f(x)dx1,x>b 。

则称随机变量 X 在[a ,b ] 上服从均匀分布,记为 X~ U(a , 分布函数为 当 a ≤x 1<x 2≤b 时, X 落在区间( x 1,x2)内的概率为指数 分布x0 x0正态分布设随机变量X 的密度函数为1(x )212f(x) e 2 2 2其中、0为常数,则称随机变量X 服从参数为、的正态分布或高斯2( Gauss)分布,记为X ~ N( , )。

x,f (x)具有如下性质:1° f (x)的图形是关于x对称的;12° 当x时,f( ) 1为最大值;2 则(t X2)2的分布函数为2 2dt。

若X ~ N(1, )F(x)2参数0记为(x)x,e1时的正态分布称为标准正态分布,记为X ~ N(0,1),其密度函数x2e2t2e2dt分布函数为1。

(x) 21(x)是不可求积函数,其函数值,已编制成表可供查用。

1Φ (-x) = 1- Φ (x) 且Φ (0) =。

2 X2如果X ~N( , ) ,则~N(0,1) 。

P(x1 X x2)x22x11。

离散型已知X 的分布列为X x1,x2,L, x n, LP(X x i) p1, p2, L, p n, LY g( X )的分布列( y i g(x i ) 互不相等)如下:YP(Y y i )若有某些g(x ig(x1), g(x2), L, g(x n), L ,,则应将对应的p i相加作为g(x i) 的概率。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)
第 1 章随机事件及其概率
(1)排列组合公式
Pmn

m!
从 m 个人中挑出 n 个人进行排列的可能数。
(m n)!
C
n m

m!
从 m 个人中挑出 n 个人进行组合的可能数。
n!(m n)!
(2)加法和乘法原理
(3)一些常见排列 (4)随机试验和随机事

(5)基本事件、样本空 间和事件
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事
A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件的关系与运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,
它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=?,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不
它们是 的子集。 为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率 为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:
X
| x1, x2,, xk,

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式以下是概率论与数理统计中常见的公式整理:1.基本概率公式:P(A) = n(A) / n(S),其中A 为事件,n(A) 为事件A 发生的基数,n(S) 为样本空间的基数。

2.条件概率公式:P(A|B) = P(A∩B) / P(B),其中A 和B 为两个事件,P(A∩B) 表示事件A 和事件B 同时发生的概率,P(B) 表示事件B 发生的概率。

3.全概率公式:P(A) = ΣP(A|Bi) * P(Bi),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率。

4.贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi) / ΣP(A|Bj) * P(Bj),其中Bi 为互不相交的事件,P(Bi) 表示事件Bi 发生的概率,P(A|Bi) 表示在事件Bi 发生的条件下,事件A 发生的概率,P(A|Bj) 表示在事件Bj 发生的条件下,事件A 发生的概率。

5.随机变量的期望值:E(X) = Σxi * P(xi),其中X 为随机变量,xi 为随机变量X 取的第i 个值,P(xi) 表示X 取xi 的概率。

6.随机变量的方差:Var(X) = E((X - E(X))^2),其中X 为随机变量,E(X) 表示X 的期望值。

7.正态分布的概率密度函数:f(x) = (1 / (σ* √(2π))) * e^(-((x-μ)^2 / (2σ^2))),其中μ为正态分布的均值,σ为正态分布的标准差。

8.标准正态分布的概率密度函数:f(x) = (1 / √(2π)) * e^(-x^2 / 2),其中x 为标准正态分布的随机变量。

9.两个随机变量的协方差:Cov(X,Y) = E((X - E(X)) * (Y - E(Y))),其中X 和Y 为两个随机变量,E(X) 和E(Y) 分别表示X 和Y 的期望值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章随机事件及其概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

A、B同时发生:A B,或者AB。

A B=Ø,则表示A与B不可能同时发生,称事件A与事件B 互不相容或者互斥。

基本事件是互不相容的。

Ω-A称为事件A的逆事件,或称A的对立事件,记为A。

它表示A不发生的事件。

互斥未必对立。

②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率:∞=∞==11iiii AABABA=,BABA=(7)概率的公理化定义设Ω为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,2° P(Ω) =13° 对于两两互不相容的事件1A,2A,…有∑∞=∞==⎪⎪⎭⎫⎝⎛11)(iiii APAP常称为可列(完全)可加性。

则称P(A)为事件A的概率。

(8)古典概型1°{}nωωω21,=Ω,2°nPPPn1)()()(21===ωωω 。

设任一事件A,它是由mωωω21,组成的,则有P(A)={})()()(21mωωω=)()()(21mPPPωωω+++nm=基本事件总数所包含的基本事件数A=(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。

对任一事件A,)()()(Ω=LALAP。

其中L为几何度量(长度、面积、体积)。

(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当B⊂A时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B)=1- P(B)(12)条件概率定义设A、B是两个事件,且P(A)>0,则称)()(APABP为事件A发生条件下,事件B发生的条件概率,记为=)/(ABP)()(APABP。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1⇒P(B/A)=1-P(B/A)(13)乘法公式乘法公式:)/()()(ABPAPABP=更一般地,对事件A1,A2,…A n,若P(A1A2…A n-1)>0,则有21(AAP…)n A)|()|()(213121AAAPAAPAP= (2)1|(AAAP n…)1-n A。

(14)独立性①两个事件的独立性设事件A、B满足)()()(BPAPABP=,则称事件A、B是相互独立的。

若事件A、B相互独立,且0)(>AP,则有)()()()()()()|(BPAPBPAPAPABPABP===若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。

必然事件Ω和不可能事件Ø与任何事件都相互独立。

Ø与任何事件都互斥。

②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。

对于n个事件类似。

(15)全概公式设事件n BBB,,,21 满足1°n BBB,,,21 两两互不相容,),,2,1(0)(niBP i=>,2°niiBA1=⊂,则有)|()()|()()|()()(2211nn BAPBPBAPBPBAPBPAP+++= 。

(16)贝叶斯公式设事件1B,2B,…,n B及A满足1°1B,2B,…,n B两两互不相容,)(BiP>0,=i1,2,…,n,2°niiBA1=⊂,0)(>AP,则∑==njjjiiiBAPBPBAPBPABP1)/()()/()()/(,i=1,2,…n。

此公式即为贝叶斯公式。

)(iBP,(1=i,2,…,n),通常叫先验概率。

)/(ABPi,(1=i,2,…,n),通常称为后验概率。

贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型我们作了n次试验,且满足◆每次试验只有两种可能结果,A发生或A不发生;◆n次试验是重复进行的,即A发生的概率每次均一样;◆每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。

这种试验称为伯努利概型,或称为n重伯努利试验。

用p表示每次试验A发生的概率,则A发生的概率为qp=-1,用)(kP n表示n重伯努利试验中A出现)0(nkk≤≤次的概率,k nkknn qpkP C-=)(,nk,,2,1,0=。

第二章随机变量及其分布(1)离散型随机变量的分布律设离散型随机变量X的可能取值为X k(k=1,2,…)且取各个值的概率,即事件(X=X k)的概率为P(X=x k)=p k,k=1,2,…,则称上式为离散型随机变量X的概率分布或分布律。

有时也用分布列的形式给出:,,,,,,,,|)(2121kkk pppxxxxXPX=。

显然分布律应满足下列条件:(1)0≥kp,,2,1=k,(2)∑∞==11kkp。

(2)连续型随机变量的分布密度设)(x F 是随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有 ⎰∞-=xdx x f x F )()(, 则称X 为连续型随机变量。

)(x f 称为X 的概率密度函数或密度函数,简称概率密度。

密度函数具有下面4个性质:1° 0)(≥x f 。

2°⎰+∞∞-=1)(dx x f 。

(3)离散与连续型随机变量的关系 dx x f dx x X x P x X P )()()(≈+≤<≈= 积分元dx x f )(在连续型随机变量理论中所起的作用与k k p x X P ==)(在离散型随机变量理论中所起的作用相类似。

(4)分布函数设X 为随机变量,x 是任意实数,则函数)()(x X P x F ≤= 称为随机变量X 的分布函数,本质上是一个累积函数。

)()()(a F b F b X a P -=≤< 可以得到X 落入区间],(b a 的概率。

分布函数)(x F 表示随机变量落入区间(– ∞,x]内的概率。

分布函数具有如下性质:1° ,1)(0≤≤x F +∞<<∞-x ;2° )(x F 是单调不减的函数,即21x x <时,有 ≤)(1x F )(2x F ;3° 0)(lim )(==-∞-∞→x F F x , 1)(lim )(==+∞+∞→x F F x ;4° )()0(x F x F =+,即)(x F 是右连续的; 5° )0()()(--==x F x F x X P 。

对于离散型随机变量,∑≤=x x kk px F )(;对于连续型随机变量,⎰∞-=xdx x f x F )()( 。

(5)八大分布0-1分布 P(X=1)=p, P(X=0)=q二项分布在n 重贝努里试验中,设事件A 发生的概率为p 。

事件A 发生的次数是随机变量,设为X ,则X 可能取值为n ,,2,1,0 。

kn k k n n q p C k P k X P -===)()(, 其中n k p p q ,,2,1,0,10,1 =<<-=, 则称随机变量X 服从参数为n ,p 的二项分布。

记为),(~p n B X 。

当1=n 时,k k q p k X P -==1)(,1.0=k ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

泊松分布设随机变量X 的分布律为λλ-==e k k X P k!)(,0>λ, 2,1,0=k ,则称随机变量X 服从参数为λ的泊松分布,记为)(~λπX 或者P(λ)。

泊松分布为二项分布的极限分布(np=λ,n →∞)。

超几何分布),min(,2,1,0,)(n M l l k C C C k X P nNkn MN k M ==∙==-- 随机变量X 服从参数为n,N,M 的超几何分布,记为H(n,N,M)。

几何分布 ,3,2,1,)(1===-k p q k X P k ,其中p ≥0,q=1-p 。

随机变量X 服从参数为p 的几何分布,记为G(p)。

均匀分布设随机变量X 的值只落在[a ,b]内,其密度函数)(x f 在[a ,b]上为常数ab -1,即⎪⎩⎪⎨⎧-=,0,1)(ab x f 其他, 则称随机变量X 在[a ,b]上服从均匀分布,记为X ~U(a ,b)。

相关文档
最新文档