一次函数综合应用压轴题

合集下载

专题09 函数之一次函数和反比例函数综合问题(压轴题)

专题09 函数之一次函数和反比例函数综合问题(压轴题)

《中考压轴题》专题9:函数之一次函数和反比例函数综合问题一、选择题1.如图,已知直线y x 2=-+分别与x 轴,y 轴交于A ,B 两点,与双曲线k y x=交于E ,F 两点.若AB=2EF ,则k 的值是【】A .1-B .1C .12D .342.在同一平面直角坐标系中,函数y=mx+m 与m y x=(m≠0)的图象可能是【】A. B. C. D.3.已知点A 在双曲线2y x =-上,点B 在直线y x 4=-上,且A ,B 两点关于y 轴对称,设点A 的坐标为()m,n ,则m n n m +的值是【】A .10-B .8-C .6D .44.如图,双曲线m y x =与直线y=kx+b 交于点M 、N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程m kx b x=+的解为【】A.﹣3,1B.﹣3,3C.﹣1,1D.﹣1,35.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数byx=在同一坐标系中的图象大致是【】A. B. C. D.6.如图,已知点A是直线y=x与反比例函数kyx=(k>0,x>0)的交点,B是kyx=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为【】A. B. C. D.7.如图,点P(﹣1,1)在双曲线上,过点P的直线l1与坐标轴分别交于A、B两点,且tan∠BAO=1.点M是该双曲线在第四象限上的一点,过点M的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D.则四边形ABCD的面积最小值为【】A.10B.8C.6D.不确定8.如图,直线1y x 12=-与x 轴交于点B ,双曲线k y (x 0)x =>交于点A ,过点B 作x 轴的垂线,与双曲线k y x =交于点C ,且AB=AC ,则k 的值为【】A .2B .3C .4D .69已知k 1>0>k 2,则函数y=k 1x 和y=2k x 的图象在同一平面直角坐标系中大致是【】A .B .C .D .10.如图,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1,-3.直线AB 与x 轴交于点C ,则△AOC 的面积为【】A.8B.10C.12D.2411.下图是反比例函数k y (k k 0)x =≠为常数,的图像,则一次函数y kx k =-的图像大致是【】A. B. C. D.12.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的【】A .7:20B .7:30C .7:45D .7:5013.已知k 1<0<k 2,则函数1y k x 1=-和2k y x=的图象大致是【】14.如图,正比例函数1y 与反比例函数2y 相交于点E (1-,2),若12y y 0>>,则x 的取值范围在数轴上表示正确的是【】A .B .C .D .15.若ab >0,则一次函数y=ax+b 与反比例函数ab y x =在同一坐标系数中的大致图象是【】16.如图,已知点A 1,A 2,…,A n 均在直线1y x =-上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若11a =-,则a 2015=.17.反比例函数1m y x=(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是()A .x <1B .1<x <2C .x >2D .x <1或x >218.已知120k k <<,则函数1k y x =和21y k x =-的图象大致是()A .B .C .D .19.如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y =x 上,点A 的横坐标为1,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线k y x =与正方形ABCD 有公共点,则k 的取值范围为()A .1<k <9B .2≤k ≤34C .1≤k ≤16D .4≤k <1620.如图,在直角坐标系xOy 中,点A ,B 分别在x 轴和y 轴,34OA OB =.∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数k y x =的图象过点C .当以CD 为边的正方形的面积为27时,k 的值是()A .2B .3C .5D .721.在平面直角坐标系中,直线2y x =-+与反比例函数1y x =的图象有唯一公共点,若直线y x b =-+与反比例函数1y x =的图象有2个公共点,则b 的取值范围是()A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣2二、填空题1.如图,一次函数y=kx ﹣1的图象与x 轴交于点A ,与反比例函数3y x=(x >0)的图象交于点B ,BC 垂直x 轴于点C .若△ABC 的面积为1,则k 的值是.2.如图,在平面直角坐标系xOy 中,直线3y x 2=与双曲线6y x=相交于A ,B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC.若△PBC 的面积是20,则点C 的坐标为.3.在平面直角坐标系xOy 中,一次函数1y x 23=+与反比例函数()5y x>0x=的图象交点的横坐标为x 0.若k <x 0<k+1,则整数k 的值是.4.一次函数y kx 1=+的图象经过(1,2),则反比例函数k y x =的图象经过点(2,).5.如图,已知直线1y x 2=与双曲线k y x =(k >0)交于A 、B 两点,点B 的坐标为()42--,,C 为双曲线k y x=(k >0)上一点,且在第一象限内,若△AOC 的面积为6,则点C 的坐标为.6.如图,已知一次函数y=kx+b 的图象经过点P (3,2),与反比例函数2y x=(x >0)的图象交于点Q (m ,n ).当一次函数y 的值随x 值的增大而增大时,m 的取值范围是.7.如图,已知点A 1,A 2,…,A n 均在直线1y x =-上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若11a =-,则a 2015=.8.如图,过原点O 的直线与反比例函数1y ,2y 的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数11y x =,则2y 与x 的函数表达式是.三、解答题1.如图,直线y=﹣x+3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1).(1)求该反比例函数的关系式;(2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A′;①求△A′BC 的周长和sin ∠BA′C 的值;②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC=1m .2.如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x+72=0的两根(OA >O C ),BE=5,tan ∠ABO=43.(1)求点A ,C 的坐标;(2)若反比例函数y=k x 的图象经过点E ,求k 的值;(3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.3.如图,点A(1,6)和点M(m,n)都在反比例函数kyx=(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.4.如图,一次函数y=ax+b与反比例函数kyx=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为13,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.5.如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1k y x =(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+.(1)求反比例函数和直线EF 的解析式;(2)求△OEF 的面积;(3)请结合图象直接写出不等式12k k x b >0x+-的解集.6.如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数2y x=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B (2,3)是否在正比例函数图象上,并说明理由.7.如图,在平面直角坐标系xOy 中,一次函数y=kx+b (k ≠0)的图象与反比例函数m y x=的图象交于一、三象限内的A 、B 两点,直线AB 与x 轴交于点C ,点B 的坐标为(﹣6,n ),线段OA=5,E 为x 轴正半轴上一点,且tan ∠AOE=43(1)求反比例函数的解析式;(2)求△AOB 的面积.8.已知:一次函数210y x =-+的图象与反比例函数k y x=(0k >)的图象相交于A ,B 两点(A 在B 的右侧).(1)当A (4,2)时,求反比例函数的解析式及B 点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)当A (a ,﹣2a +10),B (b ,﹣2b +10)时,直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D .若52BC BD =,求△ABC 的面积.。

一次函数压轴题(含答案)

一次函数压轴题(含答案)

一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。

$x$ 轴分别交于$A$。

$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。

1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。

2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。

3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。

考点:一次函数综合题。

分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。

解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。

因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。

又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。

一次函数综合题

一次函数综合题

一次函数压轴题专项训练一.解答题1.如图,直线l 1的解析表达式为:y =﹣3x +3,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C .(1)求点D 的坐标;(2)求直线l 2的解析表达式;(3)求△ADC 的面积;(4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标.2.如图,直线AB :y =﹣x ﹣b 分别与x ,y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴于C ,且OB :OC =3:1.(1)求点B 的坐标;(2)求直线BC 的解析式;(3)直线EF :y =2x ﹣k (k ≠0)交AB 于E ,交BC 于点F ,交x 轴于点D ,是否存在这样的直线EF ,使得S △EBD =S △FBD ?若存在,求出k 的值;若不存在,请说明理由.3.如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线P A交y 轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP =S△BOP,求直线BD的解析式.4.如图,在平面直角坐标系xOy中,直线y=−43x+8与x轴,y轴分别交于点A,点B,点D在y 轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式.5.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的1?若存在,求出此时点M的坐标;若4不存在,请说明理由.6.如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.(1)求∠OBA的度数,并直接写出直线AB的解析式;(2)若点C的横坐标为2,求BE的长;(3)当BE=1时,求点C的坐标.7.如图,在平面直角坐标系xOy中,直线y=−43x+4与x轴、y轴分别交于点A、点B,点D在y 轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式;(3)y轴上是否存在一点P,使得S△P AB =12S△OCD,若存在,请求出点P的坐标;若不存在,请说明理由.8.如图,直线y=kx+6与x、y轴分别交于E、F.点E坐标为(﹣8,0),点A的坐标为(﹣6,0),P(x,y)是直线y=kx+6上的一个动点.(1)求k的值;(2)若点P是第二象限内的直线上的一个动点,当点P运动过程中,试写出三角形OP A的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,三角形OP A的面积为278,并说明理由.9.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE =DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(−52,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.10.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4√5,OCOA =12(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.11.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=3x相交于点A.2(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.12.已知:一次函数y=−4x+4的函数与x轴、y轴交于A、B两点.3(1)求A、B两点的坐标;(2)求线段AB的长度;(3)在x轴上是否存在点C,使△ABC为等腰三角形?若存在,请直接写出C点的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P 沿路线O→C→B运动.(1)求直线AB的解析式;时,求出这时点P的坐标;(2)当△OPB的面积是△OBC的面积的14(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.14.一次函数y=kx+b的图象与x轴、y轴分别交于点A(2,0),B(0,4),O为坐标原点,线段OA、AB的中点分别为点C、D,P为直线OB上一动点.(1)当点P在直线OB上运动时,△PCD的面积是否发生变化?请说明理由;(2)当点P在直线OB上运动时,△PCD的周长是否发生变化?如果发生变化,求出△PCD的最小周长及周长最小时P点的坐标;(3)直接写出△PCD为等腰三角形时P点的坐标;(4)直接写出△PCD为直角三角形时P点的坐标.15.已知:如图,直线l1:y1=﹣x+n与y轴交于A(0,6),直线l2:y=kx+1分别与x轴交于点B (﹣2,0),与y轴交于点C,两条直线相交于点D,连接AB.(1)直接写出直线l1、l2的函数表达式;(2)求△ABD的面积;(3)在x轴上存在点P,能使△ABP为等腰三角形,求出所有满足条件的点P的坐标.16.如图,直线y=kx﹣3与x轴、y轴分别交于B、C两点,且OBOC =12.(1)求B点坐标和k值;(2)若点A(x,y)是直线y=kx﹣3上在第一象限内的一个动点,当点A在运动过程中,试写出△AOB的面积S与x的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,探究:①当A点运动到什么位置时,△AOB的面积为94,并说明理由;②在①成立的情况下,x轴上是否存在一点P,使△AOP是等腰三角形?若存在,请直接写出满足条件的所有P点坐标;若不存在,请说明理由.17.如图,长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,8),点B的坐标为(10,0),点E是BC边上一点,把长方形AOBC沿AE翻折后,C点恰好落在x 轴上点F处.(1)求点E、F的坐标;(2)求AF所在直线的函数关系式;(3)在x轴上求一点P,使△P AF成为以AF为腰的等腰三角形,请直接写出所有符合条件的点P的坐标.18.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,x+b过点P.另一直线l2:y2=12(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.19.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(1)已知直线l1:y=43x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.20.如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(2,a),与y 轴交于点B(0,6),与x轴交于点C.(1)求直线l1的函数表达式;(2)求△AOC的面积;(3)在平面直角坐标系中有一点P(5,m),使得S△AOP =S△AOC,请求出点P的坐标;(4)点M为直线l1上的动点,过点M作y轴的平行线,交l2于点N,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请直接写出满足条件的点M的坐标.21.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y 轴交于点B(0,b),其中a,b满足(a+3)2+√b−4=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP =S△AOB,请求出点P的坐标;(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q 为y轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.22.如图,直线y=kx+6分别交x轴,y轴于点A,C,直线BC过点C交x轴于B,且OA=12OC,∠CBA=45°.(1)求直线BC的解析式;(2)若点G是线段BC上一点,连结AG,将△ABC分成面积相等的两部分,求点G的坐标:(3)已知D为AC的中点,点M是x轴上的一个动点,点N是线段BC上的一个动点,当点D,M,N为顶点的三角形为等腰直角三角形时,直接写出点M的坐标.23.如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴的正半轴交于点A,与x轴交于点B(﹣2,0),△ABO的面积为2.动点P从点B出发,以每秒1个单位长度的速度在射线BO 上运动,动点Q从O出发,沿x轴的正半轴与点P同时以相同的速度运动,过P作PM⊥X轴交直线AB于M.(1)求直线AB的解析式.(2)当点P在线段OB上运动时,设△MPQ的面积为S,点P运动的时间为t秒,求S与t的函数关系式(直接写出自变量的取值范围).(3)过点Q作QN⊥x轴交直线AB于N,在运动过程中(P不与B重合),是否存在某一时刻t (秒),使△MNQ是等腰三角形?若存在,求出时间t值.x的图象交于点A,且与x轴交于点B.24.如图,已知一次函数y=﹣x+7与正比例函数y=43(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O﹣C﹣A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=−1x+3,与x轴、2 y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y 轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.26.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图2,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.27.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.x+b交y轴于点A(0,1),交x轴于点B.直线28.如图,平面直角坐标系中,直线AB:y=−13x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.△ABP29.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.30.如图,矩形ABCD在平面直角坐标系中,AD交y轴于点E,AB=6,sin∠BCA=3动点P从原5点出发,以每秒1个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤32)秒,过点P5作垂直于x轴的直线l,交BC于点M,交AD或CD于点N,直线l扫过矩形ABCD的面积为S.(1)求点A,B的坐标;(2)求直线l移动过程中到点D之前的S关于t的函数关系式;(3)在直线l移动过程中,第一象限的直线l上是否存在一点Q,使△BCQ是等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由31.一次函数的图象与x轴、y轴分别交于点A(8,0)和点B(0,6).(1)确定此一次函数的解析式.(2)求坐标原点O到直线AB的距离.(3)点P是线段AB上的一个动点,过点P作PM垂直于x轴于M,作PN垂直于y轴于N,记L=PM+PN,问L是否存在最大值和最小值?若存在,求出此时P点到原点O的距离,若不存在请说明理由.32.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2).(1)求直线AB的函数表达式;(2)若在y轴上存在一点M,使MA+MB的值最小,请求出点M的坐标;(3)在x轴上是否存在点N,使△AON是等腰三角形?如果存在,直接写出点N的坐标;如果不存在,说明理由.33.如图在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A,B分别在x,y轴上,已知OA=3,点D为y轴上一点,其坐标为(0,1),CD=5,点P从点A出发以每秒1个单位的速度沿线段A﹣C﹣B的方向运动,当点P与点B重合时停止运动,运动时间为t秒(1)求B,C两点坐标;(2)①求△OPD的面积S关于t的函数关系式;②当点D关于OP的对称点E落在x轴上时,求点E的坐标;(3)在(2)②情况下,直线OP上求一点F,使FE+F A最小.34.如图,矩形OABC在平面直角坐标系中,并且OA、OC的长满足:|OA﹣2√3|+(OC﹣6)2=0.(1)求A、B、C三点的坐标.(2)把△ABC沿AC对折,点B落在点B1处,AB1与x轴交于点D,求直线BB1的解析式.(3)在直线AC上是否存在点P使PB1+PD的值最小?若存在,请找出点P的位置,并求出PB1+PD 的最小值;若不存在,请说明理由.(4)在直线AC上是否存在点P使|PD﹣PB|的值最大?若存在,请找出点P的位置,并求出|PD ﹣PB|最大值.x与一次函数y=﹣x+7的图象交于点A.35.如图:在平面直角坐标系xOy中,已知正比例函数y=43(1)求点A的坐标;(2)在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;x (3)如图、设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=43OA,求△ABC的面积及点B、点C的坐标;和y=﹣x+7的图象于点B、C,连接OC,若BC=145(4)在(3)的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE 的周长最小,请直接写出点E的坐标.36.如图,在平面直角坐标系中,一次函数y=−2x+4的图象与x轴和y轴分别相交于A、B两点.动3点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t 秒.秒时,点Q的坐标是;(1)当t=13(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.37.已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求y与x之间的函数关系式;(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;(3)如图2,当点B的坐标为(﹣1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.38.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC =2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD =∠APB,PD交x轴于点D,交y轴于点E.(1)若△APD为等腰直角三角形.①求直线AP的函数解析式;②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.(2)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.x+6分别与x轴、y轴交于点B、C,且与直线l2:39.如图,在平面直角坐标系中,直线l1:y=−12y=1x交于点A.2(1)点A的坐标是;点B的坐标是;点C的坐标是;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.40.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(√3+1)x+√3=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.一次函数综合题 参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)由y =﹣3x +3,令y =0,得﹣3x +3=0,∴x =1, ∴D (1,0);(2)设直线l 2的解析表达式为y =kx +b ,由图象知:x =4,y =0;x =3,y =−32,代入表达式y =kx +b ,∴{4k +b =03k +b =−32, ∴{k =32b =−6, ∴直线l 2的解析表达式为y =32x −6;(3)由{y =−3x +3y =32x −6,解得{x =2y =−3,∴C (2,﹣3), ∵AD =3,∴S △ADC =12×3×|﹣3|=92;(4)△ADP 与△ADC 底边都是AD ,面积相等所以高相等,△ADC 高就是点C 到直线AD 的距离,即C 纵坐标的绝对值=|﹣3|=3, 则P 到AD 距离=3,∴P 纵坐标的绝对值=3,点P 不是点C , ∴点P 纵坐标是3, ∵y =1.5x ﹣6,y =3, ∴1.5x ﹣6=3 x =6,所以P (6,3).2.【解答】解:(1)将点A (6,0)代入直线AB 解析式可得:0=﹣6﹣b , 解得:b =﹣6,∴直线AB 解析式为y =﹣x +6, ∴B 点坐标为:(0,6).(2)∵OB :OC =3:1, ∴OC =2,∴点C 的坐标为(﹣2,0), 设BC 的解析式是y =ax +c ,代入得;{−2a +c =0c =6,解得:{a =3c =6, ∴直线BC 的解析式是:y =3x +6.(3)过E 、F 分别作EM ⊥x 轴,FN ⊥x 轴,则∠EMD =∠FND =90°. ∵S △EBD =S △FBD , ∴DE =DF .又∵∠NDF =∠EDM ,∴△NFD ≌△EDM , ∴FN =ME , 联立得{y =2x −ky =−x +6,解得:y E =−13k +4,联立{y =2x −ky =3x +6,解得:y F =﹣3k ﹣12, ∵FN =﹣y F ,ME =y E , ∴3k +12=−13k +4,∴k =﹣2.4,当k =﹣2.4时,存在直线EF :y =2x +2.4,使得S △EBD =S △FBD .3.【解答】解:(1)作PE ⊥y 轴于E ,∵P 的横坐标是2,则PE =2. ∴S △COP =12OC •PE =12×2×2=2;(2)∴S △AOC =S △AOP ﹣S △COP =6﹣2=4, ∴S △AOC =12OA •OC =4,即12×OA ×2=4,∴OA =4,∴A 的坐标是(﹣4,0).设直线AP 的解析式是y =kx +b ,则 {−4k +b =0b =2,解得:{k =12b =2. 则直线的解析式是y =12x +2. 当x =2时,y =3,即p =3;(3)∵S △AOP =S △BOP ,∴OB =OA =4,则B 的坐标是(4,0), 设直线BD 的解析式是y =mx +n ,则{4m +n =02m +n =3,解得{m =−32n =6. 则BD 的解析式是:y =−32x +6.4.【解答】解:(1)∵直线y =−43x +8与x 轴,y 轴分别交于点A ,点B ,∴A (6,0),B (0,8),在Rt △OAB 中,∠AOB =90°,OA =6,OB =8, ∴AB =√62+82=10,∵△DAB 沿直线AD 折叠后的对应三角形为△DAC , ∴AC =AB =10.∴OC =OA +AC =OA +AB =16. ∵点C 在x 轴的正半轴上, ∴点C 的坐标为C (16,0).(2)设点D 的坐标为D (0,y )(y <0), 由题意可知CD =BD ,CD 2=BD 2,在Rt △OCD 中,由勾股定理得162+y 2=(8﹣y )2, 解得y =﹣12.∴点D 的坐标为D (0,﹣12),可设直线CD 的解析式为 y =kx ﹣12(k ≠0)∵点C (16,0)在直线y =kx ﹣12上, ∴16k ﹣12=0, 解得k =34,∴直线CD 的解析式为y =34x ﹣12.5.【解答】解:(1)设直线AC 的解析式是y =kx +b ,根据题意得:{4k +b =2b =6,解得:{k =−1b =6.则直线的解析式是:y =﹣x +6;(2)S △OAC =12×6×4=12;(3)设OA 的解析式是y =mx ,则4m =2, 解得:m =12.则直线的解析式是:y =12x ,∵当△OMC 的面积是△OAC 的面积的14时,∴M 到y 轴的距离是14×4=1,∴点M 的横坐标为1或﹣1; 当M 的横坐标是:1,在y =12x 中,当x =1时,y =12,则M 的坐标是(1,12);在y =﹣x +6中,x =1则y =5,则M 的坐标是(1,5). 则M 的坐标是:M 1(1,12)或M 2(1,5).当M 的横坐标是:﹣1,在y =﹣x +6中,当x =﹣1时,y =7,则M 的坐标是(﹣1,7).综上所述:M 的坐标是:M 1(1,12)或M 2(1,5)或M 3(﹣1,7).6.【解答】解:(1)∵A (3,0),B (0,3),∴OA =OB =3. ∵∠AOB =90°, ∴∠OBA =45°,∴直线AB 的解析式为:y =﹣x +3;(2)作CF ⊥l 于F ,CG ⊥y 轴于G , ∴∠OGC =∠EFC =90°.∵点C 的横坐标为2,点C 在y =﹣x +3上, ∴C (2,1),CG =BF =2,OG =1. ∵BC 平分∠OBE , ∴CF =CG =2.∵∠OCE =∠GCF =90°, ∴∠OCG =∠ECF ,∴Rt △OGC ≌Rt △EFC (ASA ), ∴EF =OG =1, ∴BE =1;(3)设C 的坐标为(m ,﹣m +3).当E 在点B 的右侧时,由(2)知EF =OG =m ﹣1, ∴m ﹣1=﹣m +3, ∴m =2,∴C 的坐标为(2,1);当E 在点B 的左侧时,同理可得:m +1=﹣m +3, ∴m =1,∴C 的坐标为(1,2).综上,点C 的坐标为(2,1)或(1,2).7.【解答】解:(1)令x =0得:y =4,∴B (0,4). ∴OB =4令y =0得:0=−43x +4,解得:x =3,∴A (3,0). ∴OA =3.在Rt △OAB 中,AB =√OA 2+OB 2=5. ∴OC =OA +AC =3+5=8, ∴C (8,0).(2)设OD =x ,则CD =DB =x +4.在Rt △OCD 中,DC 2=OD 2+OC 2,即(x +4)2=x 2+82,解得:x =6, ∴D (0,﹣6).设CD 的解析式为y =kx ﹣6,将C (8,0)代入得:8k ﹣6=0,解得:k =34,∴直线CD 的解析式为y =34x ﹣6.(3)∵S △P AB =12S △OCD ,∴S △P AB =12×12×6×8=12.∵点Py 轴上,S △P AB =12,∴12BP •OA =12,即12×3BP =12,解得:BP =8,∴P 点的坐标为(0,12)或(0,﹣4).8.【解答】解:(1)∵点E (﹣8,0)在直线y =kx +6上,∴0=﹣8k +6, ∴k =34;(2)∵k =34,∴直线的解析式为:y =34x +6,∵点P (x ,y )是第二象限内的直线y =34x +6上的一个动点,∴y =34x +6>0,﹣8<x <0.∵点A 的坐标为(﹣6,0), ∴OA =6,∴S =12OA •|y P |=12×6×(34x +6)=94x +18.∴三角形OP A 的面积S 与x 的函数关系式为:S =94x +18(﹣8<x <0);(3)∵三角形OP A 的面积=12OA •|y P |=278,P (x ,y ), ∴12×6×|y |=278,解得|y |=98,∴y =±98.当y =98时,98=34x +6,解得x =−132,故P (−132,98);当y =−98时,−98=34x +6,解得x =−192,故P (−192,−98);综上可知,当点P 的坐标为P (−132,98)或P (−192,−98)时,三角形OP A 的面积为278.9.【解答】解:(1)如图1,作CQ ⊥x 轴,垂足为Q ,∵∠OBA +∠OAB =90°,∠OBA +∠QBC =90°, ∴∠OAB =∠QBC ,又∵AB =BC ,∠AOB =∠Q =90°, ∴△ABO ≌△BCQ ,∴BQ =AO =2,OQ =BQ +BO =3,CQ =OB =1, ∴C (﹣3,1),由A (0,2),C (﹣3,1)可知,直线AC :y =13x +2;(2)如图2,作CH ⊥x 轴于H ,DF ⊥x 轴于F ,DG ⊥y 轴于G ,∵AC =AD ,AB ⊥CB , ∴BC =BD ,∴△BCH ≌△BDF ,∴BF =BH =2, ∴OF =OB =1, ∴DG =OB ,∴△BOE ≌△DGE , ∴BE =DE ;(3)如图3,直线BC :y =−12x −12,P (−52,k )是线段BC上一点,∴P (−52,34),由y =13x +2知M (﹣6,0),∴BM =5,则S △BCM =52.假设存在点N 使直线PN 平分△BCM 的面积, 则12BN •34=12×52,∴BN =103,ON =133,∵BN <BM ,∴点N 在线段BM 上,∴N (−133,0).10.【解答】解:(1)∵OC OA=12,∴可设OC =x ,则OA =2x ,在Rt △AOC 中,由勾股定理可得OC 2+OA 2=AC 2, ∴x 2+(2x )2=(4√5)2,解得x =4(x =﹣4舍去), ∴OC =4,OA =8, ∴A (8,0),C (0,4), 设直线AC 解析式为y =kx +b , ∴{8k +b =0b =4,解得{k =−12b =4, ∴直线AC 解析式为y =−12x +4;(2)由折叠的性质可知AE =CE , 设AE =CE =y ,则OE =8﹣y ,在Rt △OCE 中,由勾股定理可得OE 2+OC 2=CE 2, ∴(8﹣y )2+42=y 2,解得y =5, ∴AE =CE =5,∵∠AEF =∠CEF ,∠CFE =∠AEF , ∴∠CFE =∠CEF , ∴CE =CF =5,∴S △CEF =12CF •OC =12×5×4=10,即重叠部分的面积为10;(3)由(2)可知OE =3,CF =5, ∴E (3,0),F (5,4),设直线EF 的解析式为y =k ′x +b ′, ∴{3k′+b′=05k′+b′=4,解得{k′=2b′=−6,∴直线EF 的解析式为y =2x ﹣6.11.【解答】解:(1)解方程组:{y =−2x +7y =32x得:{x =2y =3∴A 点坐标是(2,3); (2)设P 点坐标是(0,y ),∵△OAP 是以OA 为底边的等腰三角形, ∴OP =P A ,∴22+(3﹣y )2=y 2, 解得y =136,∴P 点坐标是(0,136), 故答案为(0,136);(3)存在;由直线y =﹣2x +7可知B (0,7),C (72,0),∵S △AOC =12×72×3=214<6,S △AOB =12×7×2=7>6,∴Q 点有两个位置:Q 在线段AB 上和AC 的延长线上,设点Q 的坐标是(x ,y ),当Q 点在线段AB 上:作QD ⊥y 轴于点D ,如图①,则QD =x ,∴S △OBQ =S △OAB ﹣S △OAQ =7﹣6=1, ∴12OB •QD =1,即12×7x =1,∴x =27,把x =27代入y =﹣2x +7,得y =457,∴Q 的坐标是(27,457),当Q 点在AC 的延长线上时,作QD ⊥x 轴于点D ,如图②则QD =﹣y ,∴S △OCQ =S △OAQ ﹣S △OAC =6−214=34,∴12OC •QD =34,即12×72×(﹣y )=34, ∴y =−37,把y =−37代入y =﹣2x +7,解得x =267, ∴Q 的坐标是(267,−37),综上所述:点Q 是坐标是(27,457)或(267,−37).12.【解答】解:(1)在y =−43x +4中,令y =0可求得x =3,令x =0可求得y =4, ∴A (3,0),B (0,4);(2)由A (3,0),B (0,4)可得OA =3,OB =4, 在Rt △AOB 中,由勾股定理可得AB =√OA 2+OB 2=√32+42=5, 即AB 的长度为5;(3)假设存在满足条件的C 点,其坐标为(x ,0), 则AC =|x ﹣3|,BC =√x 2+42=√x 2+16,若△ABC 为等腰三角形时,则有AC =BC 、AC =AB 或BC =AB ,①当AC =BC 时,则有|x ﹣3|=√x 2+16,解得x =−76,此时C 点坐标为(−76,0),②当AC =AB 时,则有|x ﹣3|=5,解得x =8或x =﹣2,此时C 点坐标为(8,0)或(﹣2,0),③当BC =AB 时,则有√x 2+16=5,解得x =3或﹣3,当x =3时,A 、C 重合,不能构成三角形,舍去,故此时C 点坐标为(﹣3,0),综上可知存在满足条件的C 点,其坐标为(−76,0)或(8,0)或(﹣2,0)或(﹣3,0).13.【解答】解:(1)∵点A 的坐标为(0,6),∴设直线AB 的解析式为y =kx +6, ∵点C (2,4)在直线AB 上, ∴2k +6=4, ∴k =﹣1,∴直线AB 的解析式为y =﹣x +6;(2)由(1)知,直线AB 的解析式为y =﹣x +6, 令y =0, ∴﹣x +6=0,∴x =6, ∴B (6,0),∴S △OBC =12OB •y C =12,∵△OPB 的面积是△OBC 的面积的14,∴S △OPB =14×12=3,设P 的纵坐标为m , ∴S △OPB =12OB •m =3m =3,∴m =1, ∵C (2,4),∴直线OC 的解析式为y =2x , 当点P 在OC 上时,x =12,∴P (12,1),当点P 在BC 上时,x =6﹣1=5, ∴P (5,1),即:点P (12,1)或(5,1);(3)∵△OBP 是直角三角形, ∴∠OPB =90°,当点P 在OC 上时,由(2)知,直线OC 的解析式为y =2x ①,∴直线BP 的解析式的比例系数为−12,∵B (6,0),∴直线BP 的解析式为y =−12x +3②,联立①②,解得{x =65y =125,∴P (65,125),当点P 在BC 上时,由(1)知,直线AB 的解析式为y =﹣x +6③,∴直线OP 的解析式为y =x ④,联立③④解得,{x =3y =3,∴P (3,3),即:点P 的坐标为(65,125)或(3,3).14.【解答】解:(1)△PCD 的面积不发生变化;理由如下:∵线段OA 、AB 的中点分别为点C 、D ,∴C 点坐标为(1,0),D 点坐标为(1,2),CD =2,CD ∥OB ,又∵点P 在直线OB 上运动,∴点P 到CD 的距离总是1,即△PCD 的CD 边上的高为1, ∴S △PCD =12CD •h =12×2×1=1,∴△PCD 的面积不发生变化; (2)△PCD 的周长发生变化;理由: 作点C 关于y 轴的对称点C ′,如图所示: 则可得C ′点坐标为(﹣1,0);连接C ′D 交y 轴于点P ,P 点即为所求的点, 此时△PCD 的周长的最小值为C ′D +CD ; ∵OP ∥CD ,∴△PC ′O ∽△DC ′C , ∴OP CD=OC′CC′,又∵OC ′=OC =1,CD =2, ∴OP 2=12,∴OP =1,点P 坐标为(0,1),C ′D =√22+22=2√2,∴△PCD 的周长的最小值为2√2+2;(3)△PCD 为等腰三角形时,分三种情况讨论:①当PC =PD 时,P 在CD 的垂直平分线上,与y 轴交点即为点P ,坐标为(0,1);②当CP =CD 时,CP =2,以C 为圆心,2为半径画弧,与y 轴交于两点,坐标分别为(0,√3),(0,−√3); ③当DP =CD 时,以D 为圆心,2为半径画弧,与y 轴交于两点,坐标分别为(0,2+√3),(0,2−√3);综上所述:当△PCD 为等腰三角形时,点P 坐标为(0,1)或(0,√3),或(0,−√3),或(0,2+√3),或(0,2−√3); (4)当△PCD 为直角三角形时,分三种情况讨论: ①当D 为直角顶点时,点P 坐标为(0,2); ②当点C 为直角顶点时,点P 坐标为(0,0); ③当P 为直角顶点时,点P 坐标为(0,1);综上所述:当△PCD 为直角三角形时,点P 坐标为(0,2),或(0,0),或(0,1).15.【解答】解:(1)∵直线l 1:y 1=﹣x +n 与y 轴交于A (0,6),∴n =6,∴直线l 1的解析式y 1=﹣x +6,∵直线l 2:y =kx +1分别与x 轴交于点B (﹣2,0), ∴﹣2k +1=0, ∴k =12,∴直线l 2的解析式y =12x +1;(2)由(1)知,直线l 1的解析式y 1=﹣x +6①,直线l 2的解析式y =12x +1②,联立①②解得,x =103,y =83,∴D (103,83),对于直线l 2的解析式y =12x +1, 令x =0,∴y =1, ∴C (0,1),∴S △ABD =12(6﹣1)×(103+2)=403;(3)设P (m ,0), ∵A (0,6),B (﹣2,0),∴AP 2=m 2+36,BP 2=(m +2)2,AB 2=40, ∵△ABP 是等腰三角形, ∴①当AP =BP 时, ∴m 2+36=(m +2)2, ∴m =8, ∴P (8,0), ②当AP =AB 时, ∴m 2+36=40,∴m =﹣2(舍)或m =2, ∴P (2,0),③当BP =AB 时,(m +2)2=40, ∴m =﹣2+2√10,∴P (﹣2+2√10,0)或(﹣2﹣2√10,0),即:点P 的坐标为(﹣2﹣2√10,0)或(2,0)或(﹣2+2√10,0)或(8,0).16.【解答】解:(1)在y =kx ﹣3中,令x =0,则y =﹣3,故C 的坐标是(0,﹣3),OC =3, ∵OB OC=12,∴OB =32,则B 的坐标是:(32,0),把B 的坐标代入y =kx ﹣3,得:32k ﹣3=0,解得:k =2;(2)OB =32,则S =12×32(2x ﹣3)=32x −94;(3)①根据题意得:32x −94=94,解得:x =3,则A 的坐标是(3,3);②OA =√32+32=3√2,当O 是△AOP 的顶角顶点时,P 的坐标是(﹣3√2,0)或(3√2,0);当A 是△AOP 的顶角顶点时,P 与过A 的与x 轴垂直的直线对称,则P 的坐标是(6,0);当P 是△AOP 的顶角顶点时,P 在OA 的中垂线上,OA 的中点是(32,32),与OA 垂直的直线的斜率是:﹣1,设直线的解析式是:y =﹣x +b ,把(32,32)代入得:32=−32+b ,解得:b =3,则直线的解析式是:y =﹣x +3,令y =0,解得:x =3,则P 的坐标是(3,0).故P 的坐标是:(﹣3√2,0)或(3√2,0)或(6,0)或(3,0).17.【解答】解:(1)AF =AC =10,0A =8,则OF =6,则点F (6,0)设:CE =x ,则BE =8﹣x ,在△BEF 中,由勾股定理得:x 2=16+(8﹣x )2,解得:x =5,故点E (10,3);(2)将点A 、F 的坐标代入一次函数表达式:y =kx +b 并解得:k =−43,b =8,故直线AF 的表达式为:y =−43x +8;(3)①当点P 在x 轴负半轴时,AP =AF ,则点P (﹣6,0); 当AF =PF 时,点P (﹣4,0); ②当点P ′在x 轴正半轴时, AF =FP ′=10,故点P ′(16,0);综上,点P 的坐标为:(﹣6,0)或(﹣4,0)或(16,0). 18.【解答】解;(1)∵点P (m ,3)为直线l 1上一点,∴3=﹣m +2,解得m =﹣1, ∴点P 的坐标为(﹣1,3),把点P 的坐标代入y 2=12x +b 得,3=12×(﹣1)+b ,解得b =72;(2)∵b =72,∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(﹣7,0),①由直线l 1:y 1=﹣x +2可知A (2,0), ∴当Q 在A 、C 之间时,AQ =2+7﹣t =9﹣t , ∴S =12AQ •|y P |=12×(9﹣t )×3=272−32t ;当Q 在A 的右边时,AQ =t ﹣9, ∴S =12AQ •|y P |=12×(t ﹣9)×3=32t −272;即△APQ 的面积S 与t 的函数关系式为S =−32t +272或S =32t −272;②∵S <3, ∴−32t +272<3或32t −272<3解得7<t <9或9<t <11. ③存在;设Q (t ﹣7,0),当PQ =P A 时,则(t ﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t ﹣6)2=32,解得t =3或t =9(舍去), 当AQ =P A 时,则(t ﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t ﹣9)2=18,解得t =9+3√2或t =9﹣3√2;当PQ =AQ 时,则(t ﹣7+1)2+(0﹣3)2=(t ﹣7﹣2)2, ∴(t ﹣6)2+9=(t ﹣9)2,解得t =6.故当t 的值为3或9+3√2或9﹣3√2或6时,△APQ 为等腰三角形.19.【解答】(1)证明:∵△ABC 为等腰直角三角形,∴CB =CA ,又∵AD ⊥CD ,BE ⊥EC ,∴∠D =∠E =90°,∠ACD +∠BCE =180°﹣90°=90°, 又∵∠EBC +∠BCE =90°, ∴∠ACD =∠EBC , 在△ACD 与△CBE 中,{∠D =∠E∠ACD =∠EBC CA =CB, ∴△ACD ≌△EBC (AAS );(2)解:过点B 作BC ⊥AB 于点B ,交l 2于点C ,过C 作CD ⊥x 轴于D ,如图1, ∵∠BAC =45°,∴△ABC 为等腰Rt △,由(1)可知:△CBD ≌△BAO , ∴BD =AO ,CD =OB , ∵直线l 1:y =43x +4,∴A (0,4),B (﹣3,0), ∴BD =AO =4.CD =OB =3, ∴OD =4+3=7,∴C (﹣7,3),设l 2的解析式为y =kx +b (k ≠0), ∴{3=−7k +b4=b,∴{k =17b =4, ∴l 2的解析式:y =17x +4;(3)当点D 位于直线y =2x ﹣6上时,分两种情况: ①点D 为直角顶点,分两种情况:当点D 在矩形AOCB 的内部时,过D 作x 轴的平行线EF ,交直线OA 于E ,交直线BC 于F ,设D (x ,2x ﹣6); 则OE =2x ﹣6,AE =6﹣(2x ﹣6)=12﹣2x ,DF =EF ﹣DE =8﹣x ;则△ADE ≌△DPF ,得DF =AE ,即: 12﹣2x =8﹣x ,x =4; ∴D (4,2);当点D 在矩形AOCB 的外部时,设D (x ,2x ﹣6); 则OE =2x ﹣6,AE =OE ﹣OA =2x ﹣6﹣6=2x ﹣12,DF =EF ﹣DE =8﹣x ;同1可知:△ADE ≌△DPF , ∴AE =DF ,即:2x ﹣12=8﹣x ,x =203;∴D (203,223);②点P 为直角顶点,显然此时点D 位于矩形AOCB 的外部; 设点D (x ,2x ﹣6),则CF =2x ﹣6,BF =2x ﹣6﹣6=2x ﹣12;同(1)可得,△APB ≌△PDF , ∴AB =PF =8,PB =DF =x ﹣8; ∴BF =PF ﹣PB =8﹣(x ﹣8)=16﹣x ; 联立两个表示BF 的式子可得: 2x ﹣12=16﹣x ,即x =283;∴D (283,383);综合上面六种情况可得:存在符合条件的等腰直角三角形; 且D 点的坐标为:(4,2),(203,223),(283,383).20.【解答】解:(1)∵点A (2,a )在直线l 2:y =x 上,∴a =2,即A (2,2),∵直线l 1:y =kx +b 过点A (2,2)、点B (0,6), ∴{2k +b =2b =6 解得:{k =−2b =6,∴直线直线l 1的函数表达式为:y =﹣2x +6;(2)令y =﹣2x +6=0,解得:x =3, ∴点C (3,0)即OC =3, ∴S △AOC =12OC •y A =12×3×2=3,。

(完整版)一次函数压轴题经典.docx

(完整版)一次函数压轴题经典.docx

一次函数压轴题训练典型例题题型一、 A 卷压轴题一、 A 卷中涉及到的面积问题例 1、如图,在平面直角坐标系xOy 中,一次函数 y 12x 2 与 x 轴、 y 轴分别相交于点3A 和点B ,直线 y 2 kx b (k0) 经过点 C ( 1,0)且与线段 AB 交于点 P ,并把△ ABO 分成两部分.( 1)求△ ABO 的面积;( 2)若△ ABO 被直线 CP 分成的两部分的面积相等,求点 P 的坐标及直线CP 的函数表达式。

yy 1B PO CAxy 2练习 1、如图,直线 l 1 过点 A ( 0, 4),点 D ( 4, 0),直线 l 2 : y1x 1与 x 轴交于点 C ,2两直线 l 1 , l 2 相交于点 B 。

l 1y(1)、求直线 l 1 的解析式和点 AB 的坐标;l 2(2)、求△ ABC 的面积。

BCODx二、 A 卷中涉及到的平移问题例 2、正方形 ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且 A 点的坐标是(1, 0)。

4 8①直线 y=3x- 3经过点 C,且与 x 轴交与点E,求四边形AECD的面积;②若直线 l 经过点E且将正方形ABCD分成面积相等的两部分求直线l 的解析式,③若直线 l1经过点F3 .0 且与直线y=3x平行,将②中直线l沿着y轴向上平移2个单位23交 x 轴于点M , 交直线l1于点N , 求NMF 的面积.练习 1、如图,在平面直角坐标系中,直线l1: y4x 与直线 l2: y kx b 相交于3点 A,点 A 的横坐标为 3,直线l2交y轴于点 B,且OA 1OB 。

2(1)试求直线l 2函数表达式。

(6分)(2)若将直线l 1沿着x轴向左平移3个单位,交y 轴y 于点 C,交直线l2于点 D;试求△ BCD的面积。

(4分)。

L 2l 1A1x题型二、 B 卷压轴题一、一次函数与特殊四边形例 1、如图,在平面直角坐标系中,点A、B 分别在 x 轴、y 轴上,线段OA、 OB的长 (0A<OB)2x y2x 与直线是方程组的解,点 C是直线y3x y6AB的交点,点 D 在线段 OC上, OD=25(1)求点 C 的坐标;(2)求直线 AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以 0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习 1、. 如图 , 在平面直角坐标系xOy 中,已知直线PA是一次函数y=x+m( m>0)的图象,直线 PB是一次函数y3x n(n > m )的图象,点P是两直线的交点, 点 A、B、C、Q分别是两条直线与坐标轴的交点。

一次函数压轴题精选(含详细答案)

一次函数压轴题精选(含详细答案)

一次函数压轴题精选(含详细答案答案)1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG的坐标.折叠,点N恰好落在x轴上的点H处,求点G3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y 轴上,一次函数y=x+3的图象经过点B、C.第1页(共99页)的坐标为 ;(1)点C的坐标为的坐标为 ,点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.两题中任选一题作答,我选择 题.请从下列A、B两题中任选一题作答,我选择A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m>0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC 边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)(1)当点P的坐标为(﹣1,0)时,求点D的坐标;(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;(3)连接OB交AD于点G,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根(Ⅰ)试问:直线AC 与直线AB 是否垂直?请说明理由;(Ⅱ)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD 上寻找点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证△BEC ≌△CDA ;(2)模型应用:①已知直线y=x +4与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y=2x ﹣6上的一点,若△APD 是不以A 为直角顶点的等腰Rt △,请直接写出所有符合条件的点D 的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△AʹOP,连接BAʹ,当BAʹ取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B 分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P 与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点Bʹ恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,当点C移动到点O时,得是等边三角形,当点始终保持△ACP是等边三角形,轴上移动时,始终保持△点C在x轴上移动时,到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为P A的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.19.如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45°.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,当点P在AB的延长线上运动时,过点O作OD⊥PC于D,交BC于点E,连接AE,当∠EAB=∠CPA时,在坐标轴上有点K,且KC=KP,求点K的坐标.20.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x 轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是边BC的中点,M是边AB的中点,连接EM,求证:AE=EF.(2)如图2,若点E在射线BC上滑动(不与点B,C重合).①在点E滑动过程中,AE=EF是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E滑动到某处时,点F恰好落在直线y=﹣2x+6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与,与 对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,为坐标原点,点点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD 2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC 上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a 2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B 的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,平面直角坐标系中,已知直线连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B;直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q.(1)求证:OB=OC;(2)当点C坐标为(0,3)时,求点Q的坐标;(3)当△OPC≌△ADP时,直接写出C点的坐标.29.如图1,直线AB:y=﹣x﹣b分别与x,y轴交于A(6,0)、B两点,过点B 的直线交x轴负半轴与C,且OB:OC=3:1.(1)求直线BC的函数表达式;(2)直线EF:y=x﹣k(k≠0)交直线AB于E,交直线BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为一腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣8,0),点B的坐标是(0,n)(n>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为Pʹ(点Pʹ不在y轴上),连接PPʹ,PʹA,PʹC.设点P的横坐标为m.(1)若点P在第一象限,记直线AB与PʹC的交点为D.当PʹD:DC=5:13时,求m的值;(2)若∠ACPʹ=60°,试用m的代数式表示n;(3)若点P在第一象限,是否同时存在m,n,使△PʹCA为等腰直角三角形?若存在,请求出所有满足要求的m,n的值;若不存在,请说明理由.31.如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y 轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.参考答案与试题解析1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【分析】(1)对于y=2x+2,分别令x与y为0求出A与B坐标,根据CO=CD=4,求出D坐标,确定出直线AD解析式即可;(2)存在,如图所示,设出P(﹣4,p),分三种情况考虑:当BD=P1D时;当BP3=BD时;当BP4=DP4,分别求出P坐标即可.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P 3(﹣4,﹣4);当BP 4=DP 4时,(﹣1+4)2+(0﹣p )2=(p ﹣4)2,解得:p=,此时P 4(﹣4,),综上,共有四个点满足要求.分别是P 1(﹣4,9),P 2(﹣4,﹣4),P 3(﹣4,﹣1),P 4(﹣4,).【点评】此题属于一次函数综合题,此题属于一次函数综合题,涉及的知识有:涉及的知识有:涉及的知识有:待定系数法求一次函数解析待定系数法求一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.2.如图,直线L :y=﹣x +2与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点N (0,4),动点M 从A 点以每秒1个单位的速度匀速沿x 轴向左移动. (1)点A 的坐标:的坐标: (4,0) ;点B 的坐标:的坐标: (0,2) ;(2)求△NOM 的面积S 与M 的移动时间t 之间的函数关系式;(3)在y 轴右边,当t 为何值时,△NOM ≌△AOB ,求出此时点M 的坐标; (4)在(3)的条件下,若点G 是线段ON 上一点,连结MG ,△MGN 沿MG 折叠,点N 恰好落在x 轴上的点H 处,求点G 的坐标.【分析】(1)在y=﹣x+2中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.的坐标为 (﹣4,2);(1)点C的坐标为的坐标为 (0,3),点B的坐标为(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.【分析】(1)设点C的坐标为(0,y),把x=0代入y=x+3中得y=3,即可求出C点的坐标;设点B的坐标为(﹣4,y),把x=﹣4代入y=x+3中得y=2,即可求出B点的坐标;(2)①根据对称的性质和平行线的性质,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.利用勾股定理求得CP的长度,然后结合坐标与图形的性质求得点M的坐标,利用待定系数法求得直线l的解析式即可.【解答】解:(1)如图①,∵A(﹣4,0),AB∥y轴,直线y=x+3经过点B、C,设点C的坐标为(0,y),把x=0代入y=x+3x+3中得y=3,∴C(0,3);设点B的坐标为(﹣4,y),把x=4代入y=x+3中得y=2,∴B(﹣4,2);故答案是:(0,3);(﹣4,2);(2)①证明:∵AB∥y轴,∴∠OCM=∠CMD.∵∠OCM=∠MCD,∴∠CMD=∠MCD,∴MD=CD,∴CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.在直角△DCP中,由勾股定理得到:CP==3,∴OP=AD=CO+CP=3+3=6,∴AB=AD﹣DM=6﹣5=1,∴点M的坐标是(﹣4,1).设直线l的解析式为y=kx+b(k≠0).把M(﹣4,1)、C(0,3)分别代入,得,解得,故直线l的解析式为y=x+3.【点评】此题考查了一次函数综合题,此题考查了一次函数综合题,需要综合利用勾股定理,需要综合利用勾股定理,需要综合利用勾股定理,等腰三角形的判等腰三角形的判定与性质,对称的性质以及待定系数法求一次函数解析式等知识点,难度不是很大,但是需要学生对所学知识有一个系统的掌握.4.如图1,在平面直角坐标系中,一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段AB ,BC ,AC 的长分别为AB= 8 ,BC= 4 ,AC= 4 ;(2)折叠图1中的△ABC ,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2. 请从下列A 、B 两题中任选一题作答,我选择两题中任选一题作答,我选择 A 题. A :①求线段AD 的长;②在y 轴上,是否存在点P ,使得△APD 为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由. B :①求线段DE 的长;②在坐标平面内,是否存在点P (除点B 外),使得以点A ,P ,C 为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC ;(2)A 、①利用折叠的性质得出BD=8﹣AD ,最后用勾股定理即可得出结论; ②分三种情况利用方程的思想即可得出结论;B 、①利用折叠的性质得出AE ,利用勾股定理即可得出结论; ②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,∴A (4,0),C (0,8), ∴OA=4,OC=8,∵AB ⊥x 轴,CB ⊥y 轴,∠AOC=90°, ∴四边形OABC 是矩形, ∴AB=OC=8,BC=OA=4,在Rt △ABC 中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A 、①由(1)知,BC=4,AB=8, 由折叠知,CD=AD ,在Rt △BCD 中,BD=AB ﹣AD=8﹣AD , 根据勾股定理得,CD 2=BC 2+BD 2, 即:AD 2=16+(8﹣AD )2, ∴AD=5,②由①知,D (4,5), 设P (0,y ), ∵A (4,0),∴AP 2=16+y 2,DP 2=16+(y ﹣5)2, ∵△APD 为等腰三角形, ∴Ⅰ、AP=AD , ∴16+y 2=25,∴y=±3,∴P (0,3)或(0,﹣3) Ⅱ、AP=DP , ∴16+y2=16+(y ﹣5)2,∴y=, ∴P (0,),Ⅲ、AD=DP ,25=16+(y ﹣5)2, ∴y=2或8,∴P (0,2)或(0,8).B 、①、由A ①知,AD=5, 由折叠知,AE=AC=2,DE ⊥AC 于E ,在Rt △ADE 中,DE==,②、∵以点A ,P ,C 为顶点的三角形与△ABC 全等, ∴△APC ≌△ABC ,或△CPA ≌△ABC , ∴∠APC=∠ABC=90°, ∵四边形OABC 是矩形,∴△ACO ≌△CAB ,此时,符合条件,点P 和点O 重合, 即:P (0,0), 如图3,过点O 作ON ⊥AC 于N , 易证,△AON ∽△ACO , ∴,∴, ∴AN=,过点N 作NH ⊥OA , ∴NH ∥OA ,∴△ANH ∽△ACO , ∴,∴,∴NH=,AH=, ∴OH=, ∴N (,),而点P 2与点O 关于AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,), 即:满足条件的点P 的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,主要考查了矩形的性质和判定,相似三角形的相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC ,解(2)的关键是利用分类讨论的思想解决问题.5.如图,一次函数y=x +6的图象交x 轴于点A 、交y 轴于点B ,∠ABO 的平分线交x 轴于点C ,过点C 作直线CD ⊥AB ,垂足为点D ,交y 轴于点E . (1)求直线CE 的解析式;(2)在线段AB 上有一动点P (不与点A ,B 重合),过点P 分别作PM ⊥x 轴,PN ⊥y 轴,垂足为点M 、N ,是否存在点P ,使线段MN 的长最小?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN 2 =(m﹣)2+,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA ﹣AC=3, ∴C (﹣3,0),∵∠EDB=∠AOB=90°,BD=BO ,∠EBD=∠ABO , ∴△EBD ≌△ABO , ∴BE=AB=10, ∴OE=BE ﹣OB=4, ∴E (0,﹣4),设直线CE 的解析式为y=kx ﹣4, ∴﹣3k ﹣4=0, ∴k=﹣,∴直线CE 的解析式为y=﹣x ﹣4,(2)解:存在,(﹣,),如图,∵点P 在直线y=x +6上,∴设P (﹣m ,﹣m +6),∴PN=m ,PM=﹣m +6,根据勾股定理得,MN 2=PN2+PM2=m2+(﹣m +6)2=(m ﹣)2+,∴当m=时,MN 2有最小值,则MN 有最小值,当m=时,y=﹣x +6=﹣×+6=,∴P (﹣,).【点评】此题是一次函数综合题,此题是一次函数综合题,主要考查了待定系数法,主要考查了待定系数法,主要考查了待定系数法,全等三角形的判定和全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C 的坐标,解(2)的关键是得出MN 2的函数关系式,是一道中等难度的中考常考题.6.如图1,已知▱ABCD ,AB ∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B 在第四象限,点P 是▱ABCD 边上的一个动点. (1)若点P 在边BC 上,PD=CD ,求点P 的坐标.(2)若点P 在边AB ,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x ﹣1上,求点P 的坐标.(3)若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出答案)【分析】(1)由题意点P 与点C 重合,可得点P 坐标为(3,4);(2)分两种情形①当点P 在边AD 上时,②当点P 在边AB 上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P 在线段CD 上时.②如图2中,当点P 在AB 上时.③如图3中,当点P 在线段AD 上时.分别求解即可; 【解答】解:(1)∵CD=6, ∴点P 与点C 重合, ∴点P 坐标为(3,4).(2)①当点P 在边AD 上时, ∵直线AD 的解析式为y=﹣2x ﹣2, 设P (a ,﹣2a ﹣2),且﹣3≤a ≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNMʹ中,∵PM=PMʹ=6,PN=4,∴NMʹ==2,在Rt△OGMʹ中,∵OG 2+OMʹ2=GMʹ2,∴22+(2+m)2=m2,解得m=﹣, ∴P (﹣,4)根据对称性可知,P (,4)也满足条件.②如图2中,当点P 在AB 上时,易知四边形PMGMʹ是正方形,边长为2,此时P (2,﹣4).③如图3中,当点P 在线段AD 上时,设AD 交x 轴于R .易证∠MʹRG=∠MʹGR ,推出MʹR=MʹG=GM ,设MʹR=MʹG=GM=x .∵直线AD 的解析式为y=﹣2x ﹣2, ∴R (﹣1,0),在Rt △OGMʹ中,有x 2=22+(x ﹣1)2,解得x=,。

一次函数综合题(解析版)--2024年中考数学压轴题专项训练

一次函数综合题(解析版)--2024年中考数学压轴题专项训练

一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.【分析】(1)由OP =OA ⋅sin60°,即可求解;(2)由图中阴影部分的面积=S 扇形COP -S ΔPOC ,即可求解.【解答】解:(1)对于直线y =-3x +6,令y =-3x +6=0,则x =23,即OA =23,由一次函数的表达式知,OB =6,则tan ∠BAC =OB AO =623=3,则∠BAC =60°连接OP ,则OP ⊥AB ,则OP =OA ⋅sin60°=23×32=3;(2)过点P 作PH ⊥AC 于点H ,∵∠POH =30°,则∠POC =150°,PH =12OP =32,则图中阴影部分的面积=S 扇形COP -S ΔPOC =150°360°×π×32-12×3×32=15π-94.【点评】本题考查了一次函数和圆的综合运用,涉及到圆切线的和一次函数的性质,解直角三角形,面积的计算等,综合性强,难度适中.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.【分析】(1)解法一:先根据t =2可得点A (-2,2),因为B 在直线l 1上,所以设B (x ,x +1),利用y =0代入y =x +1可得G 点的坐标,在Rt ΔABG 中,利用勾股定理列方程可得点B 的坐标;解法二:根据可以使用y =x +1与x 轴正半轴夹角为45度来解答;(2)先把(7,4)代入s =14t 2+bt -54中计算得b 的值,计算在-1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标2,94,代入s =a (t +1)(t -5)中可得a 的值;(3)存在,设B (x ,x +1),如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解答】解:(1)解法一:如图1,连接AG ,当t =2时,A (-2,2),设B (x ,x +1),在y =x +1中,当x =0时,y =1,∴G (0,1),∵AB ⊥l 1,∴∠ABG =90°,∴AB 2+BG 2=AG 2,即(x +2)2+(x +1-2)2+x 2+(x +1-1)2=(-2)2+(2-1)2,解得:x 1=0(舍),x 2=-12,∴B -12,12;解法二:如图1-1,过点B 作BE ⊥x 轴于E ,过点A 作AH ⊥BE 于H ,当x =0时,y =1,当y =0时,x +1=0,则x =-1,∴OF =OG =1,∵∠GOF =90°,∴∠OGF =∠OFG =45°,∴BE =EF ,∵∠ABD =90°,∴∠ABH =∠BAH =45°,∴ΔABH 是等腰直角三角形,∴AH =BH ,当t =2时,A (-2,2),设B (x ,x +1),∴x +2=2-(x +1),∴x =-12,∴B -12,12 ;(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt -54中得:494+7b -54=4,解得:b =-1,如图3,过B 作BH ⎳y 轴,交AC 于H ,由(1)知:当t =2时,A (-2,2),B -12,12 ,∵C (0,3),设AC 的解析式为:y =kx +n ,则-2k +n =2n =3 ,解得k =12n =3 ,∴AC 的解析式为:y =12x +3,∴H -12,114,∴BH =114-12=94,∴s=12BH⋅|x C-x A|=12×94×2=94,把2,9 4代入s=a(t+1)(t-5)得:a(2+1)(2-5)=94,解得:a=-1 4;(3)存在,设B(x,x+1),当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴ΔABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,RtΔACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3代入得:x2-3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(-2,9);当x=0时,如图6,此时,A(-2,3),综上,点A的坐标为:(-2,9)或(-2,3).【点评】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.【分析】(1)通过Q 点在OC 上,可以通过∠BOC 的三角函数和∠OAP 的三角函数来导出对应的边的关系,求得结果;(2)通过直角ΔAQC 中,得到QC 的长度,然后通过OP =PQ =x ,可以在Rt ΔBCP 中,得到对应的x 值然后求出结果;(3)通过QA =OA =4,可得出Q 点的运动轨迹,是以A 点为圆心,4为半径长度的圆弧,从而可知,MA 的连线上的Q 点为最短的MQ 长度,通过分类讨论,PM =PQ ,PM =QM ,PQ =QM 来求得对应的P 的坐标.【解答】解:(1)如图1,∵∠OAP +∠AOE =90°,∠BOC +∠AOE =90°,∴∠OAP =∠BOC ,又∵∠AOP =∠OBC =90°,∴ΔOAP ∽ΔBOC ,∴OP BC =OA OB ,即OP 4=45,∴OP =165,故答案为:165;(2)如图,∵AQ ⊥PQ ,∴∠AQC =90°,∴QC =AC 2-AQ 2=52-42=3,∵AQ =AO =4,设OP =PQ =x ,则CP =3+x ,PB =5-x ,∴CP 2=BP 2+BC 2,(3+x )2=(5-x )2+42,x =2,∴P 点的坐标为(2,0),将P (2,0)和C (5,4)代入y =kx +b 中,0=2k +b 4=5k +b ,解得:k =43b =-83,∴PQ 所在直线的表达式为:y =43x -83;(3)如图,①∵AQ =AO =4,∴Q 点的运动轨迹,是以A 为圆心,4为半径的圆弧,∴MQ 的最小值在AM 的连线上,如图,MQ ′即为所求,∵M 是BC 中点,CM =12BC =2,∴AM =52+22=29,MQ ′=MA -AQ ′=29-4,故答案为:29-4;②如图,设OP =PQ =x ,BP =5-x ,∴PM 2=(5-x )2+22=x 2-10x +29,当PM =PQ 时,PM 2=PQ 2,∴x 2-10x +29=x 2,x =2910,∴P 2910,0,当MP =MQ 时,如图,若点Q 在AC 上,则AQ =OA =4,∵MP =MQ ,MB =MC ,∠PBM =∠QCM ,∴ΔPMB ≅ΔQMC (HL ),∴PB =QC ,QC =AC -AQ =5-4=1,∴PB =1,∴OP =BO -PB =5-1=4,∴P (4,0);若点Q 在AC 上方时,由对称性可知OM =MQ ,∵MQ =MQ ,∴MO =MP ,∴P (10,0);当MQ =PQ 时,不符合题意,不成立,故P 点坐标为P 2910,0或P (4,0)或(10,0).【点评】本题考查一次函数的图象及应用,通过一次函数坐标图象的性质,三角函数的性质,全等三角形的性质和勾股定理,来求得对应的解.4(2022•启东市模拟)我们知道一次函数y =mx +n 与y =-mx +n (m ≠0)的图象关于y 轴对称,所以我们定义:函数y =mx +n 与y =-mx +n (m ≠0)互为“M ”函数.(1)请直接写出函数y =2x +5的“M ”函数;(2)如果一对“M ”函数y =mx +n 与y =-mx +n (m ≠0)的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若∠BAC =90°,且ΔABC 的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ΔABD 为等腰三角形时,请求出点D 的坐标.【分析】(1)根据互为“M ”函数的定义,直接写出函数y =2x +5的“M ”函数;(2)现根据已知条件判断ΔABC 为等腰直角三角形,再根据互为“M ”函数的图象关于y 轴对称,得出OA =OB =OC ,再根据函数解析式求出点A 、B 、C 的坐标,再根据ΔABC 的面积是8求出m 、n 的值,从而求出函数解析式;(3)ΔABD 为等腰三角形,分以A 为顶点,以B 为顶点,以D 为顶点三种情况讨论即可.【解答】(1)解:根据互为“M ”函数的定义,∴函数y =2x +5的“M ”函数为y =-2x +5;(2)解:根据题意,y =mx +n 和y =-mx +n 为一对“M 函数”.∴AB =AC ,又∵∠BAC =90°,∴ΔABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∵OB =OC ,∴∠BAO =∠CAO =45°,∴OA =OB =OC ,又∵S ΔABC =12×BC ×AO =8且BC =2AO ,∴AO =22,∵A 、B 、C 是一次函数y =mx +n 与y =-mx +n (m ≠0)的图象于坐标轴的交点,∴A (0,n ),B -n m ,0 ,C n m ,0,∵OA =OB =n ,∴n m=22,∴m =1,∴y =x +22和y =-x +22;(3)解:根据等腰三角形的性质,分情况,∵AO =BO =22,∴AB =4,由(2)知,A (0,22),B (-22,0),C (22,0),∴①以A 为顶点,则AB =AD ,当点D 在点A 上方时,AD =22+4,当点D 在点A 下方时,AD =22-4,∴D 1(0,22+4),D 2(0,22-4),②以B 为顶点,则BA =BD ,此时点D 在y 轴负半轴,∴D 3(0,-22),③以D 为顶点,则DA =DB ,此时D 为坐标原点,∴D 4(0,0).∴D 点坐标为D 1(0,22+4),D 2(0,22-4),D 3(0,-22),∴D 4(0,0).【点评】本题考查一次函数的综合应用,以及新定义、等腰三角形的性质等知识,关键是理解新定义,用新定义解题.5(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;AB AD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 4,P 的速度v 1=AB 4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =15,AB =CD =53AD =10,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②设FG 所在的曲线的数解析式为S =a (t -6)2+k (a ≠0),把F 5,154,G (8,0)代入解析式求得a ,k 值即可求解答;③利用待定系数法求出直线MN 的函数解析式,当S =154时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =4,NH =1,G (8,0),∴N (4,0),H (5,0),由图象可知:t =4时,Q 与E 重合,t =5时,P 与B 重合,t =8时,P 与C 重合,∴Q 的速度v 2=DE 4,P 的速度v 1=AB 5,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB5DE 4=AB 5⋅4DE =85,∵P 从A 到B 用了5秒,从B 到C 用了3秒,∴AB =5v 1,BC =3v 1,∴AB =53BC ,∴AB :AD 的值为53,故答案为:85,53;(2)①∵OM =15,∴M (0,15),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =15,∵AB :AD =53,DE =12AB ,∴DE =56AD ,∴12AD ⋅56AD =15,∴AD =BC =6(舍去负值),∴AB =CD =53AD =10,∴v 2=DE 4=54,当t =5时,DQ =v 2t =54×5=254,∴QE =DQ -DE =254-5=54,此时P 与B重合,∴S ΔEPQ =12EQ ⋅BC =12×54×6=154,∴F 5,154 ,设直线NF 的解析式为S =kt +b (k ≠0),将N (4,0)与F 5,154 代入得:4k +b =05k +b =154,∴k =154b =-15 ,∴线段NF 所在直线的函数表达式为S =154t -15(4<t ≤5);②设FG所在的曲线的数解析式为S=1254t-5(16-2t)=-54t2+15t-40,∴FG所在的曲线的函数解析式为S=-54t2+15t-40(5≤t≤8);③存在,分情况讨论如下:当Q在DE上,P在AB上时,∵直线MN经过点M(0,15),N(4,0),可求得直线MN的解析式为S=-54t+15(0≤t≤4),当s=154时,-154t+15=154,∴x=3,∵s随x的增大而减小,∴当0≤x≤3时,S≥154,当Q在CE上,P在BC上时,直线NF的解析式为S=154t-15(4<t≤5);由F5,15 4知:当t=5时,S=154,当S=154时,-54t2+15t-40=154,∴t=7或5,由图象知:当5≤x≤7,x的取值范围为0≤t≤3或5≤t≤7.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.【分析】(1)在y =-ax 2+3ax +4a 中,令y =0得A (-1,0),B (4,0),根据ΔABC 的面积为10,即得OC =4,C (0,4),用待定系数法即得二次函数的表达式为y =-x 2+3x +4;(2)设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),由GF =5OF ,可得-m 2+52m +4=5×52m ,即可解得G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,设Q (r ,s ),可得K n +r 2,s 2 ,即得s 2=12×n +r 2,n +r =2s ①,又r 2+s 2=n 2,(n +r )(n -r )=s 2②,可解得r =35n ,s =45n ,故Q 35n ,45n ,代入y =-x 2+3x +4得45n =-35n 2+3×35n +4,解得n =5或n =-209.【解答】解:(1)如图:在y =-ax 2+3ax +4a 中,令y =0得-ax 2+3ax +4a =0,解得x =4或x =-1,∴A (-1,0),B (4,0),∴AB =5,∵ΔABC 的面积为10,∴12AB ⋅OC =10,即12×5⋅OC =10,∴OC =4,∴C (0,4),把C (0,4)代入y =-ax 2+3ax +4a 得:4a =4,∴a =1,∴二次函数的表达式为y =-x 2+3x +4;(2)如图:设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),∴OF =m 2+12m 2=52m ,GF =-m 2+3m +4-12m =-m 2+52m +4,∵GF =5OF ,∴-m 2+52m +4=5×52m ,解得m =2或m =-2(舍去),∴G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,如图:∵P (n ,0)关于直线对称点为Q ,∴OQ =OP =|n |,K 是PQ 中点,设Q (r ,s ),∴K n +r 2,s 2,∵K 在直线y =12x 上,∴s 2=12×n +r 2,整理得:n +r =2s ①,∵OT 2+QT 2=OQ 2,∴r 2+s 2=n 2,变形得:(n +r )(n -r )=s 2②,把①代入②得:2s (n -r )=s 2,∵s ≠0,∴n -r =s2③,由①③可得r =35n ,s =45n ,∴Q 35n ,45n ,∵Q 在抛物线y =-x 2+3x +4上,∴45n =-35n 2+3×35n +4,解得n =5或n =-209,答:n 的值为5或-209.【点评】本题考查一次函数、二次函数综合应用,涉及待定系数法,三角形面积,对称变换等知识,解题的关键是用含n 的代数式表示Q 的坐标.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P 从E 出发,以每秒2个单位的速度沿着折线ED -DF 运动(如图2所示),当P 点到F 点停止,ΔDEF 也随之停止.①t =3或6(s )时,直线l 恰好经过等边ΔEDF 其中一条边的中点;②当点P 在线段DE 上运动,若DM =2PM ,求t 的值;③当点P 在线段DF 上运动时,若ΔPMN 的面积为3,求出t 的值.【分析】(1)把x =0,y =0分别代入y =-33x +43,即可求出点A 、B 的坐标,求出∠BAO =30°,根据直角三角形的性质,即可得出OD =12OA =6;(2)①当直线l 分别过DE 、DF 、EF 的中点,分三种情况进行讨论,得出t 的值,并注意点P 运动的最长时间;②分点P 在直线l 的下方和直线l 上方两种情况进行讨论,求出t 的值即可;③分点P 在DN 之间和点P 在NF 之间两种情况进行讨论,求出t 的值即可.【解答】解:(1)令x =0,则y =43,∴点B 的坐标为(0,43),令y =0,则-33x +43=0,解得x =12,∴点A 的坐标为(12,0),∵tan ∠BAO =OB OA=4312=33,∴∠BAO =30°,∵OD ⊥AB ,∴∠ODA =90°,∴ΔODA 为直角三角形,∴OD =12OA =6;(2)①当直线l 过DF 的中点G 时,∵ΔDEF 为等边三角形,∴∠DFE =60°,∵∠BAO =30°,∴∠FGA =60°-30°=30°,∴∠FGA =∠BAO ,∴FA =FG =12DF =3,∴OF =OA -FA =9,∴OE =OF -EF =9-6=3,∴t =3;当l 过DE 的中点时,∵DE ⊥l ,DG =EG ,∴直线l 为DE 的垂直平分线,∵ΔDEF 为等边三角形,∴此时点F 与点A 重合,∴t =12-61=6;当直线l 过EF 的中点时,运动时间为t =12-31=9;∵点P 从运动到停止用的时间为:6+62=6,∴此时不符合题意;综上所述,当t =3s 或6s 时,直线l 恰好经过等边ΔEDF 其中一条边的中点,故答案为:3或6;②∵OE =t ,AE =12-t ,∠BAO =30°,∴ME =6-t2,∴DM =DE -EM =t2,∵EP =2t ,∴PD =6-2t ,当P 在直线l 的下方时,∵DM =23DP ,∴t 2=23(6-2t ),解得:t =2411;当P 在直线l 的上方时,∵DM =2DP ,∴t2=2(6-2t ),解得t =83;综上所述:t 的值为2411或83;③当3<t ≤6时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DN -DP =t -(2t -6)=6-t ,∵∠DNM =30°,∴边MN 的高h =12PN =3-12t ,∵ΔPMN 的面积为3,∴12×32t 3-12t =3,整理得:t 2-6t +8=0,解得t =2(舍)或t =4当点P 在NF 之间时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DP -DN =2t -6-t =t -6,∵∠DNM =30°,∴∠FNA =∠DNM =30°,∴边MN 的高h =12PN =12t -3,∵ΔPMN 的面积为3,∴12×32t 12t -3 =3,解得t =3+17(舍)或t =3-17(舍),综上所述,t 的值为4s .【点评】本题主要考查了一次函数的性质、等边三角形的性质、直角三角形的性质、利用三角函数解直角三角形,熟练掌握含30°的直角三角形的性质并注意进行分类讨论是解题的关键.8(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 交点).(1)已知点A -12,0,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0-y |=2,据此可以求得y 的值;②设点B 的坐标为(0,y ).因为-12-0 ≥|0-y |,所以点A 与点B 的“非常距离”最小值为-12-0 =12;(2)①设点C 的坐标为x 0,34x 0+3 .根据材料“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”知,C 、D 两点的“非常距离”的最小值为-x 0=34x 0+2,据此可以求得点C 的坐标;②根据“非常距离”的定义,点E 在过原点且与直线y =34x +3垂直的直线上,且C 与E 的横纵坐标差相等时,点C 与点E 的“非常距离”取最小值,据此求出C 与E 的坐标及“非常距离”的最小值.【解答】解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵-12-0 =12≠2,∴|0-y |=2,解得,y =2或y =-2;∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12.(2)①如图2,当点C 与点D 的“非常距离”取最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|.即AC =AD ,∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为x 0,34x 0+3 ,∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为:|x 0|=87,此时C -87,157;②如图3,当点E 在过原点且与直线y =34x +3垂直的直线上,且CF =EF 时,点C 与点E 的“非常距离”最小,设E (x ,y )(点E 位于第二象限).则y x=-43x 2+y 2=1 ,解得x =-35y =45,故E -35,45.设点C 的坐标为x 0,34x 0+3 ,-35-x 0=34x 0+3-45,解得x0=-8 5,则点C的坐标为-8 5,95,点C与点E的“非常距离”的最小值为1.【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.【分析】(1)画出图形,根据点P到图形W的“差距离”的定义即可解决问题.(2)如图2中,设C(m,-1).由此构建方程即可解决问题.(3)如图3中,取特殊位置当b=6时,当b=-4时,分别求解即可解决问题.【解答】解:(1)如图1中,∵A(2,1),B(-2,1),∴AB⎳x轴,∴点O到线段AB的最小距离为1,最大距离为5,∴d(O,AB)=5-1.(2)如图2中,设C(m,-1).当点C在y轴的左侧时,由题意AC-2=1,∴AC=3,∴(2-m)2+22=9,∴m=2-5或2+5(舍弃),∴C(2-5,-1),当点C在y轴的右侧时,同法可得C(5-2,-1),综上所述,满足条件的点C的坐标为(2-5,-1)或(5-2,-1).故答案为:(2-5,-1)或(5-2,-1).(3)如图3中,当b=6时,线段EF:y=x+6(-2≤x≤2)上任意一点D,满足d(D,AB)≤2,当b=-4时,线段E′F′:y=x-4(-2≤x≤2)上任意一点D′,满足d(D′,AB)≤2,观察图象可知:当b≥6或b≤-4时,函数y=x+b(-2≤x≤2)图象上的任意一点,满足d(D,AB)≤2.【点评】本题属于一次函数综合题,考查了一次函数的性质,点P到图形W的“差距离”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,学会寻找特殊位置解决问题,属于中考创新题型.10(2022•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,5,点P的坐标为(-1,7)或(4,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【解答】解:(1)①如图,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=2,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图,①由图象可得,点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+5,可得x分别为1,2;结合图象可知:1≤m≤2;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,4;∴点P的坐标为(-1,7)或(4,-3);(3)设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴a -b +c =1a +b +c =19a +3b +c =3,a =14b =0c =34,∴y =14x 2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y =-14x 2+134,∴抛物线的解析式y =14x 2+34或y =-14x 2+134.【点评】本题主要考查了一次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 3,P 的速度v 1=AB4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =2,AB =CD =2AD =4,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②利用待定系数法求出直线MN 的函数解析式,当S =23时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =3,NH =1,G (6,0),∴N (3,0),H (4,0),由图象可知:t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,∴Q 的速度v 2=DE 3,P 的速度v 1=AB4,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB4DE 3=AB 4⋅3DE =AB 4⋅312AB =32,∵P 从A 到B 用了4秒,从B 到C 用了2秒,∴AB =4v 1,BC =2v 1,∴AB =2BC ,∴AB :AD 的值为2,故答案为:32,2;(2)①∵OM =2,∴M (0,2),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =2,∵AB :AD =2,∴AD =DE =12AB ,∴12AD 2=2,∴AD =BC =DE =2,AB =CD =2AD =4,∴v 2=DE 3=23,当t =4时,DQ =v 2t =23×4=83,∴QE =DQ -DE =83-2=23,此时P 与B 重合,∴S ΔEPQ =12EQ ⋅BC =12×23×2=33,∴F 4,23,设直线NF 的解析式为S =kx +b (k ≠0),将N (3,0)与F 4,23 代入得:3k +b =04k +b =23 ,∴k =23b =-2,∴线段NF 所在直线的函数表达式为S =23x -2(3<x ≤4);②存在,分情况讨论如下:当Q 在DE 上,P 在AB 上时,∵直线MN 经过点M (0,2),N (3,0),同理求得直线MN 的解析式为S =-23x +2(0≤x ≤3),当s =23时,-23x +2=2,∴x =2,∵s随x的增大而减小,∴当0≤x≤2时,S≥23,当Q在CE上,P在AB上时,直线NF的解析式为S=23x-2(3<x≤4),由F4,2 3知:当x=4时,S=23,当Q在CE上,P在BC上时,SΔEPQ=12EQ⋅CP,∵DQ=v2t=23t,∴EQ=DQ-DE=23t-2,∵v1=AB4=44=1,∴AB+BP=v1t=t,∵AB+BC=4+2=6,∴CP=6-t,∴S=1223t-2(6-t)=-13t2+3t-6(4<x≤6),当S=23时,-13t2+3t-6=23,∴t=4或5,由图象知:当4<x≤5时,S≥2 3,综上,S≥23时,x的取值范围为0≤x≤2或4≤x≤5.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.12(2022•邗江区校级一模)在平面直角坐标系xOy中,对于点P和线段ST,我们定义点P关于线段ST的线段比k=PSST(PS<PT)PTST(PS≥PT) .(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k= 22 ;②点C(0,c)关于线段AB的线段比k=2,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤14,直接写出m的取值范围.【分析】(1)①求出QA、QB、AB,根据线段比定义即可得到答案;②方法同①,分c>0和c≤0讨论;(2)分两种情况,画出图象,根据线段比定义,分别在M(N)为“临界点”时列出不等式,即可得到答案.【解答】解:(1)①∵A(0,1),B(1,0),Q(2,0),∴AB=2,QA=5,QB=1,根据线段比定义点Q(2,0)关于线段AB的线段比k=QBAB=22;故答案为:22;②∵A (0,1),B (1,0),C (0,c ),∴AB =2,AC =|1-c |,BC =1+c 2,AC 2=1+c 2-2c ,BC 2=1+c 2,当c >0时,AC 2<BC 2,即AC <BC ,由C (0,c )关于线段AB 的线段比k =2可得:|1-c |2=2,解得c =3或c =-1(舍去),∴c =3,当c ≤0时,AC 2≥BC 2,即AC ≥BC ,由C (0,c )关于线段AB 的线段比k =2可得:1+c 22=2,解得c =3(舍去)或c =-3,∴c =-3,综上所述,点C (0,c )关于线段AB 的线段比k =2,c =3或c =-3;(2)∵直线y =x +2与坐标轴分别交于E ,F 两点,∴E (-2,0),F (0,2),∵点M (m ,0),点N (m +2,0),∴MN =2,N 在M 右边2个单位,当线段EF 上的点到N 距离较小时,分两种情况:①当M 、N 在点E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴NE MN≤14,即-2-(m +2)2≤14,解得:m ≥-92,②当N 在E 右侧,M 在E 左侧时,过M 作MG ⊥EF 于G ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴GM MN ≤14,即GM 2≤14,∴GM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴GM =22EM ,∴22EM ≤12,即22[(m +2)-(-2)]≤12,解得m ≤-4+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到N 距离较小时,-92≤m ≤-4+22,当线段EF 上的点到M 距离较小时,也分两种情况:①当N 在E 右侧,M 在E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴ME MN≤14,即-2-m 2≤14,解得m ≥-52,②当M 、N 在点E 右侧时,过M 作MH ⊥EF 于H ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴HM MN ≤14,即HM 2≤14,∴HM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴HM =22EM ,∴22EM ≤12,即22[m -(-2)]≤12,解得:m ≤-2+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到M 距离较小时,-52≤m ≤-2+22,综上所述,线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,则-92≤m ≤-4+22或-52≤m ≤-2+22.【点评】本题考查一次函数应用,解题的关键是读懂线段比的定义,找出“临界点”列不等式.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.【分析】(1)由y =5x +2=3(x +1)+(2x -1),可知函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得P (2p +1,p -1),当x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p-1)(m +n ),根据点P 在函数y 1、y 2的“组合函数”图象的上方,有p -1>(p -1)(m +n ),而m +n >1,可得p <1;②由函数y 1、y 2的“组合函数” y =m (x -p -2)+n (-x +3p )图象经过点P ,知p -1=m (2p +1-p -2)+n (-2p -1+3p ),即(p -1)(1-m -n )=0,而p ≠1,即得n =1-m ,可得y =(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,即(3-4m )p +(2m -1)x -2m =0,即可得m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【解答】解:(1)函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”,理由如下:∵3(x +1)+(2x -1)=3x +3+2x -1=5x +2,∴y =5x +2=3(x +1)+(2x -1),∴函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得x =2p +1y =p -1 ,∴P (2p +1,p -1),∵y 1、y 2的“组合函数”为y =m (x -p -2)+n (-x +3p ),∴x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p -1)(m +n ),∵点P 在函数y 1、y 2的“组合函数”图象的上方,∴p -1>(p -1)(m +n ),∴(p -1)(1-m -n )>0,∵m +n >1,∴1-m -n <0,∴p -1<0,∴p <1;②存在m =34时,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0),理由如下:由①知,P (2p +1,p -1),∵函数y 1、y 2的“组合函数”y =m (x -p -2)+n (-x +3p )图象经过点P ,∴p -1=m (2p +1-p -2)+n (-2p -1+3p ),∴(p -1)(1-m -n )=0,∵p ≠1,∴1-m -n =0,有n =1-m ,∴y =m (x -p -2)+n (-x +3p )=m (x -p -2)+(1-m )(-x +3p )=(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,变形整理得:(3-4m )p +(2m -1)x -2m =0,∴当3-4m =0,即m =34时,12x -32=0,∴x =3,∴m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是③;AB,点E、F分别在AC、BC边(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=13上,满足ΔBDF和ΔEDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到ΔADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成ΔPCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当ΔBDF≅ΔEFD,且是共边全等时,∠BFD=∠EDF,∴DE⎳BC,∵ΔABC是等边三角形,∴ΔADE是等边三角形,AB=2,∵AD=13∴DE=AE=BF=2,∴CF=BC-BF=4,②如图2,当ΔBDF≅ΔEDF,且是共边全等时,BD=DE=6-AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,。

第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

第四章 一次函数压轴题考点训练(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

第四章一次函数压轴题考点训练A ....【答案】A【分析】根据y 1,y 2的图象判断出k+b 的值,然后根据k-1、所求函数图象经过的象限即可.【详解】解:根据y 1,y 2的图象可知,,且当x=1时,y 2=0,即k+b=0.∴对于函数()1y k x b =-+,有b 时,y=k-1+b=0-1=-1<0.∴符合条件的是选项.故选:A.【点睛】本题主要考查的是一次函数的图象和性质,掌握一次函数的图象和性质是解题的关....()A.(-1,0)【答案】B【分析】由题意作A求的P点;首先利用待定系数法即可求得直线∵A(1,-1),∴C的坐标为(1,1连接BC,设直线BC∴123k bk b+-⎧⎨+-⎩==,解得⎧⎨⎩A .433B .233【答案】D【分析】根据题意利用相似三角形可以证明线段用o n AB B ∆∽AON ∆求出线段o n B B 的长度,即点【详解】解:由题意可知,2OM =,点则OMN ∆为顶角30度直角三角形,ON如图所示,当点P 运动至ON 上的任一点时,设其对应的点∵o AO AB ⊥,iAP AB ⊥∴o iOAP B AB ∠=∠又∵tan 30o AB AO =∙ ,tan i AB AP =∙∴::o i AB AO AB AP=∴o i AB B ∆∽AOP∆∴o i AB B AOP∠=∠【答案】32b -≤≤【分析】根据矩形的性质求得点D 的坐标,交,则交点在线段BD 之间,代入求解即可.【详解】解:矩形ABCD 中,点A 、根据矩形的性质可得:(1,3)D 根据图像得到直线y x b =+与矩形ABCD 将点(4,1)B 代入得:41b +=,解得b 将点(1,3)D 代入得:13+=b ,解得b 由此可得32b -≤≤【答案】0k <或01k <<【分析】分别利用当直线()430y kx k k =+-≠过点值范围,据此即可求解.【详解】解:当直线y =【点睛】本题主要考查等腰直角三角形的性质和两直线交点坐标的求法,加辅助线,构造等腰直角三角形和全等三角形,是解题的关键.评卷人得分三、解答题13.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往运任务承包给某运输公司.已知C乡需要农机34台,两乡运送农机的费用分别为250元/台和200元/台,从别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为系式,并直接写出自变量x的取值范围;值.【答案】(1)W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30;(2)有三种调运方案:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)a 的值为200元.【分析】(1)设A 城运往C 乡x 台农机,可以表示出运往其它地方的台数,根据调运单价和调运数量可以表示总费用W ;(2)列出不等式组确定自变量x 的取值范围,在x 的正整数解的个数确定调运方案,并分别设计出来;(3)根据A 城运往C 乡的农机降价a 元其它不变,可以得出另一个总费用与x 的关系式,根据函数的增减性,确定当x 为何值时费用最小,从而求出此时的a 的值.【详解】解:(1)设A 城运往C 乡x 台农机,则A 城运往D 乡(30﹣x )台农机,B 城运往C 乡(34﹣x )台农机,B 城运往D 乡(6+x )台农机,由题意得:W =250x +200(30﹣x )+150(34﹣x )+240(6+x )=140x +12540,∵x ≥0且30﹣x ≥0且34﹣x ≥0,∴0≤x ≤30,答:W 关于x 的函数关系式为W =140x +12540,自变量x 的取值范围为0≤x ≤30.(2)由题意得:1401254016460030x x +>⎧⎨⎩,解得:28≤x ≤30,∵x 为整数,∴x =28或x =29或x =30,因此有三种调运方案,即:①A 城运往C 乡28台,运往D 乡2台;B 城运往C 乡6台,运往D 乡34台;②A 城运往C 乡29台,运往D 乡1台;B 城运往C 乡5台,运往D 乡35台;③A 城运往C 乡30台,运往D 乡0台;B 城运往C 乡4台,运往D 乡36台;(3)由题意得:W =(250﹣a )x +200(30﹣x )+150(34﹣x )+240(6+x )=(140﹣a )x +12540,∵总费用最小值为10740元,∴140﹣a <0∴W 随x 的增大而减小,又∵28≤x ≤30,∴当x =30时,W 最小,即:(140﹣a )×30+12540=10740,【答案】(1)y=2x+4(2)1112-+【分析】(1)根据图像求出B的坐标,然后根据待定系数法求出直线(1)求m 的值;(2)点P 从O 出发,以每秒2个单位的速度,沿射线OA 方向运动.设运动时间为t ()s .①过点P 作PQ OA ⊥交直线AB 于点Q ,若APQ ABO ∆≅∆,求t 的值;②在点P 的运动过程中,是否存在这样的t ,使得POB ∆为等腰三角形?若存在,请求出所有符合题意的t 的值;若不存在,请说明理由.【答案】(1)6;(2)①2或8;②2.5或4或6.4.3【点睛】本题主要考查一次函数图象与几何图形的综合,形的性质,利用分类讨论的思想方法,是解题的关键.17.如图,在平面直角坐标系中,直线2y x =-+交于点C .(1)求点A ,B 的坐标.(3)存在.∵线段AB在第一象限,∴这时点P在x轴负半轴.∵==OA 2,OB 4,∴222224BP OP OB x =+=+,222222420AB OA OB =+=+=,222()(2)AP OA OP x =+=-.∵222BP AB AP +=,∴222420(2)x x ++=-,解得8x =-,∴当点P 的坐标为(8,0)-时,ABP 是直角三角形;③设AB 是直角边,点A 为直角顶点,即90BAP ∠= .∵点A 在x 轴上,P 是x 轴上的动点,∴90BAP ∠≠ .综上,当点P 的坐标为(0,0)或(8,0)-时,ABP 是直角三角形.【点睛】本题考查的是一次函数的图象与及几何变换、一次函数的性质及直角三角形的判定等知识点,掌握分类讨论思想和一次函数图像的性质是解答本题的关键.。

一次函数综合压轴题(无答案)

一次函数综合压轴题(无答案)

1.如图,在平面直角坐标系中,已知A(7a,0),B(0,﹣7a),点C为x轴负半轴上一点,AD⊥AB,∠1=∠2.(1)求∠ABC+∠D的度数;(2)如图①,若点C的坐标为(﹣3a,0),求点D的坐标(结果用含a的式子表示);(3)如图②,在(2)的条件下,若a=1,过点D作DE⊥y轴于点E,DF⊥x轴于点F,点M为线段DF上一点,若第一象限内存在点N(n,2n﹣3),使△EMN 为等腰直角三角形,请直接写出符合条件的N点坐标,并选取一种情况计算说明.2.如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON ⊥BP交AB于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.3.如图①,平面直角坐标系XOY 中,若A (0,a )、B (b ,0)且(a ﹣4)2+=0,以AB 为直角边作等腰Rt △ABC ,∠CAB=90°,AB=AC .(1)求C 点坐标;(2)如图②过C 点作CD ⊥X 轴于D ,连接AD ,求∠ADC 的度数;(3)如图③在(1)中,点A 在Y 轴上运动,以OA 为直角边作等腰Rt △OAE ,连接EC ,交Y 轴于F ,试问A 点在运动过程中S △AOB :S △AEF 的值是否会发生变化?如果没有变化,请直接写出它们的比值 (不需要解答过程或说明理由).4.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标=18.分别以AC、(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQACQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.5.如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.6.如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+|a ﹣2b+2|=0.(1)求证:∠OAB=∠OBA;(2)如图1,若BE⊥AE,求∠AEO的度数;(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.7.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足|a+b|+(a﹣5)2=0(1)点A的坐标为,点B的坐标为;(2)如图,若点C的坐标为(﹣3,﹣2),且BE⊥AC于点E,OD⊥OC交BE延长线于D,试求点D的坐标;(3)如图,M、N分别为OA、OB边上的点,OM=ON,OP⊥AN交AB于点P,过点P作PG⊥BM交AN的延长线于点G,请写出线段AG、OP与PG之间的数列关系并证明你的结论.8.如图,在平面直角坐标系中,A(0,a)、B(b,0)、C(c,0),且+|b ﹣2|+(c+2)2=0.(1)直接写出A、B、C各点的坐标:A、B、C;(2)过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线MN于点H,证明:PA=PH;(3)在(1)的条件下,若在点A处有一个等腰Rt△APQ绕点A旋转,且AP=PQ,∠APQ=90°,连接BQ,点G为BQ的中点,试猜想线段OG与线段PG的数量关系与位置关系,并证明你的结论.9.如图,平面直角坐标系中,已知点A(a﹣1,a+b),B(a,0),且+(a﹣2b)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)求证:AO=AB;(2)求证:OC=BD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?10.等腰Rt△ABC中,AC=AB,∠BAC=90°,点A、点B分别是y轴、x轴上的两个动点.(1)如图1,若A(0,2),B(1,0),求C点的坐标;(2)如图2,当等腰Rt△ABC运动,直角边AC交x轴于点D,斜边BC交y轴于点E,且点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;(3)如图3,在等腰Rt△ABC不断运动的过程中,直角边AC交x轴于点D,斜边BC交y轴于点E,若BD始终是∠ABC平分线,试探究:线段BD与OA+OD之间存在的数量关系,并说明理由.11.在△ABC中,∠BAC=90°,AB=AC.(1)如图1,若A、B两点的坐标分别是A(0,4),B(﹣2,0),求C点的坐标;(2)如图2,作∠ABC的角平分线BD,交AC于点D,过C点作CE⊥BD于点E,求证:CE=BD;(3)如图3,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q为∠FPC与∠PFC的角平分线的交点,当点P运动时,点Q 是否恒在射线BD上?若在,请证明;若不在,请说明理由.12.已知点A与点C为x轴上关于y轴对称的两点,点B为y轴负半轴上一点.(1)如图1,点E在BA延长线,连接EC交y轴于点D,若BE=8,EC=6,CB=4,求△ADE的周长;(2)如图2,点G为第四象限内一点,BG=BA,连接GC并延长交y轴于F,试探究∠ABG与∠FCA之间有和数量关系?并证明你的结论;(3)如图3,A(﹣3,0),B(0,﹣4),点E(﹣6,4)在射线BA上,以BC 为边向下构成等边△BCM,以EC为边向上构造等腰△CNE,其中CN=EN,∠CNE=120°,连接AN,MN,求证:.13.已知A(0,a)和B(b,0),且a、b满足(a﹣4)2+|b﹣4|=0(1)试通过计算判断△AOB的形状.(2)如图1,若D为OB的中点,过O作AD的垂线交AB于E,连DE,求证:AD=OE+DE.(3)如图2,M、N同时从D点出发,以相同的速度向x轴正方向和负方向运动到如图所示的位置,过O作AM的垂线交AB于E,连NE,求证:∠AMB=∠ONE.14.如图1,在平面直角坐标系中,点B与点C关于x轴对称,点D为x轴上一点,点A为射线CE上一动点,且∠BAC=2∠BDO,过D作DM⊥AB于M.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠BAE;(3)当A点运动时(如图2),的值是否发生变化?若不变化,请求出其值;若变化,请说明理由.15.如图1,在平面直角坐标系中,∠BAC=90°,AB=AC,已知点A点的坐标是(m,n),且m,n满足等式+|m﹣n+1|=0.(1)求点A的坐标;(2)若B点的坐标为(6,0),求点C的坐标;(3)如图2,在(2)的条件下,连接OA,作AD⊥AO,且AD=AO,连接CD,已知点E(3,0),线段AE与CD有何数量关系与位置关系?写出你的结论并加以证明.16.已知,如图,在平面直角坐标系中,点A、B、C分别在坐标轴上,且OA=OB=OC,S△ABC=25.点P从C点出发沿y轴负方向以1个单位/秒的速度向下运动,连接PA、PB,D为线段AC的中点.(1)求D点的坐标;(2)设点P运动的时间为t秒,求当t为何值时,DP与DB垂直相等;(3)若PA=PB,在第四象限内有一动点Q,连QA、QB、QP,且∠QBA=∠PBQ+∠QAB=30°.当Q在第四象限内运动时,判断△APQ的形状,并说明理由.17.在平面直角坐标系中,点A 的坐标为(1,0),点B 的坐标为(0,﹣1),AB=.(1)如图1,以点A 为圆心,线段AB 的长为半径画弧,与x 轴的负半轴交于点C ,过点A 作AH ⊥BC 于H 交y 轴于D ,求点D 的坐标; (2)如图2,在线段OA 上有一点E 满足S △OEB :S △EAB =1:,直线AN 平分△OAB 的外角交BE 于N .求∠BNA 的度数;(3)如图3,动点Q 为A 右侧x 轴上一点,另有在第四象限的动点P ,动点P 、Q ,总满足∠PAB=∠PBA 和∠PQA=∠PAQ .①请画出满足题意的图形;②若点B 在y 轴上运动,其他条件不变,∠ABO=α,请直接用含α的式子表示∠BPQ 的值(不需证明).18.如图所示,在平面直角坐标系中,A点坐标为(﹣2,2).(1)如图(1),在△ABO为等腰直角三角形,求B点坐标.(2)如图(1),在(1)的条件下,分别以AB和OB为边作等边△ABC和等边△OBD,连结OC,求∠COB的度数.(3)如图(2),过点A作AM⊥y轴于点M,点E为x轴正半轴上一点,K为ME延长线上一点,以MK为直角边作等腰直角三角形MKJ,∠MKJ=90°,过点A 作AN⊥x轴交MJ于点N,连结EN.则①的值不变;②的值不变,其中有且只有一个结论正确,请判断出正确的结论,并加以证明和求出其值.19.如图1,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y 轴与G,连OB、OC.(1)判断△AOG的形状,并予以证明;(2)若点B、C关于y轴对称,求证:AO⊥BO;(3)在(2)的条件下,如图2,点M为OA上一点,且∠ACM=45°,BM交y 轴于P,若点B的坐标为(3,1),求点M的坐标.20.如图1,在平面直角坐标系中,已知A(﹣5,0),C(0,﹣4),点B在y=20,点P(m,0),(﹣4<m<0),线段PB绕点P顺时轴正半轴上,满足S△ABC针旋转90°至PD.(1)求证:OB=OC;(2)求点D的坐标;(用含m的式子表示)(3)如图2,连接CD并延长交x轴于点E,求证:∠PDC=45°+∠PBO.21.如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?22.已知:如图1:点A(5,0)B(0,2),AB=AC,∠BAC=90°.(1)求点C的坐标.(2)以AB为斜边作等腰直角△ABD,请直接写出点D的坐标;(3)如图2,若E、F分别在BC、AB上,∠AEC=75°,FE⊥BC.求证:BF=AE.23.在平面直角坐标系中,点A(0,b)、点B(a,0)、点D(d,0)且a、b、c满足++(2﹣d)2=0,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求点A、B、D的坐标;(2)求点E、F的坐标;(3)如图,过P(0,﹣1)作x轴的平行线,在该平行线上有一点Q(点Q在P 的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求的值.24.如图1,A、B分别为x、y轴上的点,O为坐标原点,设OA=a,OB=b,AB=c,(1)若正数a、b、c满足a2+b2+c2﹣6a﹣8b﹣10c+50=0,且OP⊥AB于P,求OP 的长;(2)如图2,若P为线段AB的中点,试探究线段OP与AB间的数量关系,并说明理由.(3)如图3,若P是线段AB上一动点(不与A、B点重合),在射线OP上取一点E,使AE=a,此时∠AOE=∠AEO.在第一象限内,过E作AE的垂线,并截取ED=b,连AD、BD,BD交射线OP于F点.当P点运动时,的值不变,请说明理由,并求这个不变的值.25.如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足.点D为线段OA上一动点,连接CD.(1)判断△ABC的形状并说明理由;(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:;(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求的值.26.如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a﹣t)2+|b﹣t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,求点Q的坐标.27.已知,在平面直角坐标系中,A(a,0)、B(0,b),a、b满足.C 为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE ⊥AB于E.(1)求∠OAB的度数;(2)设AB=6,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值;(3)设AB=6,若∠OPD=45°,求点D的坐标.28.在平面直角坐标系中,A(a,b)在第一象限内,且a、b满足条件:b﹣a=,AB⊥y轴于B,AC⊥x轴于C.(1)求△AOC的面积;(2)如图,E为线段OB上一点,连AE,过A作AF⊥AE交x轴于F,连EF,ED 平分∠OEF交OA于D,过D作DG⊥EF于G,求的值;(3)如图,D为x轴上一点,AC=CD,E为线段OB上一动点,连DA、CE,F是线段CE的中点,若BF⊥FK交AD于K,请问∠KBF的大小是否变化?若不改变,请求其值;若改变,求出变化的范围.29.如图1,在直角坐标系中,A点的坐标为(a,0),B点的坐标为(0,b),且a、b满足.(1)求证:∠OAB=∠OBA.(2)如图2,△OAB沿直线AB翻折得到△ABM,将OA绕点A旋转到AF处,连接OF,作AN平分∠MAF交OF于N点,连接BN,求∠ANB的度数.(3)如图3,若D(0,4),EB⊥OB于B,且满足∠EAD=45°,试求线段EB的长度.30.已知:在直角坐标系中,A为x轴负半轴上的点,B为y轴负半轴上的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数综合应用压轴题
如图1,在平面直角坐标系xoy中,矩形OABC的顶点O是坐标原点,C,A分别在y轴,x轴正半轴上,顶点B的坐标为(km,m)(k,m均为常数,且m﹥0,k≥1),连接AC,过点O作OD⊥AC,垂足为D,沿AD将Rt△AOD翻折,得到Rt△AO´D。

(点O的对应点为点O´)过点O´作O´P⊥AB交AC于点P,交AB于点E。

(1)若P是线段AC的中点,求k的值。

(2)若k=3,连接O´C交AB于点F,设点P,E所在直线为l,试求证:无论m取何值,l总是经过一个定点,并求出该定点坐标。

(3)Q是线段AC上一个动点,连接BQ,O´Q,则是否存在这样的k值,使得△BQO´是等腰直角三角形?若存在,求出Q点坐标(用含有m的式子表示),若不存在,说明理由。

相关文档
最新文档