2020年七年级数学竞赛试卷

合集下载

初中数学 2019-2020学年安徽省蚌埠实验中学竞赛班七年级(下)月考数学试卷(6月份)

初中数学 2019-2020学年安徽省蚌埠实验中学竞赛班七年级(下)月考数学试卷(6月份)

2019-2020学年安徽省蚌埠实验中学竞赛班七年级(下)月考数学试卷(6月份)一、选择题(每题5分,共30分)二.填空题(每题5分,共计30分)A .a <b <cB .c <b <aC .c <a <bD .a <c <b1.(5分)设a =1003+997,b =1001+999,c =21000,则a ,b ,c 之间的大小关系是( )√√√√√A .正数B .负数C .零D .不能确定2.(5分)设有理数a 、b 、c 都不为零,且a +b +c =0,则1b 2+c 2−a2+1c 2+a 2−b2+1a 2+b 2−c2的值是( )A .30B .0C .15D .一个与p 有关的代数式3.(5分)如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值是( )A .36个B .40个C .44个D .48个4.(5分)由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a +c =b +d .这样的四位数共有( )A .2014B .2015C .2016D .20175.(5分)在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是( )A .12B .23C .25D .356.(5分)10个全等的小正方形拼成如图所示的图形,点P 、X 、Y 是小正方形的顶点,Q 是边XY 一点.若线段PQ 恰好将这个图形分成面积相等的两个部分,则XQQY的值为( )7.(5分)关于x 的不等式组V W X 4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是三.解答题(第13题20分,其余每题14分,共计90分)8.(5分)已知a =12019+2018,b =12019+2019,c =12019+2020,则代数式a 2+b 2+c 2-ab -bc -ac 的值为 .9.(5分)已知x 、y 为正整数,且满足2x 2+3y 2=4x 2y 2+1,则x 2+y 2=.10.(5分)使代数式x 2+11x +1的值为整数的全体自然数x 的和是.11.(5分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2…,第n 个三角形数记为x n ,则x 10=;x n +x n +1=.12.(5分)已知S =111980+11981+11982+…+12012,则S 的整数部分是 .13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数; (2)证明:98n +4-78n +4能被8整除(n 为正整数).14.(14分)已知实数a 、b 、c ,满足abc ≠0且(a -c )2-4(b -c )(a -b )=0,求a +cb的值.15.(14分)对非负实数x “四舍五入”到个位的值记为[x ],即当n 为非负整数时,若n -12≤x <n +12,则[x ]=n .如:[2.9]=3,[2.4]=2,[x ]=n ,求满足[x ]=43x -2的所有实数x 的值.16.(14分)有n 个连续的自然数1,2,3,…,n ,若去掉其中的一个数x 后,剩下的数的平均数是16,则满足条件的n 和x 的值分别是.(参考公式:S n =1+2+3+…+n =n (n +1)2)17.(14分)设a +b +c =6,a 2+b 2+c 2=14,a 3+b 3+c 3=36. 求(1)abc 的值; (2)a 4+b 4+c 4的值.18.(14分)如图1,已知a ∥b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD ⊥BC 于E .(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;∠BCN,则∠CIP、∠I (3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=12PN、∠CNP之间的数量关系是.。

河南淮滨县第一中学2020年12月七年级数学竞赛试题(含答案)

河南淮滨县第一中学2020年12月七年级数学竞赛试题(含答案)

淮滨县第一中学2020年12月七年级数学竞赛试题考试时间:2020年12月30日一、选择题(本题共计12 小题,每题3 分,共计36分,)1. 下列说法:①−5πR2的系数是−5;②两个数互为倒数,则它们的乘积为1;③若a,b互为相反数,则ba=−1;④用四舍五入法将数3.14159精确到千分位是3.1416;⑤两个有理数比较,绝对值大的反而小;⑥若a为任意有理数,则a≤|a|,其中正确的有( )A.2个B.3个C.4个D.5个2. 李白出生于公元701年,我们记作+701,那么杨雄出生于公元前53年,可记作()A.53B.−754C.−53D.6483. 下列计算:①(−1)×(−2)×(−3)=6;②(−36)÷(−9)=−4;③23×(−94)÷(−1)=32;④(−4)÷12×(−2)=16.其中正确的个数是( )A.4B.3C.2D.14. 若单项式13a m+1b3与−2a3b n的和仍是单项式,则方程x−7n−1+xm=1的解为( )A.x=−23B.x=23C.x=−29D.x=295. 小文在计算某多项式减去2a2+3a−5的差时,误认为是加上2a2+3a−5,求得答案是a2+a−4(其他运算无误),那么正确的结果是( )A.−a2−2a+1B.−3a2−5a+6C.a2+a−4D.−3a2+a−46. 已知x=(14−15)×(−20),A=2x2−x+1,B=x2+x,则2A−5B的值为( )A.5B.6C.7D.87. 3≤m≤5,化简|m−5|+|2m−6|的结果是( )A.m−1B.1−mC.3m−11D.11−3m要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完.设原有树苗x 棵,则下列方程正确的是( ) A.5(x +21−1)=6(x −1) B.5(x +21)=6(x −1) C.5(x +21−1)=6xD.5(x +21)=6x9. 某书店把一本新书按标价的八折出售,仍可获利10%,若该书的进价为24元,则标价为( ) A.30元B.31元C.32元D.33元10. 下列说法正确的个数 ( )①线段有两个端点,直线有一个端点;②点A 到点B 的距离就是线段AB ;③两点之间线段最短;④ 若AB =BC ,则点B 为线段AC 的中点;⑤同角(或等角)的余角相等. A.4个B.3个C.2个D.1个11. 若(m +3)x |m|−2−8=2是关于x 的一元一次方程,则m 的值是( ) A.3B.−3C.±3D.不能确定12. 关于式子−2a n b 3(n 为正整数)的结论,不正确的是( )A.它的系数是−23B.若a =b =−12,n =3时,它的值为−124 C.若它是七次单项式,则n =6 D.它不是整式二、 填空题 (本题共计 4 小题 ,每题 3 分 ,共计12分 , ) 13. 若a +b +c <0,abc >0,则a|a|+2ab|ab|+3abc|abc|的值为________. 14. 一组单项式:a ,−2a 2,3a 3,−4a 4,⋯,按此规律排列下去,第2020 个单项式为________.15. 小李在解关于x 的方程5a −x =13时,误将−x 看作+x ,得方程的解为x =−2,则原方程的解为________.16. 一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,设用x 立方米木料做桌面,那么桌腿用木料(5−x)立方米,这里x 应满足的方程是________. 三、 解答题 (本题共计 6 小题 ,共计52分 , )(1)7x−2x=8+2;(2)4x−3(5−2x)=7x;(3)2x−13=x4;(4)1−x2=4x−13−1.18. (8分)化简求值:5x2−[x2−2x−2(x2−3x+1)],其中3x2−2x=5.19.(8分) 已知在数轴上有A,B两点,点A表示的数为4,点B在A点的左边,且AB=12.若有一动点P从数轴上点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)写出数轴上点B表示的数为________,P所表示的数为________(用含t的代数式表示);(2)若点P,Q分别从A,B两点同时出发,问点P运动多少秒与Q相距3个单位长度?(3)若点P,Q分别从A,B两点同时出发,分别以BQ和AP为边,在数轴上方作正方形BQCD和正方形APEF如图2所示.求当t为何值时,两个正方形的重20.(8分) 在某次作业中有这样的一道题:“如果代数式5a+3b的值为−4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式= 2a+2b+8a+4b=10a+6b,把式子5a+3b=−4两边同乘以2,得10a+ 6b=−8,仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2020=________;(2)已知a−b=−2,求3(a−b)−5a+5b+6的值;(3)已知a2+2ab=3,ab−b2=−4,求a2+32ab+12b2的值.21.(8分) 某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.(1)求这批零件的个数;(2)车间按每天加工200个零件的速度加工了m个零件后,将加工速度提高到每天加工250个零件,结果比原计划提前6天完成了生产任务,求m的值.22.(8分) 已知x=−3是关于x的方程(k+3)x+2=3x−2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长;(3)在(2)的条件下,已知点A所表示的数为−2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案与试题解析淮滨县第一中学2020年12月七年级数学竞赛试题一、选择题(本题共计12 小题,每题 3 分,共计36分)1.【答案】A【解析】根据题目中各个小题中的说法,可以判断是否正确,从而可以解答本题.【解答】解:①−5πR2的系数是−5π,故①错误;②两个数互为倒数,则它们的乘积为1,故②正确;③当a,b都不等于0时,若a,b互为相反数,则ba =−1;若a=b=0,则ba无意义,故③错误;④用四舍五入法将数3.14159精确到千分位是3.142,故④错误;⑤两个负有理数比较,绝对值大的反而小,两个正有理数比较,绝对值大的这个数就大,故⑤错误;⑥当a≥0时,a−|a|=a−a=0,当a<0时,a−|a|=a−(−a)=a+a=2a<0,故若a为任意有理数,则a≤|a|,故⑥正确.故选A.2.【答案】C【解析】此题暂无解析【解答】解:公元701年用+701表示,则公元前用负数表示,则公元前53年表示为−53.故选C.3.【答案】C根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(−1)×(−2)×(−3)=2×(−3)=−6,故①计算错误;②(−36)÷(−9)=4,故②计算错误;③23×(−94)÷(−1)=(−32)÷(−1)=32,故③计算正确;④(−4)÷12×(−2)=(−8)×(−2)=16,故④计算正确.综上,正确的个数是2个.故选C.4.【答案】A【解析】由题意得到两单项式为同类项,利用同类项定义确定出m与n的值,代入方程计算即可求出解.【解答】解:∵单项式13a m+1b3与−2a3b n的和仍是单项式,∴单项式13a m+1b3与−2a3b n为同类项,即m=2,n=3,代入方程得:x−73−1+x2=1,去分母得:2(x−7)−3(1+x)=6,去括号得:2x−14−3−3x=6,移项合并得:−x=23,解得:x=−23.故选A.5.【答案】B【解析】【解答】=a2+a−4−2a2−3a+5=−a2−2a+1,则正确的结果为(−a2−2a+1)−(2a2+3a−5)=−a2−2a+1−2a2−3a+5=−3a2−5a+6.故选B.6.【答案】D【解析】根据有理数混合运算计算出x的值,再利用整式加减法对化简2A−5B,再将x的值代入求解.【解答】解:∵x=(14−15)×(−20),∴x=120×(−20)=−1.∵A=2x2−x+1,B=x2+x,∴2A−5B=2(2x2−x+1)−5(x2+x)=4x2−2x+2−5x2−5x=−x2−7x+2=−(−1)2−7×(−1)+2=8.故选D.7.【答案】A【解析】利用绝对值的意义得到|m−5|+|2m−6|=−(m−5)+2m−6,然后去括号后合并即可.解:由3≤m≤5得m−5≤0,2m−6≥0,∴|m−5|+|2m−6|=−(m−5)+2m−6=−m+5+2m−6=m−1.故选A.8.【答案】A【解析】此题暂无解析【解答】解:因为设原有树苗x棵,则路的长度为5(x+21−1)米,由题意,得5(x+21−1)=6(x−1),故选A.9.【答案】D【解析】设这本新书的标价为x元,依题意得:0.8x−24=24×10%,求解即可. 【解答】解:设这本新书的标价为x元,依题意得:0.8x−24=24×10%,解得:x=33.故选D.10.【答案】C【解析】此题暂无解析①线段有两个端点,直线没有端点,故①错误; ②点A 到点B 的距离就是线段AB 的长度,故②错误; ③两点之间线段最短,正确;④若AB =BC ,点B 在线段AC 上时,则点B 为线段AC 的中点,故④错误; ⑤同角(或等角)的余角相等,正确. 故选C. 11.【答案】A 【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax +b =0(a ,b 是常数且a ≠0). 【解答】解:由(m +3)x |m|−2−8=2是关于x 的一元一次方程,得 |m|−2=1,且m +3≠0. 解得m =3, 故选:A . 12.【答案】D 【解析】根据单项式的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数对各小题分析判断即可. 【解答】 解:A ,−2a n b 3系数为−23,故A 正确;B ,当a =b =−12,n =3时,−2a n b 3=−2×(−12)3×123=−124,故B 正确;C ,由于−2a n b 3的次数为n +1,所以若它是七次单项式,即n +1=7,则n =6,故C 正确; D ,−2a n b 3是整式,故D 错误.二、填空题(本题共计4 小题,每题3 分,共计12分)13.【答案】4或0或2【解析】由a+b+c<0,abc>0,得到a,b,c三个数必定是一正两负,分析a,b,c的符号,去掉绝对值进行求解即可.【解答】解:∵a+b+c<0,abc>0,∴a,b,c三个数必定是一正两负,∴当a<0,b<0,c>0时,ab>0,此时a|a|+2ab|ab|+3abc|abc|=−1+2+3=4;当a<0,b>0,c<0时,ab<0,此时a|a|+2ab|ab|+3abc|abc|=−1−2+3=0;当a>0,b<0,c<0时,ab<0,此时a|a|+2ab|ab|+3abc|abc|=1−2+3=2.故答案为:4或0或2.14.【答案】−2020a2020【解析】利用已知单项式得出其次数与其所在个数的关系,系数偶数个为负数,奇数个为正,进而得出答案.【解答】解:由题中式子可得规律,第n个单项式的系数为n×(−1)n+1,a的指数为n,所以第2020个单项式为:−2020a2020.故答案为:−2020a2020.15.【答案】x=2【解析】根据题意,方程5a+x=13的解是x=−2,可先得出a=3,然后,代入原方程,解出即可;【解答】解:由题意得,5a−2=13,解得,a=3,∴原方程为15−x=13,解得:x=2.故答案为:x=2.16.【答案】4×50x=300(5−x)【解析】此题暂无解析【解答】设用x立方米木料做桌面,那么桌腿用木料(5−x)立方米,所以4×50x=300(5−x).三、解答题(本题共计6 小题,共计52分)17.【答案】解:(1)合并同类项,得5x=10,系数化为1,得x=2.(2)去括号,得4x−15+6x=7x,移项,得4x+6x−7x=15,合并同类项,得3x=15.系数化为1,得x=5.(3)去分母,得8x−4=3x,移项,得8x−3x=4,合并同类项,得5x=4,.系数化为1,得x=45(4)去分母,得3(1−x)=2(4x−1)−6,去括号,得3−3x=8x−2−6,移项,得−3x−8x=−2−6−3,合并同类项,得−11x=−11,系数化为1,得x=1.【解析】合并同类项,得5x=10系数化为1,得x=2去括号,得4x−156x=7移项,得4x+6x−7=11合并同类项,得3x=1.系数化为1,得x=5去分母,得8x−4=3x移项,得8x−3x=4合并同类项,得5x=系数化为1,得x=45去分母,得3(1−x)=2(4x−1)−6去括号,得3−3t=8x−2−6.移项,得−3x−8x=−2−6−3合并同类项,得−11=−11.系数化为1,得x=1【解答】解:(1)合并同类项,得5x=10,系数化为1,得x=2.(2)去括号,得4x−15+6x=7x,移项,得4x+6x−7x=15,合并同类项,得3x=15.系数化为1,得x=5.(3)去分母,得8x−4=3x,移项,得8x−3x=4,合并同类项,得5x=4,.系数化为1,得x=45(4)去分母,得3(1−x)=2(4x−1)−6,去括号,得3−3x=8x−2−6,移项,得−3x−8x=−2−6−3,合并同类项,得−11x=−11,系数化为1,得x=1.18.【答案】解:5x2−[x2−2x−2(x2−3x+1)]=5x2−(x2−2x−2x2+6x−2)=5x2−(−x2+4x−2)=5x2+x2−4x+2=6x2−4x+2,∵3x2−2x=5,∴原式=2(3x2−2x)+2=2×5+2=12.【解析】原式去括号合并得到最简结果,再用整体代入法求出式子的值.【解答】解:5x2−[x2−2x−2(x2−3x+1)]=5x2−(x2−2x−2x2+6x−2)=5x2−(−x2+4x−2)=5x2+x2−4x+2=6x2−4x+2,∵3x2−2x=5,∴原式=2(3x2−2x)+2=2×5+2=12.19.【答案】−8,4−t(2)依题意得,点P表示的数为4−t,点Q表示的数为−8+2t,①若点P在点Q右侧时:(4−t)−(−8+2t)=3,解得:t=3,②若点P在点Q左侧时:(−8+2t)−(4−t)=3,解得:t=5综上所述,点P运动3秒或5秒时与Q相距3个单位长度.4.8或24【解析】(1)根据题目中给出的条件及P的运动规律可直接得出.(2)分别根据P、Q两点的运动规律,用变量t表示这两点所表示的数.求两点间距离即把右边点表示的数减去左边点表示的数,分情况列一次方程即可求得.(3)由点的运动到边的变化进而到正方形面积的变化,找到符合题意的运动位置画出图形进行分类讨论,由面积之间的关系列方程即可求得.【解答】解:(1)因为点B在点A的左边,AB=12,点A表示4,则点B表示的数为4−12=−8;动点P从数轴上点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,则点P表示的数为4−t.故答案为:−8;4−t.(2)依题意得,点P表示的数为4−t,点Q表示的数为−8+2t,①若点P在点Q右侧时:(4−t)−(−8+2t)=3,解得:t=3,②若点P在点Q左侧时:(−8+2t)−(4−t)=3,解得:t=5综上所述,点P运动3秒或5秒时与Q相距3个单位长度.(3)①如图1,P,Q均在线段AB上,因为两正方形有重叠部分,所以点P在点Q的左侧,PQ=(−8+2t)−(4−t)=3t−12,又因为AP=4−(4−t)=t,重叠部分的面积为正方形APEF面积的一半,t,所以3t−12=12解得:t=4.8.②如图2,P,Q均在线段AB外,∴AB=12,AP=t,t,∴12=12解得:t=24.故答案为:4.8或24.20.【答案】2020 (2)∵a−b=−2,∴原式=3(a−b)−5(a−b)+6=−2(a−b)+6 =10.(3)∵a2+2ab=3,ab−b2=−4,(ab−b2)∴原式=(a2+2ab)−12×(−4)=5 .=3−12【解答】解:(1)∵a2+a=0,∴原式=0+2020=2020.故答案为:2020.(2)∵a−b=−2,∴原式=3(a−b)−5(a−b)+6=−2(a−b)+6 =10.(3)∵a2+2ab=3,ab−b2=−4,(ab−b2)∴原式=(a2+2ab)−12=3−1×(−4)=5 .221.【答案】解:(1)设这批零件有x个,则由题意得x150−x200=5,解得x=3000.答:这批零件有3000个.(2)由题意得m200+3000−m250=3000150−6,解得m=2000.答:m的值是2000.【解析】左侧图片未给出解析.左侧图片未给出解析.【解答】解:(1)设这批零件有x个,则由题意得x150−x200=5,解得x=3000.答:这批零件有3000个.(2)由题意得m200+3000−m250=3000150−6,解得m=2000.答:m的值是2000.22.【答案】解:(1)把x=−3代入方程(k+3)x+2=3x−2k得:−3(k+3)+2=−9−2k.解得:k=2.(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm.当C 在线段AB 上时,如图:∵ D 为AC 的中点,CD =12AC =1cm ,∴ 线段CD 的长为1cm .(3)在(2)的条件下,∵ 点A 所表示的数为−2 ,AD =CD =1,AB =6,∴ D 点表示的数为−1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,∴ 此时P 与Q 在数轴上表示的数分别是−2−2x ,4−4x 分两种情况: ①当点D 在PQ 之间时,∵PD =2QD ,∴ −1−(−2−2x )=2[4−4x −(−1)],解得x =910; ②当点Q 在PD 之间时,∵ PD =2QD ,∴ −1−(−2−2x )=2[−1−(4−4x )],解得x =116.答:当时间为910或116秒时,有PD =2QD.【解答】解:(1)把x =−3代入方程(k +3)x +2=3x −2k 得:−3(k +3)+2=−9−2k. 解得:k =2.(2)当k =2时,BC =2AC ,AB =6cm ,∴ AC =2cm ,BC =4cm .当C 在线段AB 上时,如图:∵ D 为AC 的中点,CD =12AC =1cm , ∴ 线段CD 的长为1cm .(3)在(2)的条件下,∵ 点A 所表示的数为−2 ,AD =CD =1,AB =6,∴ D 点表示的数为−1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,∴ 此时P 与Q 在数轴上表示的数分别是−2−2x ,4−4x 分两种情况: ①当点D 在PQ 之间时,∵PD =2QD ,∴ −1−(−2−2x )=2[4−4x −(−1)],解得x =910; ②当点Q 在PD 之间时,∵ PD =2QD ,∴ −1−(−2−2x )=2[−1−(4−4x )],解得x =116.答:当时间为910或116秒时,有PD =2QD.。

七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区

七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区

惠城区2019-2020学年度第一学期期末教学质量检测七年级数学试题说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内. 2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1.2-等于( )A .-2B .12-C .2D .122.如图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .3.地球上的海洋面积约为36100000km 2,用科学记数法可表示为( )km 2A .3.61×106B .3.61×107C .0.361×108D .3.61×109 4.下面运算正确的是( )A .3ab +3ac =6abcB . 4a 2b -4b 2a =0C .2x 2+7x 2=9x 4D .3y 2-2y 2=y 2 5.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y7.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x +3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x +3)=68.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店请你帮助他选择一条最近的路线是( ) A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B第8题图 第9题图9.如图,把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°10. 下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .58B .66C .74D .112二、填空题:(本大题共6小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.13-______-0.3 ( 用“<”,“>”,“=”填空 ). 12.若212n ab +与3222n a b --是同类项,则=n .13.小红在计算3+2a 的值时,误将“+”号看成“-”号,结果得13,那么3+2a 的值应为 .14.一个角的5倍等于71°4′30″,这个角的余角是 .15.因为∠1+∠2=180°,∠2+∠3=180°,所以∠1=∠3,根据是 . 16.若25x xy -=,426xy y +=-,则23x xy y -+= .B2 8424 62246 844m 6三、解答题:(每小题6分,共18分) 17.计算:2321353752⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:()()222321231x y x y xy ---+,其中,12x =-,2y =-19.如图,小雅家(图中点O 处)门前有一条东西走向的公路,测得学校(图中点A 处)在距她家北偏西60°方向的500米处,文具商店在距她家正东方向的1500米处,请你在图中标出文具商店的位置(保留画图痕迹).四、解答题:(每小题7分,共21分) 20.已知方程23101124x x -+-=与关于x 的方程23xax -=的解相同,求a 的值.21.如图,点M 为AB 中点,BN =12AN ,MB =3 cm ,求AB 和MN 的长.22.100cm )年数(n )高度(cm ) 1 100+12 2 100+24 3 100+36 4 100+48 …………假设以后各年树苗高度的变化与年数的关系保持上述关系,回答下列问题:⑴ 生长了10年的树高是 cm ,用式子表示生长了n 年的树高是 cm ⑵ 种植该种树多少年后,树高才能达到2.8m ?五、解答题:(每小题9分,共27分)23.某电器商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,故进货量减少了10台. ⑴ 商场第二次购进这款电风扇时,进货价为 元; ⑵ 这两次各购进电风扇多少台?⑶ 商场以210元/台的售价卖完这两批电风扇,商场获利多少元?24. 如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、 ∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数;⑶ 求∠AOB 与∠AOC 的度数.25.阅读下面材料并回答问题.Ⅰ 阅读:数轴上表示-2和-5的两点之间的距离等于(-2)-(-5)=3 数轴上表示1和-3的两点之间的距离等于1-(-3)=4一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数. Ⅱ 问题:如图,O 为数轴原点,A 、B 、C 是数轴上的三点,A 、C 两点对应的数互为相反数,且A 点对应的数为-6,B 点对应的数是最大负整数. ⑴ 点B 对应的数是 ,并请在数轴上标出点B 位置;⑵ 已知点P 在线段BC 上,且PB =25PC ,求线段AP 中点对应的数; ⑶ 若数轴上一动点Q 表示的数为x ,当QB =2时,求22100a c x bx +⋅-+的值(a,b,c 是点A 、B 、C 在数轴上对应的数).密封线内不要答题2019~2020学年度第一学期期末教学质量检查七年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11.12.13.14.15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:四、解答题(二)(本题共3小题,每小题7分,共21分)20.解:21.解:22.解:五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:五、解答题(三)(本题共3小题,每小题9分,共27分)24.解:25.解:密封线内不要答题惠城区2019-2020学年度第一学期期末教学质量检测七年级数学答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABDDADBDC二、填空题:(本大题共6小题,每小题4分,共24分)11. < 12.3 13.-714. 75°47′6″ 15.同角的补角相等 (或等量减等量差相等)16.12三、解答题:(每小题6分,共18分) 17.解:原式=()118-+-……4分 =19=-……6分18.解:原式=22263622x y x y xy --+- =225xy -……4分当12x =-,2y =-时, 原式=()2122592⎛⎫⨯-⨯--=- ⎪⎝⎭……6分19.解:……5分如图点B 为文具商店的位置……6分四、解答题:(每小题7分,共21分)20.解:解方程23101124x x -+-=,得3x =-……4分 将3x =-代入方程23xax -=,得231a +=- 解得:1a =-……7分21.解:∵点M 为AB 中点∴ AB =2MB =6……3分 ∴ AN +NB =6∵ BN =12AN ∴ 2BN +NB =6 ∴ NB =2……6分∴ MN =MB -NB =1……7分22解.⑴ 220 cm ,(100+12 n ) cm ……4分⑵ 设种植该种树n 年后,树高达到2.8m 由100+12 n =280,得 n =15答:种植该种树15年后,树高才能达到2.8m ……7分五、解答题:(每小题9分,共27分)23.解:⑴ 180元……1分⑵ 设第一次购进了x 台,根据题意得:150x =(150+30)(x -10) ……4分化简得 30x =1800, 解得 x =60.所以 x -10=60-10=50.答:第一次购进了60台,第二次购进了50台. ……5分 ⑶(210-150)×60+(210-180)×50=3600+1500=5100(元). ……7分24.解:⑴ ∠COD =∠AOB .理由如下: 如图 ∵点O 在直线AD 上∴∠AOC +∠COD =180°又∵∠AOC 与∠AOB 互补 ∴∠AOC +∠AOB =180° ∴∠COD =∠AOB⑵ ∵ OM 、ON 分别是∠AOC 、∠AOB 的平分线 ∴∠AOM =∠COM ,∠AON =∠BON∴∠BOC =∠BOM +∠COM11 =∠BOM +∠AOM=(∠MON -∠BON )+(∠MON +∠AON ) =2 ∠MON=112°⑶由⑴得:∠COD =∠AOB∵ ∠AOB +∠BOC + +∠COD =180°∴ ∠AOB =12(180°-∠B OC )=12(180°-112°)=34° ∴ ∠AOC =180°-∠AOB =180°-34°=146°.25.解:⑴点B 对应的数是 -1 ……1分点B 位置如图:……2分⑵ 设点P 对应的数为p∵ 点P 在线段BC 上∴ PB =p -(-1)=p +1PC =6-p ∵ PB =25PC ∴ p +1=25(6-p ) ∴p =1设AP 中点对应的数为t则t -(-6)=1-t∴ t =-2.5∴AP 中点对应的数为-2.5……5分⑶ 由题意:a +c =0,b =-1当点Q 在点B 左侧时,-1 - x =2,x =-3∴ 22100a c x bx +⋅-+=0-(-1)×(-3)+2=-1……7分 当点Q 在点B 右侧时,x -(-1)=2,x =1∴ 22100a c x bx +⋅-+=0-(-1)×1+2=3……9分。

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析一、代数部分。

1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。

- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。

- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。

- 那么a^b = 3^-2=(1)/(9)。

2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。

- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。

- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。

- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。

3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。

- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。

4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。

- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。

七年级数学第四周滚动检测试卷

七年级数学第四周滚动检测试卷

七年级数学(第四周)滚动检测试卷一、选择题(本大题共9小题,每小题4分,满分36分)1.冰箱冷藏室的温度零上5℃记作+5℃,保鲜室的温度零下1℃记作()A.+6℃B.﹣1℃C.﹣11℃D.﹣6℃2.是2022的()A.相反数B.绝对值C.倒数D.平方根3.在﹣,2,0,﹣1这四个数中,最小的数是()A.B.2C.0D.﹣4.根据第七次全国人口普查结果,至2020年11月1日零时,广州11个区中,人口超过300万的区有1个,为白云区.将300万用科学记数法表示应为()A.300.0×104B.30.0×105C.3.0×106D.0.3×1075.下列算式中,运算结果为负数的是()A.﹣(﹣2)3B.﹣|﹣1|C.﹣(﹣)D.(﹣3)26.当a<0时,下列式子①a2>0;②a2=﹣a2;③a2=(﹣a)2;④a3=﹣a3;⑤(﹣a)3=a3;⑥|a|=a中,正确的个数有()A.1B.2C.3D.47.观察下列算式:21=2 22=4 23=8 24=16 25=32 26=64 27=128 28=256…,根据上述算式中的规律,你认为22011的末位数字是()A.2B.4C.6D.88.若|m﹣n|=n﹣m,且|m|=4,|n|=3,则m+n=()A.1或﹣1B.﹣1或7C.1或﹣7D.﹣1或﹣79.若m满足方程|2019﹣m|=2019+|m|,则|m﹣2020|等于()A.m﹣2020B.﹣m﹣2020C.m+2020D.﹣m+2020二、填空题(本大题共6小题,每小题5分,满分30分)10.若x,y为有理数,且|x+2|+(y﹣2)2=0,则()2021的值为.11.观察数列:﹣2,4,﹣8,16,……;第7个数为.12.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,猜猜看,第四次后剩下的长度是第十次后剩下长度的倍.13.用四舍五入法,将9.835精确到十分位的近似数是.14.有理数a,b,c在数轴上的对应点如图所示,则|a﹣b|﹣|a+b|+|b﹣c|的结果_______.15.若2a+|4﹣5a|+|1﹣3a|的值是一个定值,求a的取值范围_____________.三、计算题(本大题满分16分)16.①﹣2.4+(﹣3.7)+(﹣4.6)+5.7 ②③17.观察下列算式:22﹣02=4=4×1 ,42﹣22=12=3×4,62﹣42=20=5×4,82﹣62=28=7×4(1)按照此规律,写出第五个等式________;(2)按照此规律,写出第n个等式________.18.(1)已知点P为数轴上任一动点,点P对应的数记为m,若点P与表示有理数﹣2的点的距离是2.5个单位长度,则m的值为;(2)已知点P为数轴上任一动点,点P对应的数记为m,若数轴上点P位于表示﹣5的点与表示2的点之间,则|m﹣2|+|m+5|=;19.(1)已知点A,B,C,D在数轴上分别表示数a,b,c,d,四个点在数轴上的位置如图所示,若|a﹣d|=12,|b﹣d|=7,|a﹣c|=9,则|b﹣c|等于.(2)已知点A,B,C在数轴上表示数分别为:﹣3,﹣4,9一动点Q从原点O出发,沿数轴以每秒钟1个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度……,求Q 点运动几秒钟后到点A、B、C各点距离之和最短?。

江苏省江阴市2020年第五届《优胜杯》俱乐部竞赛七年级数学试卷(2020.5)

江苏省江阴市2020年第五届《优胜杯》俱乐部竞赛七年级数学试卷(2020.5)
3

线
年级

学校

20.(本题满分 13 分)老师带着两名学生到离学校 33 千米远的博物馆参观,老师骑一辆摩托车,速度为 25 千米/时,这辆摩托车后座可带一名学生,带人后的速度为 20 千米/时,学生步行的速度为 5 千米/ 时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过 3 个小时.


A.45°
B.60°
C.75°
D.90°
7.下列图形是将正三角形按一定规律排列的,则第 4 个图形中所有正三角形的个数有 ( )
A.160 个
B.161 个
C.162 个
D.163 个
C A
准考证号


线
年级

学校

B
(第 6 题)
(第 7 题)
8.如图,△ABC 中,AB=2,BC=3,CD⊥AB 于 D,P 是 AC 上任意一点(P 不与 A、C 重合),过点 P
(1)1×1 3+3×1 5+5×1 7+…+(2n-1)1(2n+1);
(2)①小明在一次数学活动中,为了求12+212+213+214+…+21n的值,设计了如图所示的图形.请你
利用这个几何图形求12+212+213+214+…+21n的值为

②运用上面的结论,试求34+38+136+332+634+1328+2356+5132的值.
1
化简│a-c│+│c-b│-│a-b│的结果是

12.如图,A、B、C、D、E、F、G、H 分别是三个边长相等的正方形的顶点,以其中任意两点为端点,
共可得
条线段,其中包括
种不同长度的线段.
13.已知 x=2n+2+2n,y=2n-1+2n-3,其中 n 为整数,则用含 x 的代数式表示 y=

湖南省长沙市师大附中教育集团2020年“攀登杯”竞赛七年级学生学科素养综合评价数学试卷

湖南省长沙市师大附中教育集团2020年“攀登杯”竞赛七年级学生学科素养综合评价数学试卷

2020年湖南师大附中教育集团初中七年级学生学科素养综合评价数 学总分:150分 时量:120分钟第一试(100分)一、选择题(每小题3分,共27分)1.下列等式变形;①若a b =,则a b x x =;②若a b x x =,则a b =;(③若47a b =,则74a b =;④若74a b =则74a b =.其中一定正确的个数是( )A.1个B.2个C.3个D.4个2.把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若32EFB ∠=,则FGC ∠为( )A.32B.48C.52D.643.不等式50x --<的解集在数轴上表示正确的是( )A. B. C. D.4.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是( )A.▲▲▲▲B.▲▲▲▲▲C.●●▲D.●▲▲▲5.方程组2,3.x y M x y +=⎧⎨+=⎩的解为1,.x y N =⎧⎨=⎩则被遮盖的两个数M 、N 分别为( ) A.4,2 B.1,3 C.2,3 D.2,46.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( ) A.()()260102601068x ππ+++= B.()26026086x ππ+⨯= C.()()2601062608πππ+⨯=+⨯ D.()()26082606x x ππ-⨯=+⨯7.如图,点()6,0A -和点()0,4B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,当PC PD +最小时,点P 的坐标为( )A.()3,0-B.()6,0-C.3,02⎛⎫- ⎪⎝⎭D.5,02⎛⎫- ⎪⎝⎭8.关于x 的方程()16326x x a x ⋅=--无解,则a 的值是( ) A.1 B.1- C.1± D.1a ≠9.如图,45AOB ∠=,点M 、N 分别在射线OA 、OB 上,6MN =,OMN ∆的面积为12,P 是直线MN 上的动点,点P 关于OA 对称的点为1P ,点P 关于OB 对称的点为2P ,当点P 在直线NM 上运动时,12OPP ∆的面积最小值为( )A.6B.8C.12D.18第7题图 第9题图 第11题图二、填空题(共9小题,27分)10.()224x -互为相反数,那么2x y -的平方根是________. 11.如图,ABC ACB ∠=∠,AD 、BD 、CD 分别平分ABC ∆的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论:①//AD BC ;②2ACB ADB ∠=∠,③90ADC ABD ∠=-∠;④12BDC BAC ∠=∠.其中正确的结论有________.(填序号)12.若533m x y +与21n y y +是同类项,则()2017m n mn ++=________.13.找出下列各个图形中数的规律,依此,a 的值为________.14.我们知道下面的结论:若m n a a =(0a >,且1a ≠),则m n =.利用这个结论解决下列问题:设23m =,26n =,212p =.现给出m ,n ,p 三者之间的三个关系式:①2m p n +=,②23m n p +=-,③22n mp -=.其中正确的是________.(填编号)15.如图,把ABC ∆沿EF 翻折,叠合后的图形如图.若60A ∠=,180∠=,则2∠的度数为________.16.如果a ,b 为定值,关于x 的一次方程2236kx a x bk +--=,无论k 为何值时,它的解总是1,则2a b +=________. 17.如图,长方形ABCD 中,6AB CD ==,10BC AD ==,E 为CD 边上,且3CD CE =,点P 、Q 为BC 边上两个动点,且2PQ =,当BP =________时,四边形APQE 的周长最小.第15题图 第17题图18.我们称使2323a b a b ++=+成立的一对数a 、b 为“相伴数对”,记为(),a b .如:当0a b ==时,等式成立,记为()0,0,若(),3a 是“相伴数对”,则a 的值为________.三、解答题(本大题共4小题,共46分,10,12,12,12分)19.如图,在33⨯的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x ,y 的值;(2)在备用图中完成此方阵图.20.某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A 、B 、C 三种不同价格的彩票,进价分别是A 彩票每张1.5元,B 彩票每张2元,C 彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 型彩票一张获手续费0.5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年第一学期
七年级数学竞赛试卷
(时间:100分满分:100分)
一、选择题(每小题3分,共24分)
1、下列计算中正确的是()
A .
B . C.(-a)3=-a3 D.(-a)2=-a2
2、在解方程时,去分母正确的是()
A .
B .
C .
D .
3、据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)()
A .元
B .元
C .元
D .元
4、七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人。

如果增加一辆客车,每辆正好坐45人,则七年级共有学生()
A.240人
B.300人
C.360人
D.420人
5、有理数的大小关系如图2所示,则下列式子中一定成立的是()
A、a+b+c>0
B、
c
b
a< +
C、
c
a
c
a+
=
-
D、
a
c
c
b-
>
-
6、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是()
A、1
B、2
C、3
D、4
7、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我们羊数
图2
就一样了”。

乙回答说:“最好还是把你的羊给我一只,我的羊数就是你的羊数的2倍”。

若设乙有只羊,则下列方程正确的是 ( ) A .
B .
C .
D .
8、若三个有理数a、b、c之积是负数,其和是正数,当x =
c
c b b a a ++时,则
( )
A .-89
B .0
C .98
D .-98
二、填空题(每小题4分,共32分)
9、当x=1时,代数式ax 3
+bx+1的值为2012.则当x=-1时,代数式ax 3
+bx+1 的值为_______
10、若代数式 (m-2)x 2
+5y 2
+3 的值与字母的取值无关,则=_______ 11、 计算:若a 与b 互为相反数,c 是最大的负整数,d 的绝对值是1. 求
()()=--++d c b a 22
1
20152014 ______ 12、 若多项式 3x 2
-4x+6 的值为9,则多项式 的值为_______ 13、如果关于的方程2x 2+3x-m=0,的解是x=-1,则
______
14、若有理数、满足,则 3a 2b 4-3b 4a 2 的值为 ______ 15、 若(a-2)2+(2a-b-3)2=0则关于x 的一元一次方程方程ax-2b+3=0
的解______
16、 图中的□、△、○各代表一个数字,且满足以下三个等式:
□+□+△+○=17 □+△+△+○=14
□+△+○+○=13,则□代表的数字是______。

______
29219=+-x x
三、解答题(共44分)
17、(4分)图案设计:请你用两个“○”,两条“/”,两个“ ”
设计一幅美丽的图案,并配以一句的说明
18、(5分)错误!未找到引用源。

19、 (5分)解方程:错误!未找到引用源。

错误!未找到引用源。

20、(8分)有这样一道题:
计算(2x4-4x3y-2x2y2)-(x4-2x2y2+y3)+(-x4+4x3y-y3)的
值,其中x=0.25,y=-1.甲同学把“x=0.25”错抄成“x= -0.25”,但他计算的结果也是正确的,你能说明这是为什么吗?
21、(10分)如果|a -1|+|ab -2|=0.求:
ab
1+)1)(1(1++b a +)
2)(2(1
++b a +…+)2012)(2012(1++b a 的值
22、(12分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球乒乓球拍。

乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠。

该班需球拍5副,乒乓球若干盒(不小于5盒)。

问:⑴当购买乒乓球多少盒时,两种优惠办法付款一样?
⑵当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买? 为什么?
2020-2021学年第一学期七年级数学
竞赛题答案
一、选择题:
二、填空题:
三、解答题:
17题:(省略)答案不唯一
18题:原式=10
13
19题:y=31
20题:原式=-2y3化简结果与x无关
2013
21题:a=1,b=2原式=2014
22题:w甲=5x+125 w乙=4.5x+135
(1)x=20 (2)x=15时,选甲;x=30时,选乙。

相关文档
最新文档