福建师范大学数学专业概率论期末试卷

合集下载

概率论期末试题及答案

概率论期末试题及答案

概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。

概率论与数理统计期末考试题及答案

概率论与数理统计期末考试题及答案

模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。

P( A ∪B) = 。

2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: 2/3 ; ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:14212661112C C ⨯ ;没有任何人的生日在同一个月份的概率61266!12C ; 4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= 1,021,02241,2xe x xx x ⎧≤⎪⎪⎪+<≤⎨⎪>⎪⎪⎩, 概率{0.51}P X -<<=0.53142e -- ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ; 7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。

9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。

因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。

解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。

福建师范大学概率论期末考试题5

福建师范大学概率论期末考试题5

《概率论与数理统计》试题三答案及评分标准一、填空题(每小题4分,共40分)1、设A 与B 为互斥事件,0)B (P >,则=)B |A (P 02、n 次贝努里试验中事件A 在每次试验中的成功的概率为p ,则恰好成功k 次的概率为:()kn k k n p p C --1。

3、已知)1,0(N ~X ,则}0X {P <与}0X {P >的关系是: 相等 。

4、用联合分布函数与边缘分布函数的关系表示随机变量X 与Y 相互独立的充分必要条件:()()()y F x F y x F Y X ⋅=,。

5、设随机变量⋅⋅⋅⋅⋅⋅,X ,,X ,X n 21相互独立,服从同一分布,且具有数学期望和方差:2k k )X (D ,)X (E σμ== ),2,1(k ⋅⋅⋅=,当n 较大时,∑=n1k k X 标准化随机变量近似服从()1,0N 分布。

6、设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是从中抽取的一个样本。

请指出下列表达式中不是统计量的是 (4) 。

321X X X )1(++, )X ,X ,X (m i n )2(321, n/S X )3(μ-, n/X )4(σμ-7、设随机变量4321X ,X ,X ,X 相互独立,服从相同的正态分布),(N 2σμ,则432423212221X X 2X X X 2X X X Y -+-+=服从()1,1F 分布。

8、已知总体),(N ~X 2σμ,2,σμ均未知,现从总体X 中抽取样本,X ,,X ,X n 21⋅⋅⋅则μ的矩估计量=μˆX ;2σ的矩估计量=2ˆσ()∑=-nk k k x x n 11。

9、如果随机变量X 与Y 满足)Y X (D )Y X (D -=+则EXY 与EX ·EY 的关系是 相等。

10、设随机变量 ),(~p n B X 且 4.2=EX ,44.1=DX ,则=n 6 , =p 0.4 。

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案

大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。

概率论与数理统计期末试题与详细解答

概率论与数理统计期末试题与详细解答

《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。

2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。

3、设X 服从参数为1的指数分布,则=)(2X E ___________。

4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。

5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。

二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、5 8、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。

福建师范大学概率论期末考试题1

福建师范大学概率论期末考试题1

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 、B 为随机事件,且P (B )>0,P (A|B )=1,则有( ) A .P (A ∪B )>P (A ) B .P (A ∪B )>P (B ) C .P (A ∩B )=P (B )D .P (A ∪B )=P (B )2.一批产品中有30%的一级品,现进行放回抽样检查,共取4个样品,则取出的4个样品中恰有2个一级品的概率是( ) A .0.168 B .0.2646 C .0.309D .0.3603.设离散型随机变量F (x )为其分布函数,则F (3)=( ) A .0.2 B .0.4 C .0.8D .14.设随机变量X~N (μ,σ2),则随σ增大,P{|X-μ|<σ}( ) A .单调增大 B .单调减少 C .保持不变D .增减不定5.设二维随机变量(X ,Y )的联合概率密度为⎩⎨⎧>>=+-;,0,0,0,2),()2(其它y x e y x f y x 则P{X<Y}=( )A .41B .31C .32 D .43 6.设随机变量X 与Y 相互独立,其联合分布律为则有( ) A .α=0.10, β=0.22 B .α=0.22, β=0.10 C .α=0.20, β=0.12D .α=0.12, β=0.207.设随机变量X~N (1,22),Y~N (1,2),已知X 与Y 相互独立,则3X-2Y 的方差为( ) A .8 B .16 C .28D .448.设X 1,X 2,…,X n ,…为独立同分布的随机变量序列,且均服从参数为λ(λ>1)的指数分布,记Φ(x )为标准正态分布函数,则有( )A .)(}{lim 1x x nnXP ni in Φ=≤-∑=∞→λB .)(}{lim 1x x n n X P ni in Φ=≤-∑=∞→λλC .)(}{lim 1x x nn XP ni in Φ=≤-∑=∞→λλD .)(}{lim 1x x n XP ni in Φ=≤-∑=∞→λλ9.F 0.05(7,9)=( ) A .F 0. 95(9,7) B .)7,9(195.0FC .)9,7(105.0FD .)7,9(105.0F10.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( )A .)(2121X X +B .213132X X +C .214143X X + D .215253X X +二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、应用题
14、某药厂生产的某种药品,声称对某种疾病的治愈率为 90%。为了检验此治愈率,任 意抽取 100 个该疾病患者进行临床试验,如果其中至少 86 人被治愈,则此药通过检验 。 试 问 :( 1)如果该药的实际治愈率只有 80%,则通过检验的可能性有多大?(2)如果 该药的实际治愈率为 90%,则通过检验的可能性有多大?
四.证明题
15 、 设 ξ1, ξ2 ,⋯,ξn ,⋯ 为 独 立 同 分 布 随 机 变 量 列 , 它 们 均 服 从 参 数 λ 的 指 数 分 布 ,
ηn = min{ξ1,⋯,ξn} 。试证明: (1)
1 E(ηn ) = nλ ;
(2)
lim P(|
n→∞
nαηn
− λ −1 |≥
nαε )

6、设随机变量 ξ 和η 相互独立,其特征函数分别为 fξ (t) 和 fη (t) , a, b, c 为 常 数 ,
则 aξ + bη + c 的特征函数为

⎧ 0,
7、设随机变量 ξ 的分布函数为
F
(x)
=
⎪⎪ ⎨⎪0.5(
0.2, x − 02. ),
⎪⎩ 1,
x ≤ 0; 0 < x ≤ 1; 1 < x ≤ 2;
x > 2.
则 P(0 ≤ ξ
≤ 1.5) =
, P(ξ = 0) =

8、独立地从 (0, 6) 区间内任取 3 个数,则所取的 3 个数至少有 2 个不大于 5 的概
率 p=

9、设随机向量

,η)
服从
N
(µ1 ,
µ2

2 1

2 2
;
ρ
)
,则Байду номын сангаас
ξ


服从
N(
, )。
二、计算题
10、设ξ ,η 相互独立同分布于参数 2 的 Poisson 分布. 求 :( 1) P(ξ = 2η). (2) D(2ξ +η ).。
+∞
+∞
3、概率公理化定义中的可列可加性:P(∪ An ) = ∑ P( An ) 成立的条件是

n=1
n=1
4、已知ξ ~ N (µ,σ 2), 且 Eξ =2, P(ξ > 5) = 0.1, 则 P(−1 < ξ < 2) =

5、设随机变量ξ ~ B(4, p) 且 P(ξ = 1) = P(ξ = 2) ,则 Eξ =
11、设随机变量 ξ
的密度函数为
p( x)
=
⎧2 ⎨
|
x
|3 ,
⎩ 0,
| x |< 1; 其它.
求 P(ξ < 0.5) 的值和 η=ξ 2+2ξ 的分布。
12、设


)
的联合密度函数为
p(
x,
y)
=
⎧8, ⎨⎩0,
0 < y < x < C;
其 它.
试 :( 1)确定常数 C 的 值 ;( 2)
一、 填空题
1、从 n 个数1, 2, ⋯, n 中任取 2 个,则其中一个小于 k (1< k < n) ,另一个大
于 k 的概率为

2、一个袋子中装有 6 个白球 4 个黑球,不放回地取球 4 次,每次取 1 个球,设 A = {第二次
取到白球}, B = {第四次取到黑球},则 P(B | A) = 。
=0
, ∀ε
> 0,α
> 0.
求 η 的边际密度函数;(3)求在η = 0.2 条件下ξ 的条件密度函数 pξ|η (x| y) 。
13、设随机向量

,η)
的联合密度函数是
p( x,
y)
=
⎪⎧ ⎨ ⎪⎩
xy
2 +1, 4 0,
−1
< x, y < 其它。
1,
(1)求ξ 与η 的相关系数;( 3)判断ξ与η 是否相互独立,并说明理由。
相关文档
最新文档