叶轮机设计与实验
风力发电机组的叶轮设计优化与性能分析

风力发电机组的叶轮设计优化与性能分析1. 引言风力发电作为一种可再生能源的重要形式,被广泛应用于电力供应系统。
叶轮作为风力发电机组中的核心部件,直接影响着发电机组的性能和效率。
本文旨在通过对风力发电机组叶轮的设计优化与性能分析,提出一种能够提高发电效率的叶轮设计方案。
2. 风力发电机组的工作原理风力发电机组利用风能将风动能转化为机械能,然后通过发电机将机械能转化为电能。
叶轮作为风力发电机组中的核心部件,承担着捕捉和利用风能的重要任务。
叶轮优化设计的目标是最大化风能的转化效率,提高发电机组的发电量。
3. 叶轮设计优化3.1 叶片数目和形状设计叶片数目和形状直接影响着风力发电机组的功率转化性能。
一般而言,叶片数目越多,转化效率越高。
然而,叶片数目过多会增加制造成本并增加风力发电机组的重量。
因此,需要综合考虑叶片数目和形状的设计,找到一个平衡点。
3.2 叶片长度和宽度设计叶片长度和宽度的设计也是叶轮设计中的重要因素。
叶片长度越长,捕捉风能的面积越大,风力发电机组的转化效率越高。
然而,过长的叶片会增加风力发电机组的叶轮重量,并对叶轮结构造成一定的负荷。
因此,需要对叶片长度和宽度进行优化设计。
3.3 叶片材料选择叶轮受到来自空气流动的巨大压力和弯曲力的影响,因此在叶片材料的选择上需要考虑其强度、轻量化和耐腐蚀性。
目前常用的叶片材料有玻璃纤维增强塑料(GFRP)和碳纤维增强塑料(CFRP)等。
在叶片材料的选择中,需要综合考虑材料的力学性能和经济性,以实现叶轮结构的优化设计。
4. 叶轮性能分析4.1 基于流体动力学的模拟分析通过建立风力发电机组的叶轮流体动力学模型,可以对叶轮的流场分布和压力分布进行模拟分析,了解叶轮在风力作用下的性能表现。
这可以为叶轮的优化设计提供有力的依据。
4.2 发电机组的发电量模拟叶轮是风力发电机组中能量转化的关键部件,其性能的优化直接影响发电机组的发电效率。
通过基于叶轮性能和风能资源的数据,可以进行发电量的模拟计算,评估叶轮优化设计的效果。
叶轮的设计原理及应用

叶轮的设计原理及应用叶轮是一种常见的机械设备,它的设计原理和应用非常广泛。
叶轮常用于液体泵、风扇、涡轮机、喷气发动机等各种工程设备中。
下面将从设计原理、应用范围和优缺点等方面详细介绍叶轮。
叶轮的设计原理主要基于流体力学,叶轮即为固定叶片或转动叶片组成的旋转部件。
为了实现特定的流体机械任务,叶轮的设计取决于不同的应用和摩擦条件。
根据叶片的形状、布局和工作环境,叶轮可分为开式和密闭两种类型。
在涡轮机中,流体通过叶轮,叶轮将流体的动能转化为机械能,并推动传动系统工作。
叶轮的设计需要考虑以下几个因素:1. 流体参数:流速、密度、粘度和温度等参数会影响叶轮的设计。
不同的参数对叶轮的各项性能和工作效果都有显著影响。
2. 叶片类型:叶轮的性能主要由叶片的形状和数量决定。
根据叶片类型的不同,叶轮可以分为离心式、轴流式和混流式等。
3. 叶片布局:叶片的布局也会影响叶轮的性能。
布置叶片的角度和密度能够调节叶轮的扬程、流量和效率。
4. 材料选择:叶轮的工作环境对材料的选择提出了要求。
例如,在高温或高压环境中,必须选择能够耐受这些条件的耐热、耐腐蚀材料。
叶轮的应用非常广泛,以下是几个典型的应用领域:1. 液体泵:叶轮作为泵的核心部件,通过旋转产生离心力,将液体向外部压送。
在工业生产、供水系统和化工过程中广泛使用。
2. 风扇:叶轮通过旋转产生气流,用于降温、通风和气体传送,广泛应用于建筑、汽车、电子设备等领域。
3. 涡轮机:叶轮作为涡轮机的动力转换部件,将流体的动能转变为机械能,如水力发电和汽轮发电等。
4. 喷气发动机:喷气发动机中的叶轮通过喷气产生推力,实现飞机或其他飞行器的推进。
叶轮具有一些优缺点:优点:1. 高效能:叶轮的设计优化可以提高流体机械的效率,从而降低能源消耗和运行成本。
2. 灵活性:叶轮的尺寸、形状和材料可以根据具体应用需求进行定制,满足不同工况下的流体传输要求。
3. 负载适应性:叶轮能够根据系统负载的需求自动调整输出功率,对于泵类设备尤为重要。
全自动燃烧机叶轮的设计与试验研究

万台,而同年进 【各类燃烧机近 4万 台, 占国 内燃烧机 J 总需 求量 的 8%以上 。耍尽快提 高 国产燃烧机 的市场 占 0 有率 ,改变燃烧机过分依 靠进 F的局面,就必须在 提高 I 燃烧 机生产企业的 制造 和管理水平 的同时 ,加快 燃烧 机 关键零部件的国产化 ,降低生产成 本 。目前 ,国外名牌
YI e CAO n mig,Z i L , Xi- n HANG ig, L U h n ’ Pn I Z e g
(.H nnC mmu i t nP lt h i,C agh 0 4 C ia 1 u a o nc i oye nc hn sa4 0 , hn ; ao c 1 0
长沙
402 ) 11 6
摘要 : 介绍一种作者 自行 没计的新型多翼式强前 向叶轮,分析 了其性能 ,列出了叶轮设 计的计算公式,通 过风机空气动力性 能试验 得 出了该叶轮的 色 性 曲线, 与国外进 L .特 并 j 燃烧机 叶轮的p 一 性 曲线进行对 比分析 。 结果表 明,该 叶轮完 全满足燃烧 机的工作要
2 u a ilgcl n l t mehnc l oyeh i, h n sa 1 16 C ia) .H n nBoo ia A dEe r c aiaP lt nc c agh 0 2 , hn . co c 4
Ab t a t h e t p n n mp l rd s n d b u h ri i t d c d i e al I a ay e i e f r n e l tt e c lu c t n s r c :T e n w y e ma g wig i e l e i e y a t o n r u e d t i e g s o n . t n l s sp ro ma c , i ac la i t s h o
《叶轮机械原理》课件

03
叶轮机械的设计与优化
叶轮机械的参数设计
叶轮参数
01
包括叶片数、叶片型线、进出口安放角等。这些参数的选择和
优化对叶轮机械的性能有着重要影响。
流道参数
02
包括流道截面形状、流道面积等。这些参数的合理设计可以改
善流体在叶轮机械内的流动状态,从而提高效率。
转速与扬程
03
转速和扬程是叶轮机械的基本参数,它们的选择和优化对于确
02
叶轮机械的基本理论
流体动力学基础
流体静力学基本概念
流体的密度、压强、重力场等。
流体动力学基本方程
Navier-Stokes方程、连续性方程、动量方程等。
流体流动的基本特性
层流与湍流、边界层等。
叶轮机械中的能量转换
叶轮机械的工 力能、热能、动能等之间的转换。
04
叶轮机械的实验研究
实验设备与实验方法
实验设备
介绍进行叶轮机械实验所需的设 备和工具,如风洞、测试台、传 感器等。
实验方法
详细说明实验的操作流程和步骤 ,包括实验前的准备、实验过程 中的操作以及实验后的数据收集 等。
实验数据的处理与分析
数据处理
介绍如何对实验中收集的大量数据进 行整理、筛选和初步处理的方法。
总结词
随着科技的进步,叶轮机械的智能化与自动化成为了新的发展方向。
详细描述
通过引入先进的传感器、控制系统和人工智能技术,叶轮机械可以实现智能化控制和自动化运行。这不仅可以提 高设备的运行效率和稳定性,还能降低人工干预和故障率。
叶轮机械在新能源领域的应用
总结词
随着新能源产业的快速发展,叶轮机械在新能源领域的应用越来越广泛。
定叶轮机械的功率和效率至关重要。
离心泵叶轮设计范文

离心泵叶轮设计范文离心泵是一种常见的流体机械设备,广泛应用于工农业生产、城市供水和排水等领域。
其工作原理是利用叶轮受离心力作用,将流体加速并转化为压力能,从而实现输送的目的。
离心泵的叶轮是其核心部件,直接关系到泵的性能和效率。
叶轮的设计需要考虑多个因素,包括流体的流动特性、流量需求、扬程要求、泵的转速、叶轮材料等。
在离心泵叶轮的设计过程中,首先需要确定泵的工况参数,包括流量Q、扬程H、泵的转速N等。
这些参数可以通过工程实际需要来确定,也可以根据已有的类似泵的性能曲线来选择。
接下来,需要确定叶轮的进出口直径D1和D2,以及出口角β2、进口直径D1一般根据泵的流量来确定,而出口直径D2则常常使用等速线绘制法来确定。
该法通过绘制流速三角形和散失系数曲线来确定出口直径,从而使得出口速度恒定。
然后,需要根据进口和出口直径来确定叶轮的元素形状。
叶轮通常采用流线型的设计,使得流体能够顺利进入和流出。
叶轮的元素形状可以使用叶片角、曲率半径和叶片厚度等参数来描述。
在确定叶轮的元素形状后,还需要进行叶轮的流场分析。
这可以通过CFD仿真等方法来实现,以验证叶轮是否满足设计要求,以及是否能够提供理想的流体流动状态。
另外,还需要进行叶轮的强度和动力分析。
叶轮的强度分析主要包括静力学和动力学两个方面,以确保叶轮在工作过程中能够承受流体的压力和惯性力。
动力分析则主要是考虑叶轮的转动惯量和动力平衡等问题。
最后,在叶轮设计完成后,需要进行叶轮的制造和装配。
制造时需要考虑叶轮的材料选择和加工工艺,保证叶轮的质量和精度。
装配时需要注意叶轮与轴的连接方式,以及叶轮与泵壳等配合关系。
总之,离心泵叶轮的设计是一项综合性的工程,需要综合考虑多个因素,从而得到理想的叶轮形状和性能。
随着计算机技术的发展,仿真分析在叶轮设计中的应用越来越广泛,可以提高设计效率和精度。
在实际应用中,还需要根据具体情况进行不断的优化和改进,以满足不同领域和需求的泵的要求。
叶轮机实验报告(4项)

叶轮机械原理教学实验指导书北京航空航天大学能源与动力工程学院流体机械系二O一六年十二月1实验一 平面亚音扩压叶栅实验1.1实验目的1)通过实验使学生熟悉平面叶栅实验设备和实验方法; 2)作出叶栅攻角特性和叶片表面压力分布曲线; 3)了解平面叶栅实验在压气机气动设计中的作用和地位。
1.2实验内容1.2.1平面叶栅的攻角特性气流通过平面扩压叶栅后,其方向要发生转折,气流转折角为∆β。
气流通过叶栅损失的大小可用损失系数ω来表示。
∆β和ω随攻角i 和来流马赫数M 1而变化,它们都是i 和M 1的函数。
低速叶栅吹风实验不考虑M 1对叶栅性能的影响,只讨论∆β和ω随攻角i 的变化。
叶栅的攻角特性如图1示。
由图1可以看出,当i 增加时, ∆β开始直线上升,ω几乎不变。
到某一攻角, ∆β达到最大值。
攻角再提高,∆β下降很快,ω急剧增加,这时叶背气流发生严重分离。
在很大的负攻角情况下,气流在叶盆分离。
∆β的大小反映了叶栅的功增压能力,而ω的大小则反映了叶栅有效增压的程度,ω表征气流流经平面叶栅发生的机械能损失,叶栅的效率和ω有直接关系。
压气机设计取max 8.0ββ∆=∆为叶栅名义工作点,把不同几何参数叶栅的名义工作点汇集在一起,即得到平面叶栅的额定特性线,这是压气机气动设计的依据。
1.2.2叶片表面压力分布叶片表面压力分布以无因次压力系数P 表示1*11P P P P P --=式中*1P 、1P 分别为叶栅进口的总压和静压,P 为叶片上任一点的静压。
P为正值说图 1.1 平面叶栅的攻角特性2明叶片上某点的当地速度低于叶栅进口速度,P 为负值表明当地速度大于叶栅进口速度。
典型的叶片表面压力分布曲线如图2所示,横坐标为弦长百分比。
进行叶片表面压力分布实验时,只测量一个攻角(例如5︒攻角)的叶片表面压力分布。
同时,还可以改变几个攻角(-10︒,10︒,18︒),观察叶片表面压力分布变化情况,特别要注意大攻角时,叶片表面出现严重分离(失速)现象。
水轮机的流场及叶轮叶片设计分析

水轮机的流场及叶轮叶片设计分析一、水轮机简介水轮机是一种转换水能为机械能的机器,是水力发电机组的核心,在能源产业中具有重要的地位。
水轮机主要由水轮机本体和水力机械附件两部分组成。
水轮机本体包括转子、导叶、壳体、轴承和机座等部件。
水力机械附件包括调速机构、导流门、水位计和进气管等部件。
根据水轮机工作原理,可将其分为反作用水轮机和作用水轮机两种类型。
反作用水轮机与作用水轮机不同之处在于,反作用水轮机与作用水轮机的工作原理相反。
反作用水轮机是将水方向分流意味着水流必须对冲传递机械能。
作用水轮机是将水沿叶形进口面的轴向流动转换成叶形出口面的径向流动,这样实现水能机械能转换。
二、水轮机流场分析水轮机的流场分析主要包括对水流动的分析和对水轮机叶轮叶片的分析。
1.水流动分析水流动分析是指对水在水轮机中的流动情况进行分析。
水流动分析包括对水流速、流量、受力情况和流线分布等项指标的确定。
流速是指水在水轮机中流动的速度。
流量是指单位时间内通过水轮机的水体积。
受力情况是指水流中的各种作用力,包括离心力、惯性力和粘性力等。
流线是指描述水流动轨迹的曲线。
2.叶轮叶片分析水轮机的叶轮叶片是实现水能机械能转换的重要组件,在水轮机的运转过程中扮演着重要的角色。
叶轮叶片的设计直接影响水轮机的效率、运行稳定性和生产能力,因此,叶轮叶片的设计十分关键。
叶轮叶片设计分析主要涉及叶片的尺寸和几何形状。
叶片的主要几何特征包括转速、半径和叶片的发展角等。
叶片的发展角是指叶片中心线与剖面平面的夹角。
通过合理设计叶片的尺寸和几何形状,可以使水流在叶轮叶片上产生强烈的反作用力,从而实现水能机械能的有效转换。
三、叶轮叶片设计要点分析水轮机叶轮叶片设计的要点包括合理确定叶轮的类型、选择合适的叶片导角和确定叶片的后掠角等。
1.叶轮类型选择叶轮的类型包括直流式叶轮、斜流式叶轮和轴流式叶轮等。
其中,直流式叶轮的叶片发展角固定,水流方向与叶片方向相同,适用于较小的水头和小流量。
涡轮机械叶轮的流场分析及流体作用力研究

涡轮机械叶轮的流场分析及流体作用力研究概述涡轮机械叶轮是一种常见的能量转换器件,广泛应用于航空航天、船舶、汽车、发电等领域。
叶轮在工作过程中承受着巨大的流体作用力,其性能与流场分布密切相关。
本文将探讨涡轮机械叶轮的流场分析方法以及流体作用力的研究成果,旨在加深对涡轮机械叶轮工作原理的理解。
第一部分流场分析方法1. CFD方法计算流体力学(Computational Fluid Dynamics,简称CFD)是研究流体流动和相互作用的计算机模拟方法。
在涡轮叶轮流场分析中,CFD方法被广泛应用。
通过构建叶轮几何模型和流体网格,可以对叶轮所处流场进行三维数值模拟,从而得到流速、压力、温度等参数的分布情况。
2. 流线可视化技术流线可视化技术是一种将流动状态以可视化形式展现出来的方法。
通过将示踪液或粉末加入流场中,可以观察流体在叶轮表面上的流动状态,了解叶轮叶片表面的压力分布和流速分布情况。
流线可视化技术能够直观地展示流场的变化,为叶轮的设计和改进提供有力支撑。
第二部分流体作用力研究1. 流体动力学流体动力学研究流体在外力作用下的运动规律。
在涡轮机械叶轮中,流体动力学主要用于分析流体在叶轮叶片上的作用力。
根据流体动力学理论,可以求解叶片表面上的压力和剪应力分布,进而计算得到流体对叶片的作用力。
这些作用力对叶轮的转动和性能产生重要影响。
2. 流动阻力涡轮机械叶轮转动时,周围流体对叶片的阻力是造成能量损失的主要原因之一。
流动阻力的研究可以帮助优化叶片结构,减小阻力损失,提高叶轮的效率。
通过数值模拟或实验方法,可以对叶片表面的流动阻力进行定量分析,为叶轮的优化设计提供理论指导。
第三部分流场分析与叶轮设计1. 流场分析在叶轮设计中的应用流场分析是涡轮机械叶轮设计的重要环节。
通过对流场进行精确分析,可以获得叶片表面的流动特性,如压力分布、速度分布等,为叶轮的设计和优化提供理论依据。
根据流场分析结果,可以调整叶片形状、角度等参数,以改进叶轮性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“叶轮机设计与实验” 教学实验指导书教学实验名称:叶轮机设计与实验Turbomachinery Design and Experiment学分/学时:0.5/16适用专业:航空发动机设计、交通运输工具先修课程和环节:航空发动机原理、叶轮机械原理一、实验目的1) 掌握离心式压气机和向心式涡轮的基本气动设计方法; 2)掌握离心式压气机和向心式涡轮的基本性能测量。
二、实验内容及基本原理实验内容应用所学过的叶轮机原理基本知识,进行离心式压气机和向心式涡轮的气动设计,包括:压气机和涡轮共同工作参数确定、压气机和涡轮进出口速度三角形设计、叶型(中弧线)设计、转子和静子叶片数目确定等。
加工和制作试验用压气机和涡轮,并进行压气机/涡轮的增压比/落压比、流量和转速等叶轮机基本性能参数的测量。
基本原理1) 基本方程:Δh *=Lu =ω(r 2C 2u -r 1C 1u )方程给出了气流经过以角速度ω旋转的叶栅时的滞止焓的变化,C u 表示气流的周向分速度,该方程基于简单力学原理并且假定流动过程为绝热过程。
当气流通过静子叶栅时(ω=0),滞止焓不变。
对压气机来说,滞止焓变化Δh *为正值;对涡轮来说,滞止焓变化Δh *为负值。
当流动过程为不可压流动时:***1cc cP h ηρ∆=∆***T T TP h ηρ∆=∆其中ΔP *c 和ΔP *T 分别表示气流流经压气机和涡轮时的总压变化。
当空气从静止的大气环境中被吸入压气机时,在进入压气机时没有周向分速度,即C 1u =0。
当气体离开涡轮时,如果气流的周向分速度不为零,将会增加涡轮出口至真空泵进口管路中的流动摩擦损失。
因此,在设计状态下,涡轮转子出口气流的周向分速度应该为零(C 4u =0)。
压气机和涡轮的转子或静子的进、出口径向分速度可通过连续方程得出: Cr= m/(2 πρr h)其中m 为流量, h 为叶片的轴向宽度,ρ为空气密度。
知道径向和周向两个分速度后,可计算出相对静叶和动叶的气流方向。
动叶:tan(αrel)=( C u -ωr)/Cr静叶:tan(α)= C u / Crα为绝对速度气流角,αrel为相对速度气流角,以气流的切线方向分速度C u或W u(W u= C u -ωr)与转子旋转方向相同为正值。
此外,叶型几何构造角以β表示。
2) 压气机转子叶片离心式压气机由动叶和静叶组成,动叶提高气体的动能和静压(静压升高约占总静压升的一半),静叶使气体的动能尽可能多地转换成静压升高。
假定流动过程是无粘的,气体通过静叶时的静压升高可以用伯努力方程计算。
实际的扩压过程远非等熵过程,实际扩压过程的压升小于等熵过程的压升,扩压效率通常为70%左右。
前弯径向后弯转子叶片可以是如图所示的前弯、径向和后弯式,在转速一定的条件下,前弯角度越大,转子叶片出口的C u越大,叶片对气体的加功量越大。
或者在加功量一定的条件下(受涡轮所能发出的功率限制),动叶的前弯角越大所需要的旋转速度越小,转速越低,压气机或涡轮的机械损失(轴承中摩擦损失)越小,但是这将增加气体离开动叶时的绝对速度,增加气体在静叶中的静压升,同时也将增加静叶中的流动损失。
因此,在设计转速较高时,转子叶片选择后弯叶型,可以在满足一定加功量的同时,获得较高的效率。
设计转速确定后,可以先选定动叶几何出口角β2,再根据加功量(涡轮输出功率)计算流量,这样做比预先选定转速和流量再算叶片几何出口角要容易些,最佳的β2值需经过较详细的计算才能确定,要从流动效率高和易于制造两个方面考虑来选择合适的值。
确定转速、转子叶片几何出口角β2和加功量后,可以求出压气机的流量和气流流入扩压器的速度。
由于气流离开转子不是完全以叶型的几何出气角流出,而总是有一点“滑移”,造成实际的C 2u 值小于理想值(气流以叶型的几何出气角流出转子时的C 2u )。
通过引入滑移因子σ,可以计算实际的C 2u 。
Weisner 定义滑移因子σ:σ=1-(C 2u ,理想- C 2u ,实际)/u 2σ的值与许多因素有关,尤其是由叶片数目。
常用经验关系式如下:σ=1-(cos β2)0.5/ N 0.7其中N 是叶片数。
开始计算时,可初定σ=0.85,在初算时不改变σ的值,否则求解叶片数目的迭代计算可能会发散,在叶片数目确定以后,重新计算σ的值并代入计算。
理想的C 2u 计算很简单,C 2u ,理想=(u 2+C 2r tan β2),对于前弯叶片β2是正值,对于后弯叶片β2是负值。
C 2u ,实际=(σu 2+ C 2r tan β2) 将C 2u ,实际代入能量方程,得:()T r c u c u N C u u m C u m L =+==222222tan βσ其中m c 为压气机流量,N T 为涡轮输出功率,C 2r 由连续方程求出:hr m C cr πρ222=其中h 为转子叶片轴向宽度,将C 2r 代入能量方程,可得到求解流量的方程:02tan 222222=-+T c c N m u m hr u σπρβ这是一个一元二次方程,m c 取其合理解(较小值解)。
给定转子出口半径r 2、转速和涡轮功率后, 可以在前弯和后弯叶片范围内选择β2,并求出相应的流量,流量确定后可以计算出动叶进、出口气流的绝对速度和相对速度,当给定转子进口设计攻角为零攻角时,叶型几何进口角β1等于相对气流角α1rel 。
要注意检查动叶出口相对速度与进口相对速度比值,这个比值不应太小,否则动叶的边界层可能分离,典型的W 2/ W 1〉0.5,后弯角度越大,速度比值也越大,边界层分离的可能越小。
动叶数目是一个很重要的参数,若叶片数目太多,叶片表面与气流的摩擦损失大,若叶片数太少,气流从叶片表面分离也将引起大的损失,可以通过以下方法简单估算所需的叶片数目,由于叶片出口受到“滑移”的影响和叶片进口受到实际攻角的影响,以下方法只适用于叶片通道的平均半径r mid 附近(r mid 为几何平均半径)。
由动量矩方程可以得到:rh P N drrC d mb b u ∆=∙)( Nb 为叶片数,h 为叶片的轴向宽度,ΔPb 表示叶片压力面和吸力面压差。
假定相对气流角与叶片几何角相等,则:C u =u +C r tan ββ为半径r 处的叶型几何角,其它参数确定后,上述两个式子决定ΔPb 的大小。
在相同半径处,叶片两面的滞止压力是相等的,即:Ps+0.5ρWs 2=Pp+0.5ρWp 2其中下标s ,p 表示吸力面和压力面,W 为气流的相对速度。
可以假设从压力面的Wavg-ΔW 到吸力面的Wavg +ΔW 的相对速度是线性变化的,代入到上一个方程得:ΔPb=Pp-Ps=2ρWavg ΔW当ΔW=Wavg 时,压力面的速度为零,对应流动从叶片表面分离。
为防止分离发生,必须有ΔP b <2ρWavg 2,将此不等式代入叶片数目表达式(动量矩方程),得:)2/()(2rh W drrC d mN avg u b ρ∙〉 上式表明Wavg 值越大,所需要的叶片数目将越少,这可以理解为在较高的Wavg 下,叶片的压力面和吸力面之间可以有较大的压力差,而流动仍然不分离。
Wavg 的值可由平均半径r mid 处径向速度和叶型几何角得到: Wavg cos β=C r叶片平均半径r mid 处的叶型角βmid可由下式估算:βmid=0.5×(β1+β2)平均半径r mid 处的C r 由连续方程确定。
d(r C u )/dr 可以用r C u 和半径r 变化的平均值代替,即:d(r C u )/dr ≈Δ(r C u )/Δr =(r 2C 2u -r 1C 1u )/(r 2-r 1)由于是在叶片平均半径r mid 处估算叶片数目,为留有一定的余量,实际的叶片数目应略多于估算数目(大约多25%),若实际的叶片数目少于8或多于25,则需要修改设计,增加叶片后弯角度可以减少叶片数目。
采用上述方法在不同半径处估算出的叶片数目会不一样,在半径大处需要的叶片多,半径小处所需叶片少。
因此,许多离心压气机采用大小叶片结构,从平均半径处开始在大叶片之间增加小叶片,这样可以使用较少的大叶片,并且可以减少全部叶片与气体接触的总面积。
如果采用大小叶片设计,用1/3叶片高度处半径估算大叶片数目,从平均半径处开始在大叶片之间增加相同数量的小叶片。
叶片的型面最好是光滑的曲面,沿半径曲率的变化可以选择叶片载荷ΔPb 沿半径r 为一不变的常数。
由前面的方程:rh P N drrC d mb b u ∆=∙)( 可以看到,若ΔPb 为常数, 并将C u =u + C r tan β代入上式,得:d(tan β)/dr=const ×r此方程可以被积分,从而可得到叶片几何角β随半径r 变化的函数,两个积分常数可由进出口边界条件(β1和β2)确定,可以通过作图法确定转子叶型。
转子叶片也可以采用简单的圆弧叶型,如图,在已知r 1、r 2、β1和β2 条件下,可以求得叶型圆弧半径R C 和其圆心半径R O :R C =))90cos()-90cos((211222122ββ---r r r rR 0 =)90cos(222222β--+r R r R C C3)扩压器叶片在决定压气机效率方面,扩压器叶片起的作用可能比动叶大,扩压器叶片使气流减速并且尽可能地将动能转换为压力能。
只要流动减速就有可能出现附面层分离,这会使扩压器的性能受到限制。
扩压器的效率定义:ηdiff =ΔP/ΔP isΔP is表示在相同的进口条件和相同的进出口面积比条件下,等熵流动过程的静压升,ΔP为实际过程静压升。
如果扩压器的长度不受限制,在均匀的进气条件下,扩压器的效率可以达到80%。
扩压器性能的另一种表示方法是其静压升系数:ηeff=ΔP/( P*01- P1)ηeff =ΔP/0.5ρC 12 (不可压流动) C 1为扩压器进口气流速度。
在转子出口和扩压器进口之间有一无叶片的径向间隙,气流流过此间隙时如果不考虑摩擦, 则r C u 保持不变,由连续方程还可知,C r 与半径是成反比例的,C u 和C r 两个速度分量在间隙中都是随半径增大而减小的,因此,在气流到达扩压器叶片之前在间隙内已经开始减速扩压,这一扩压过程在理论上可用伯努力方程算出。
然而,由于相对速度大时端壁摩擦力大,造成间隙流动的扩压效率低,因此无叶间隙不应太大,但是,也还必须有一定的尺寸,好让转子出口不均匀的气流在到达扩压器叶片之前变得均匀些,通常这种无叶片径向间隙的大小为当地半径的5%-10%,扩压器进口半径的大小也由此确定了。
扩压器叶片进口气流角是由离开转子的绝对气流角度α2,以及在间隙内流动时环量(r C u )和流量守恒决定的,进口气流角可以很容易算出,在设计扩压器叶片时应使其进口几何角近似等于算出的进口气流角。