高考不等式经典例题
高中不等式题目30道

高中不等式的题目:1. x2+3x+2/x2+2x+1 的取值范围是什么?2. 对于实数x,求解不等式|x-1|+|x+3|≥5。
3. 若不等式(k+1)x2-2(k+2)x+4>0 对任意实数x 恒成立,求k 的取值范围。
4. 已知不等式ax2-2x+b<0 的解集是{x|1<x<3},求a、b 的值。
5. 求下列不等式的解集:(1)3x2-7x-10≥0(2)4x2-12x+9≤0(3)4-3x-5x2≥0(4)6x-10x2≥06. 解不等式|2x+1|+|3x-4|≥5。
7. 求不等式-2x2+4x-3<0 的解集。
8. 若不等式(a-1)x2+2(a-1)x-3≤0 对于任意实数x 都成立,求a 的取值范围。
9. 解不等式|x-3|-|2x+1|≤x+2。
10. 求不等式x2+2x+3≥2x2+ x的解集。
11. 求下列不等式的整数解:(1)5x-7<3x+1(2)3(x-1)≥7(x-4)(3)10-4(3x-9)≤2(9-4x)(4)5(6x+1)-7(3x+2)≥012. 求不等式-3≤x< 4 的整数解。
13. 解不等式(x-5)(x+7)≥8(x-3)。
14. 求不等式4(3x-7)≥24(x-5)的解集。
15. 求不等式|2x-3|≤x+1 的解集。
16. 求不等式-2x+3>10-3x的解集。
17. 求不等式3(2x-4)≥5(x-1)的解集。
18. 求不等式2(4x-2)≥3(x+1)的解集。
19. 求不等式-3(x+2)≥4(x-3)的解集。
20. 求不等式5(x-1)≥2(x+2)的解集。
21. 求不等式-4(x-3)≥5(x-2)的解集。
22. 求不等式2(3x-1)≥5(x+1)的解集。
23. 求不等式6(x+1)≤7(x-2)的解集。
24. 求不等式5(x-1)≤2(x+3)的解集。
25. 求不等式3(x+1)≥5(x-1)的解集。
不等式练习题及讲解高中答案

不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。
2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。
3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。
4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。
5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。
#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。
题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。
题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。
题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。
高中数学不等式高考真题精选和解析

高中数学不等式高考真题精选和解析1.(2020·全国卷Ⅱ)已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2.(2020·全国卷Ⅰ)已知函数f(x)=|3x+1|-2|x-1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.2.(2020·全国卷Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥3 4.4.(2019·全国卷Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.5.已知函数f(x)=|x+1|+|2x-1|.(1)解不等式f(x)≤x+3;(2)若g(x)=|3x-2m|+|3x-2|,对任意的x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.6.已知函数f(x)=|2x+1|+|x-1|.(1)求不等式f(x)≥3的解集;(2)若直线y=x+a与y=f(x)的图象所围成的多边形面积为92,求实数a的值.答案解析1.解 (1)当a =2时,f (x )=|x -4|+|x -3|.当x ≤3时,f (x )=4-x +3-x =7-2x ,由f (x )≥4,解得x ≤32;当3<x <4时,f (x )=4-x +x -3=1,f (x )≥4无解; 当x ≥4时,f (x )=x -4+x -3=2x -7,由f (x )≥4,解得x ≥112. 综上所述,f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤32或x ≥112. (2)f (x )=|x -a 2|+|x -2a +1|≥|(x -a 2)-(x -2a +1)|=|-a 2+2a -1|=(a -1)2(当且仅当2a -1≤x ≤a 2时取等号),∴(a -1)2≥4,解得a ≤-1或a ≥3,∴a 的取值范围为(-∞,-1]∪[3,+∞).2.解 (1)f (x )=⎩⎪⎨⎪⎧ x +3,x ≥1,5x -1,-13<x <1,-x -3,x ≤-13,作出图象,如图所示.(2)将函数f (x )的图象向左平移1个单位,可得函数f (x +1)的图象,如图所示:由-x -3=5(x +1)-1,解得x =-76.所以不等式的解集为⎝ ⎛⎭⎪⎫-∞,-76.3. 证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2).由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0,∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc ≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a ≥34,即max{a ,b ,c }≥34.4. 证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac , 又abc =1,故有a 2+b 2+c 2≥ab +bc +ca=ab +bc +ca abc=1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥3 3(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24.当且仅当a =b =c =1时,等号成立.所以(a +b )3+(b +c )3+(c +a )3≥24.5.(1)原不等式等价于⎩⎨⎧ x ≤-1,-3x ≤x +3或⎩⎪⎨⎪⎧ -1<x ≤12,-x +2≤x +3或⎩⎪⎨⎪⎧ x >12,3x ≤x +3,解得-12≤x ≤32,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12≤x ≤32. (2)由f (x )=|x +1|+|2x -1|=⎩⎪⎨⎪⎧ -3x ,x ≤-1,-x +2,-1<x ≤12,3x ,x >12,可知当x =12时,f (x )最小,无最大值,且f (x )min =f ⎝ ⎛⎭⎪⎫12=32. 设A ={y |y =f (x )},B ={y |y =g (x )}, 则A =⎩⎨⎧⎭⎬⎫y |y ≥32,因为g (x )=|3x -2m |+|3x -2|≥|(3x -2m )-(3x -2)|=|2m -2|,所以B ={y |y ≥|2m -2|}.由题意知A ⊆B ,所以|2m -2|≤32,所以m ∈⎣⎢⎡⎦⎥⎤14,74. 故实数m的取值范围为⎩⎨⎧⎭⎬⎫m |14≤m ≤74.6.解 (1)由题意,得f (x )=⎩⎪⎨⎪⎧ 3x ,x ≥1,x +2,-12<x <1,-3x ,x ≤-12.当x ≥1时,由f (x )≥3得3x ≥3,解得x ≥1;当-12<x <1时,由f (x )≥3得x +2≥3,解得x ≥1, 这与-12<x <1矛盾,故舍去;当x ≤-12时,由f (x )≥3得-3x ≥3,解得x ≤-1.综上可知,不等式f (x )≥3的解集为{x |x ≤-1或x ≥1}.(2)画出函数y =f (x )的图象,如图所示,其中A ⎝ ⎛⎭⎪⎫-12,32,B (1,3), ∴k AB =3-321+12=1,∴直线y =x +a 与直线AB 平行.若要围成多边形,则a >2.易得直线y =x +a 与y =f (x )的图象交于两点C ⎝ ⎛⎭⎪⎫a 2,3a 2,D ⎝ ⎛⎭⎪⎫-a 4,3a 4,则|CD|=2·|a2+a4|=324a,平行线AB与CD间的距离d=|a-2|2=a-22,|AB|=322,∴梯形ABCD的面积S=322+324a2·a-22=32+34a2·(a-2)=92(a>2),即(a+2)(a-2)=12,∴a=4.故所求实数a的值为4.。
高考考前复习均值不等式典型题汇编

高考考前复习均值不等式典型题汇编【典型例题】例1、若x 、y +∈R ,求4()f x x x=+)10(≤<x 的最小值。
例2、已知正数x 、y 满足811x y+=,求2x y +的最小值。
例3、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围。
例4、 求函数221632y x x =++的最小值.例5、已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.例6、 已知1x >-,求函数()()521x x y x ++=+的最小值.例7、 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 例8、已知0,0x y >>且22283y x +=求.例9、求函数25y x =+的最大值.【高考题汇编】例1、(重庆理,2005)若x ,y 是正数,则22)21()21(xy y x +++的最小值是【 】 A .3 B .27 C .4 D .29例2、(天津文,2009) 设yx b a b a b a R y x yx11,32,3,1,1,,+=+==>>∈则若的最大值为【 】A. 2B.23 C. 1 D. 21 例3.(福建文,2011)若0,0>>b a ,且函数224)(23+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】A.2 B .3 C .6 D .9例4、(重庆文,2011)若函数)2(21)(>-+=x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4例5、已知54x <,求函数14245y x x =-+-的最大值.例6、函数1(3)3x x x +>-的最小值为【 】 A. 2B. 3C. 4D. 5例7、函数232(0)x x x+>的最小值为【 】A. B. 例8、(天津文,2011)已知22log log 1a b +≥,则39ab+的最小值为__________.例9、(重庆文,2009)已知0,0a b >>,则11a b++ 】A.2 B ..4 D .5 例10、(四川理,2009)设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是【 】A.2B.4C.5 例11、(重庆文,2005)若y x y x -=+则,422的最大值是 .例12、(福建理,2005)设b a b a b a +=+∈则,62,,22R 的最小值是【 】A .22-B .335-C .3-D .27-例13、设,x y 是实数,且224,x y +=则22xyS x y =+-的最小值是【 】A.2-B.C. 2-1)例14、已知实数,,0a b c >满足9,24,a b c ab bc ca ++=++=,则b 的取值范围为例15、(重庆理,2011)已知2,0,0=+>>b a b a ,则14y a b=+的最小值是【 】 A.72 B .4 C .92D .5例16、(天津理,2009)设0,0.a b >>1133aba b+与的等比中项,则的最小值为 【 】A. 8B. 4C. 1D.14例17、已知,,a b c 都是正实数,且满足93log (9)log a b +=4a b c +≥恒成立的c 的取值范围是【 】A.4[,2)3B. [0,22)C. [2,23)D. (0,25]例18、(重庆文,2010)0t >已知,则函数241t t y t-+=的最小值为__________.例19、(湖北文,2004)已知4254)(,252-+-=≥x x x x f x 则有【 】A .最大值45 B .最小值45C .最大值1D .最小值1 例20、(浙江理,2011)设,x y 为实数,若2241,x y xy ++=则2x y +的最大值是 .例21、(重庆文,2004)已知()2320,0x y x y+=>>,则xy 的最小值是 . 例22、(重庆理,2007)若a 是12b +与12b -的等比中项,则22aba b+的最大值为【 】A.15 B .4 C .5 D .2例22、(重庆文,2006)若,,0a b c >且222412a ab ac bc +++=,则a b c ++的最小值是【 】A. B. 3 C. 2例23、已知0,0,01,a b c a b c >>>++=且则222a b c ++最小值为【 】A.12 B. 13 C. 14D. 15 例24、若,,1a b R a b +∈+=,则1ab ab+的最小值为【 】 A. 144 B. 142 C. 124D. 2 例25、已知1a b +=,则44a b +的最小值是【 】A. 1B.12 C. 14D. 18例26、已知0,0,01,a b c a b c >>>++=且则222111a b c ++最小值为【 】 A. 12 B. 18 C. 24 D. 27例27、(全国1,2004),2,2,1222222=+=+=+a c c b b a 则ca bc ab ++的最小值【 】12 B .12 C .12- D .12+例28、(湖南理,2004)设,0,0>>b a 则以下不等式中不恒成立....的是【 】 A .()114a b a b ⎛⎫++≥⎪⎝⎭B .2332ab b a ≥+C .b a b a 22222+≥++ D .b a b a -≥-||例29、(陕西理,2006)已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为【 】A. 8B. 6C. 4D. 2例30、(全国1理,2008)若直线1x ya b+=通过点()cos sin M αα,,则【 】 A .221a b +≤B .221a b +≥ C .22111a b +≤ D .22111a b+≥例31、已知0,0>>b a 且1=+b a ,求证:425)1)(1(≥++b b a a . 例32、若+∈R b a ,且1=+b a ,求证:22121≤+++b a。
高三数学解不等式练习题

高三数学解不等式练习题解答一:1. 解不等式2x - 5 < 7:首先加5得到:2x < 12然后除以2:x < 6因此解集为x < 62. 解不等式3(x - 1) + 2 > 5:首先化简得到:3x - 3 + 2 > 5再合并同类项:3x - 1 > 5最后加1得到:3x > 6除以3:x > 2因此解集为x > 23. 解不等式4 - x > 2x + 5:首先整理得到:4 - 2x > 3x + 5然后移项得到:4 - 5 > 3x + 2x化简得到:-1 > 5x最后除以5:x < -1/5因此解集为x < -1/54. 解不等式2x - 3 < 4 - x:首先移项得到:2x + x < 4 + 3合并同类项得到:3x < 7最后除以3:x < 7/3因此解集为x < 7/35. 解不等式|x - 2| > 3:针对绝对值不等式,分为正负两种情况求解:当x - 2 > 0时,即x > 2时,不等式转换为:x - 2 > 3移项得到:x > 5当x - 2 < 0时,即x < 2时,不等式转换为:-(x - 2) > 3移项得到:-x + 2 > 3再移项得到:-x > 1最后乘以-1(注意改变不等号方向):x < -1综合两种情况,解集为x < -1 或 x > 5解答二:1. 解不等式3x - 4 > 7:首先加4得到:3x > 11然后除以3:x > 11/3因此解集为x > 11/32. 解不等式2(x + 3) - 5 > 4(x - 1):首先化简得到:2x + 6 - 5 > 4x - 4再合并同类项:2x + 1 > 4x - 4最后移项得到:5 > 2x因此解集为x < 5/23. 解不等式-2x - 3 < 5 - x:首先移项得到:-2x + x < 5 + 3合并同类项得到:-x < 8最后乘以-1(注意改变不等号方向):x > -8因此解集为x > -84. 解不等式3x - 2 > 4(x + 1):首先化简得到:3x - 2 > 4x + 4然后移项得到:-2 - 4 > 4x - 3x化简得到:-6 > x因此解集为x < -65. 解不等式|2x + 1| < 5:针对绝对值不等式,分为正负两种情况求解:当2x + 1 > 0时,即2x > -1时,不等式转换为:2x + 1 < 5移项得到:2x < 4最后除以2:x < 2当2x + 1 < 0时,即2x < -1时,不等式转换为:-(2x + 1) < 5移项得到:-2x - 1 < 5再移项得到:-2x < 6最后除以-2(注意改变不等号方向):x > -3综合两种情况,解集为-3 < x < 2通过以上解答,你可以更好地理解高三数学中的解不等式练习题。
高考不等式经典例题

高考不等式经典例题高考数学中的不等式经典例题通常包括比较两个数(式)的大小、不等式的性质、一元二次不等式恒成立问题、特值法判断不等式等。
以下是一些高考数学中不等式的经典例题:例1:比较两个数的大小题目:若a = 1/2, b = 3, c = 2, 请比较a, b, c的大小。
解答:因为a = 1/2 < 1 < 2 < 3 = b < c,所以a < b < c。
例2:不等式的性质题目:若x > 0, y > 0, 且x + y > 2, 请证明:xy < 1。
解答:根据不等式的性质,可以得到以下推导:x > 0, y > 0, 则x + y > 2 > 0, 所以xy < (x + y) / 2 < 1。
例3:一元二次不等式恒成立问题题目:若a, b, c均为实数,且a > 0, b > 0, c > 0。
求解不等式:ax2 + bx + c > 0。
解答:首先考虑判别式,由一元二次方程的判别式可知,当判别式小于0时,不等式恒成立。
因此,我们需要求解判别式:Δ= b2 - 4ac < 0,所以不等式ax2 + bx + c > 0恒成立。
例4:特值法判断不等式题目:若a, b为实数,且a > 0, b > 0。
求解不等式:a2 + b2 > ab。
解答:我们可以使用特值法来求解这个不等式。
取a = 2, b = 1,则a2 = 4, b2 = 1, ab = 2。
因为4 > 2 > 1,所以a2 + b2 > ab。
希望以上例题能够帮助你复习不等式部分的知识,祝你高考取得好成绩!。
高中不等式例题(超全超经典)

一. 不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。
其中比较法(作差、作商)是最基本的方法。
三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
不等式高考试题及答案

不等式高考试题及答案一、选择题1. 若不等式3x+2>7成立,则x的取值范围是:A. x < -1B. x > -1C. x < 1D. x > 1答案:D2. 已知不等式2(x-1) > 3(x+2),则x的取值范围是:A. x < -7/5B. x > -7/5C. x < -1D. x > -1答案:C3. 若x<y,则对x+y,下列不等式成立的是:A. x + y < 2xB. x + y < 2yC. x + y > 2xD. x + y > 2y答案:C4. 若不等式5x+3y > 6成立,下列不等式中一定成立的是:A. 10x + 6y > 12B. 5x + 6y > 12C. 5x + 3y > 6D. 10x + 3y > 6答案:D5. 下列不等式组中,解集与其他三个不同的是:A. {x | -2 < x < 3}B. {x | 0 < x < 5}C. {x | 1 < x < 4}D. {x | -3 < x < 2}答案:B二、填空题1. 若不等式2x - 1 > 5成立,则x的取值范围为________。
答案:x > 32. 若不等式-3(x - 1) < 2(x + 3)成立,则x的取值范围为________。
答案:x < 13/53. 已知不等式2x - 3 < 5x + 4,则x的取值范围为________。
答案:x > -7/34. 若不等式x + 5 > 2x - 3成立,则x的取值范围为________。
答案:x < 85. 若不等式3x - 2 > 5成立,则x的取值范围为________。
答案:x > 7/3三、解答题1. 解不等式组{x | 2x + 3 > 5, x - 1 < 4},并将解表示在数轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考不等式经典例题
【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小.
【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a +
1a -2(a >2),n =x -2(x ≥1
2
),则m ,n 之间的大小关系为( ) A.m <n
B.m >n
C.m ≥n
D.m ≤n
【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递.
m =a +
1a -2=a -2+1a -2+2≥2+2=4,而n =x -2≤(1
2
)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.
【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ),
故f (3)=-53(a -c )+8
3(4a -c )∈[-1,20].
题型三 开放性问题
【例3】已知三个不等式:①ab >0;② c a >d
b
;③bc >ad .以其中两个作条件,余下的一个作结论,则能组成多少个正确命题?
【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ⇔bc -ad
ab
>0.
(1)由ab >0,bc >ad ⇒
bc -ad
ab
>0,即①③⇒②; (2)由ab >0,
bc -ad
ab
>0⇒bc -ad >0⇒bc >ad ,即①②⇒③; (3)由bc -ad >0,
bc -ad
ab
>0⇒ab >0,即②③⇒①. 故可组成3个正确命题.
【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况:
(1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2
m
.
所以不等式的解集为{x |x <-1或x >2
m
};
(2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0, 其对应方程两根为x 1=-1,x 2=2m ,x 2-x 1=2m -(-1)=m +2
m
.
①m <-2时,m +2<0,m <0,所以x 2-x 1>0,x 2>x 1, 不等式的解集为{x |-1<x <2m
};
②m =-2时,x 2=x 1=-1,原不等式可化为(x +1)2<0,解集为∅; ③-2<m <0时,x 2-x 1<0,即x 2<x 1,不等式解集为{x |2
m
<x <-1}.
【变式训练2】解关于x 的不等式
ax -1
x +1
>0. 【解析】原不等式等价于(ax -1)(x +1)>0.
当a =0时,不等式的解集为{x |x <-1};当a >0时,不等式的解集为{x |x >1
a
或x <-1};
当-1<a <0时,不等式的解集为{x |1
a
<x <-1};当a =-1时,不等式的解集为∅;
当a <-1时,不等式的解集为{x |-1<x <1
a
}.
【例3】已知ax 2+bx +c >0的解集为{x |1<x <3},求不等式cx 2+bx +a <0的解集. 【解析】由于ax 2+bx +c >0的解集为{x |1<x <3},因此a <0, 解得x <1
3
或x >1.
(1)z =x +2y -4的最大值; (2)z =x 2+y 2-10y +25的最小值; (3)z =
2y +1
x +1
的取值范围. 【解析】作出可行域如图所示,并求出顶点的坐标A (1,3),B (3,1),C (7,9). (1)易知直线x +2y -4=z 过点C 时,z 最大. 所以x =7,y =9时,z 取最大值21. (2)z =x 2+(y -5)2表示可行域内任一点(x ,y )到定点M (0,5)的距离的平方, 过点M 作直线AC 的垂线,易知垂足N 在线段AC 上, 故z 的最小值是(|0-5+2|2
)2=9
2.
(3)z =2·
y -(-1
2
)
x -(-1)表示可行域内任一点(x ,y )与定点Q (-1,-1
2
)连线斜率的2倍.
因为k QA =74,k QB =38,所以z 的取值范围为[34,7
2].
【例1】(1)设x ,y ∈R +,且xy -(x +y )=1,则( )
A .x +y ≥2(2+1)
B .x +y ≤2(2+1) C. x +y ≤2(2+1)2 D. x +y ≥(2+1)2 (2)已知a ,b ∈R +,则ab ,
a +b
2
,
a 2+
b 2
2
,
2ab
a +b
的大小顺序是 . 【解析】(1)选A.由已知得xy =1+(x +y ),又xy ≤(
x +y 2
)2
,所以(
x +y 2
)2
≥1+(x +y ).
解得x +y ≥2(2+1)或x +y ≤2(1-2). 因为x +y >0,所以x +y ≥2(2+1). (2)由
a +b
2≥ab 有a +b ≥2ab ,即a +b ≥
2ab
ab
,所以ab ≥
2ab
a +
b . 又
a +b
2
=
a 2+2a
b +b 2
4
≤
2(a 2+b 2)
4
,所以a 2+b 22≥
a +b
2
, 所以
a 2+
b 22≥
a +b
2
≥ab ≥
2ab
a +b
. 【变式训练1】设a >b >c ,不等式
1a -b +1b -c >λa -c
恒成立,则λ的取值范围是 . 【解析】(-∞,4).因为a >b >c ,所以a -b >0,b -c >0,a -c >0.
而(a -c )(
1a -b +1b -c )=[(a -b )+(b -c )](1a -b +1b -c
)≥4,所以λ<4. 【例2】(1)已知x <54,则函数y =4x -2+1
4x -5
的最大值为 ;
【解析】(1)因为x <54,所以5-4x >0. 所以y =4x -2+14x -5=-(5-4x +1
5-4x )+3≤-2+3=1.
当且仅当5-4x =1
5-4x
,即x =1时,等号成立. 所以x =1时,y max =1.
【变式训练2】已知x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,求(a +b )2
cd
的取值范围.
【解析】由等差数列、等比数列的性质得a +b =x +y ,
cd =xy ,所以(a +b )2cd =(x +y )2
xy =2+x y +y x ,当y x >0时,(a +b )2cd ≥4;当y x <0时,(a +b )2cd
≤0,
故(a +b )2
cd
的取值范围是(-∞,0]∪[4,+∞).
例
4642y x
x y x y x y +=+++ ⎪
=”
例
解:
=”
例
解:
述不等式取“=”,代解此时
36。
例若正实数x,y,则xy的最小值是。
(变式:求2x+y的最小值为______)答案:18
解:因为x>0,y>0
等号当且仅当2x=y=6时成立,故xy的最小值为18。
变式答案:12
解:因为x>0,y>0
等号当且仅当2x=y=6时成立,故2x+y的最小值为12。
例
的取值范围是。
,所以有。